
JPL DOCID D-60411

JPL Institutional Coding Standard
for the C Programming Language

[version edited for external distribution:

does not include material copyrighted by MIRA Ltd (i.e., LOC-5&6)
and material copyrighted by the ISO (i.e., Appendix A)]

Cleared for external distribution on 03/04/09, CL#09-0763.

Version: 1.0

Date: March 3, 2009

Paper copies of this document may not be current and should not be relied on for official
purposes. The most recent draft is in the LaRS JPL DocuShare Library at http://lars-lib .

Jet Propulsion Laboratory
California Institute of Technology

 1

http://lars-lib/

JPL DOCID D-60411

Table of Contents

Rule Summary 4
Introduction 5
Scope 6
Conventions 6
Levels of Compliance 7

LOC-1 Language Compliance 8
LOC-2 Predictable Execution 10
LOC-3 Defensive Coding 13
LOC-4 Code Clarity 16
LOC-5 MISRA-C:2004 shall Compliance (omitted)
LOC-6 MISRA-C:2004 full Compliance (omitted)

References 19

Appendix A (omitted) 21
Unspecified, Undefined, and Implementation-Dependent Behavior in C

Index 22

 2

JPL DOCID D-60411

Version History

DATE SECTIONS
CHANGED

REASON FOR CHANGE REVISION

2008-04-04 All Document created 0.1
2008-05-12 Rule 13 Added guidance for the use of extern

declarations, to avoid a known problem.
0.2

2009-03-04 Revision for external
distribution

Copyrighted material omitted: LOC-5
and LOC6, and Appendix A

1.0

Acknowledgement
The research described in this document was carried out at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the National Aeronautics and
Space Administration.

© 2009 California Institute of Technology. Government sponsorship is acknowledged.

 3

JPL DOCID D-60411

Rule Summary
1 Language Compliance

1 Do not stray outside the language definition.
2 Compile with all warnings enabled; use static source code analyzers.

2 Predictable Execution
3 Use verifiable loop bounds for all loops meant to be terminating.
4 Do not use direct or indirect recursion.
5 Do not use dynamic memory allocation after task initialization.

*6 Use IPC messages for task communication.
7 Do not use task delays for task synchronization.

*8 Explicitly transfer write-permission (ownership) for shared data objects.
9 Place restrictions on the use of semaphores and locks.

10 Use memory protection, safety margins, barrier patterns.
11 Do not use goto, setjmp or longjmp.
12 Do not use selective value assignments to elements of an enum list.

3 Defensive Coding
13 Declare data objects at smallest possible level of scope.
14 Check the return value of non-void functions, or explicitly cast to (void).
15 Check the validity of values passed to functions.

 16 Use static and dynamic assertions as sanity checks.
*17 Use U32, I16, etc instead of predefined C data types such as int, short, etc.
18 Make the order of evaluation in compound expressions explicit.
19 Do not use expressions with side effects.

4 Code Clarity
20 Make only very limited use of the C pre-processor.
21 Do not define macros within a function or a block.
22 Do not undefine or redefine macros.
23 Place #else, #elif, and #endif in the same file as the matching #if or #ifdef.

*24 Place no more than one statement or declaration per line of text.
*25 Use short functions with a limited number of parameters.
*26 Use no more than two levels of indirection per declaration.
*27 Use no more than two levels of dereferencing per object reference.
*28 Do not hide dereference operations inside macros or typedefs.
*29 Do not use non-constant function pointers.
30 Do not cast function pointers into other types.
31 Do not place code or declarations before an #include directive.

5 – MISRA shall compliance
73

rules
All MISRA shall rules not already covered at Levels 1-4.

6 – MISRA should compliance
*16

rules
All MISRA should rules not already covered at Levels 1-4.

*) All rules are shall rules, except those marked with an asterix.

 4

JPL DOCID D-60411

Introduction

Considerable efforts have been invested by many different organizations in the past on
the development of coding standards for the C programming language. The intent of this
standard is not to duplicate the earlier work but to collect the best available insights in a
form that can help us improve the safety and reliability of our code. By conforming to a
single institutional standard, rather than maintaining a multitude of project and mission
specific standards, we can achieve greater consistency of code quality at JPL.

Two earlier efforts have most influenced the contents of this standard. The first is the
MISRA-C coding guideline from 2004,1 which was originally defined for the
development of embedded C code in automobiles, but is today used broadly for safety
critical applications. The second source is the set of coding rules known as the “Power of
Ten.”2 Neither of these two sources, though, addresses software risks that are related to
the use of multi-threaded software. This standard aims to fill that void.

This rules included in this standard, and the tools and processes that are used to verify
code compliance, should be reviewed for possible revision no more than once per year
and no less than once per five years.

Many software experts both inside and outside JPL have contributed to the creation of
this document with proposals for good coding rules, and critiques of those contained in
earlier standards. Their contributions (which do not necessarily imply the endorsement of
this document) are gratefully acknowledged here.

People that have contributed in the preparations for this standard, starting
in 2004, include Brian Kernighan (Princeton University), Dennis Ritchie
(Bell Labs), Doug McIlroy (Dartmouth), Eddie Benowitz, Scott Burleigh,
Tim Canham, Benjamin Cichy, Ken Clark, Micah Clark, Len Day, Robert
Denise, Will Duquette, Dan Dvorak, Dan Eldred, Ed Gamble, Peter Gluck,
Kim Gostelow, Chris Grasso, Alex Groce, Dave Hecox, Gerard
Holzmann, Joe Hutcherson, Rajeev Joshi, Roger Klemm, Frank
Kuykendall, Mary Lam, Steve Larson, Todd Litwin, Tom Lockhart, Lloyd
Manglapus, Kenny Meyer, Alex Murray, Al Niessner, Bob Rasmussen,
Len Reder, Glenn Reeves, Kirk Reinholtz, Mike Roche, Nicolas
Rouquette, Steve Scandore, Marcel Schoppers, Dave Smyth, Ken Starr,
Igor Uchenik, Dave Wagner, Garth Watney, Steve Watson, Matt Wette,
Jesse Wright. Unless otherwise noted, all those above are employees of
the Jet Propulsion Laboratory, California Institute of Technology, in
Pasadena, California.

1 MISRA-C 2004, Guidelines for the use of the C language in critical systems. MIRA Ltd. 2004, ISBN 0
9524156 4 X PDF, www.misra-c.com.
2 The Power of Ten: Rules for Developing Safety-Critical Code, IEEE Computer, June 2006, pp. 93-95.

 5

http://www.misra-c.com/

JPL DOCID D-60411

Scope

The coding rules defined here primarily target the development of mission critical flight
software written in the C programming language. This means that the rules are focused
on embedded software applications, which generally operate under stricter resource
constraints than, e.g., ground software.

For conciseness, the scope of this standard is further restricted as much as possible to the
definition of coding rules that can reduce the risk of software failures. General project
and mission specific requirements that concern the context in which software is
developed (e.g., process related requirements) but not the code itself, fall outside the
current scope. Such additional requirements should be defined and documented
separately in accordance with applicable controlling documents from JPL Rules.3

The following are some specific examples of process, project or mission specific
requirements that fall outside the scope of this standard:

File and directory organization, naming conventions, formatting, commenting and
annotation, the format of file headers (e.g., to document copyright, ownership,
and change history), conventions for the use of telemetry channels or event
reporting, the development environment (choice of computers, operating systems,
compilers, static analyzers, version control systems, build scripts or makefiles,
software test requirements, etc).

With few exceptions, general principles of software architecture also fall outside the
current scope. A good example of architectural and structuring principles for software
systems can be found in the ARINC 653-1 standard for safety critical avionics software.4

Conventions

The use of the verbs shall and should have the following meaning in this document.

• Shall indicates a requirement that must be followed, with compliance verified.
• Should indicates a preference that must be addressed, but with deviations

allowed, provided that an adequate justification is given for each deviation.

An effort is made to limit shall rules to cases for which compliance can effectively be
verified (e.g., with tool-based checks). If a deviation from a shall rule is sought,
substantial supporting evidence must be provided in a written waiver request. Such

3 E.g., Software Development Standard Processes, Rev 1, D-74352 and Software Development, Rev 6, D-
57653
4 ARINC Specification, Avionics Application Software Standard Interface, Release 653-1 from 16 October
2003, and Release 653P1-2 from 7 March 2006. Airlines Electronic Engineering Committee, Aeronautical
Radio Inc., Maryland, USA.

 6

http://rules.jpl.nasa.gov/cgi/doc-gw.pl?DocID=74352�
http://rules.jpl.nasa.gov/cgi/doc-gw.pl?DocID=57653�
http://rules.jpl.nasa.gov/cgi/doc-gw.pl?DocID=74352
http://rules.jpl.nasa.gov/cgi/doc-gw.pl?DocID=57653
http://rules.jpl.nasa.gov/cgi/doc-gw.pl?DocID=57653

JPL DOCID D-60411

waiver requests must be evaluated by a team of software experts from across JPL, not
associated with the project seeking the waiver.5

For each rule given, the most closely related rule in the MISRA-C:2004 standard or the
Power of Ten rule-set is quoted.

Levels of Compliance

This standard defines six levels of compliance (LOC), ranging from the most general to
the most specific. Compliance with this standard can be certified for each level
separately, preferably with the help of tool-based compliance checkers. It is also possible
to certify compliance at different LOC levels for different parts of a large code base. For
newly written code, achieving full compliance with this standard – at least through level
4, is not expected to have a measurable impact on schedule or cost. This trade-off can be
different for heritage code, developed before this standard went into effect. For existing
code, the amount of effort needed to achieve compliance will increase with each new
level. Schedule and cost considerations, weighed against mission risk, should determine
which level is appropriate. Levels of compliance certification for each project or mission
should be defined in the project’s Software Management Plan (SMP).

The number of rules defined at each LOC is summarized in the following Table. The
name of each segment is meant to be suggestive of its approximate purpose.

Level of Compliance Rules Defined
at Level

Cumulative Number of Rules
Required for Full Compliance

LOC-1 Language Compliance 2 2
LOC-2 Predictable Execution 10 12
LOC-3 Defensive Coding 7 19
LOC-4 Code Clarity 12 31
LOC-5 MISRA-shall rules 73 104
LOC-6 MISRA-should rules 16 120

The rules defined at LOC-1 through LOC-4 correspond to the following MISRA-C and
Power of Ten rules.

Level of Compliance MISRA-C:2004 Rules Power of
Ten Rules

LOC-1 Language Compliance 1.1, 1.2, 2.3, 21.1 1, 10
LOC-2 Predictable Execution 9.3, 14.4, 16.2, 20.4 2, 3
LOC-3 Defensive Coding 6.3, 8.7, 8.10, 12.2, 13.1, 16.10, 20.3 5, 6, 7
LOC-4 Code Clarity 11.1, 16.1, 17.5, 19.1, , 19.4 19.5, 19.6,

19.12, 19.13, 19.17
4, 8, 9

5 That is, it will not be sufficient for the cognizant engineer or the project or mission lead to approve a
waiver from a shall rule. Because these rules are part of a JPL Institutional standard, an independent
institutional approval process must be followed for significant deviations.

 7

JPL DOCID D-60411

LOC-1: Language Compliance

Rule 1 (language)
All C code shall conform to the ISO/IEC 9899-1999(E) standard for the C
programming language, with no reliance on undefined or unspecified
behavior. [MISRA-C:2004 Rule 1.1, 1.2]

The purpose of this rule is to make sure that all mission critical code can be compiled
with any language compliant compiler, can be analyzed by a broad range of tools, and
can be understood, debugged, tested, and maintained by any competent C programmer. It
ensures that there is no hidden reliance on compiler or platform specific behavior that
may jeopardize portability or code reuse. The rule prohibits straying outside the language
definition, and forbids reliance of undefined or unspecified behavior. This rule also
prohibits the use of #pragma directives, which are by definition implementation defined
and outside the language proper. The #error directive is part of the language, and its
use is supported. The closely related #warning directive is not defined in the language
standard, but its use is allowed if supported by the compiler (but note Rule 2).

The C language standard explicitly recognizes the existence of undefined and unspecified
behavior. A list of formally unspecified, undefined and implementation dependent
behavior in C, as contained in the ISO/IEC standard definition, is given in Appendix A.

Rule 2 (routine checking)
All code shall always be compiled with all compiler warnings enabled at
the highest warning level available, with no errors or warnings resulting.
All code shall further be verified with a JPL approved state-of-the-art static
source code analyzer, with no errors or warnings resulting. [MISRA-C:2004
Rule 21.1]

This rule should be considered routine practice, even for non-critical code development.
Given compliance with Rule 1, this means that the code should compile without errors or
warnings issued with the standard gcc compiler, using a command line with minimally
the following option flags:

gcc –Wall –pedantic –std=iso9899:1999 source.c

A suggested broader set of gcc compiler flags includes also:

-Wtraditional
-Wshadow
-Wpointer-arith
-Wcast-qual
-Wcast-align
-Wstrict-prototypes
-Wmissing-prototypes
-Wconversion

 8

JPL DOCID D-60411

The rule of zero warnings applies even in cases where the compiler or the static analyzer
gives an erroneous warning. If the compiler or the static analyzer gets confused, the code
causing the confusion should be rewritten so that it becomes more clearly valid. Many
developers have been caught in the assumption that a tool warning was false, only to
realize much later that the message was in fact valid for less obvious reasons. The JPL
recommended static analyzers are fast, and produce sparse and accurate messages.

 9

JPL DOCID D-60411

LOC-2: Predictable Execution

Rule 3 (loop bounds)
All loops shall have a statically determinable upper-bound on the
maximum number of loop iterations. It shall be possible for a static
compliance checking tool to affirm the existence of the bound. An
exception is allowed for the use of a single non-terminating loop per task
or thread where requests are received and processed. Such a server loop
shall be annotated with the C comment: /* @non-terminating@ */.
[Power of Ten Rule 2]

Rule 4 (recursion)
There shall be no direct or indirect use of recursive function calls. [MISRA-
C:2004 Rule 16.2; Power of Ten Rule 1]

The presence of statically verifiable loop bounds and the absence of recursion prevent
runaway code, and help to secure predictable performance for all tasks. The absence of
recursion also simplifies the task of deriving reliable bounds on stack use. The two rules
combined secure a strictly acyclic function call graph and control-flow structure, which
in turn enhances the capabilities for static checking tools to catch a broad range of coding
defects.

One way to enforce secure loop bounds is to add an explicit upper-bound to all loops that
can have a variable number of iterations (e.g., code that traverses a linked list). When the
upper-bound is exceeded an assertion failure and error exit can be triggered. For standard
for-loops, the loop bound requirement can be satisfied by making sure that the loop
variables are not referenced or modified inside the body of the loop.

Rule 5 (heap memory)
There shall be no use of dynamic memory allocation after task
initialization. [MISRA-C:2004 Rule 20.4; Power of Ten Rule 3]

Specifically, this rule disallows the use of malloc(), sbrk(), alloca(), and similar routines,
after task initialization.

This rule is common for safety and mission critical software and appears in most coding
guidelines. The reason is simple: memory allocators and garbage collectors often have
unpredictable behavior that can significantly impact performance. A notable class of
coding errors stems from mishandling memory allocation and free routines: forgetting to
free memory or continuing to use memory after it was freed, attempting to allocate more
memory than physically available, overstepping boundaries on allocated memory, using
stray pointers into dynamically allocated memory, etc. Forcing all applications to live
within a fixed, pre-allocated, area of memory can eliminate many of these problems and
make it simpler to verify safe memory use.

 10

JPL DOCID D-60411

Rule 6 (inter-process communication)
An IPC mechanism should be used for all task communication. Callbacks
should be avoided. No task should directly execute code or access data
that belongs to a different task. All IPC messages shall be received at a
single point in a task.

Communication and data exchanges between different tasks (modules) in the system are
best performed through a disciplined use of IPC (inter-process communication)
messaging. IPC messages should then contain only data, preferably no data pointers, and
never any function pointers. Each task or module should maintain its own data structures,
and not allow direct access to local data by other tasks. This style of software architecture
is based on principles of software modularity, data hiding, and the separation of concerns
that can avoid the need for the often more error-prone use of semaphores, interrupt
masking and data locking to achieve task synchronization.

Rule 7 (thread safety)
Task synchronization shall not be performed through the use of task
delays.

Specifically the use of task delays has been the cause of race conditions that have
jeopardized the safety of spacecraft. The use of a task delay for task synchronization
requires a guess of how long certain actions will take. If the guess is wrong, havoc,
including deadlock, can be the result.

Rule 8 (access to shared data)
Data objects in shared memory should have a single owning task. Only
the owner of a data object should be able to modify the object. Ownership
should be passed between tasks explicitly, preferably via IPC messages.

Ownership equals write-permission, but non-ownership generally will not exclude read-
access to a shared object. Note that this rule does not prevent the use of system-wide
library modules that are not associated with any one task, but it does place a restriction on
how tasks use such modules. Generally, if a shared object does not have a single owning
task, access to that object has to be regulated with the use of locks or semaphores, to
avoid access conflicts that can lead to data corruption.

Rule 9 (semaphores and locking)
The use of semaphores or locks to access shared data should be avoided
(cf. Rules 6 and 8). If used, nested use of semaphores or locks should be
avoided. If such use is unavoidable, calls shall always occur in a single
predetermined, and documented, order. Unlock operations shall always
appear within the body of the same function that performs the matching
lock operation.

Semaphore acquire and release operations, when used for locking, and interrupt mask
and unmask operations, should always appear in pairs, within the same function, to

 11

JPL DOCID D-60411

comply with the second part of Rule 9. Semaphore operations can also validly be
used for “producer-consumer” synchronization. In those cases acquire and release
operations may appear in different tasks. The use of nested semaphore or locking
calls in more than one possible order can cause deadlock.

Rule 10 (memory protection)
Where available, i.e., when supported by the operating system, memory
protection shall be used to the maximum extent possible. When not
available, safety margins and barrier patterns shall be used to allow
detection of access violations.

For instance, an area of memory above the stack limit allocated to each task should be
reserved as a safety margin, and filled with a fixed and uncommon bit-pattern. A health
task can detect stack overflow anomalies by at regular intervals checking the presence of
the bit-pattern for each task. The same principle can be used to protect against buffer
overflow, or access to memory outside allocated regions. Critical parameters should
similarly be protected in memory by placing safety margins and barrier patterns around
them, so that access violations and data corruption can be detected more easily.

Rule 11 (simple control flow)
The goto statement shall not be used. There shall be no calls to the
functions setjmp or longjmp. [MISRA-C:2004, Rule 14.4, Power of Ten Rule
1]

Simpler control flow translates into stronger capabilities for both human and tool-based
analysis and often results in improved code clarity. Mission critical code should not just
be arguably, but trivially correct.

Rule 12 (enum Initialization)
In an enumerator list, the "=" construct shall not be used to explicitly
initialize members other than the first, unless all items are explicitly
initialized. [MISRA-C:2004, Rule 9.3]

 12

JPL DOCID D-60411

LOC-3: Defensive Coding

Rule 13 (limited scope)
Data objects shall be declared at the smallest possible level of scope. No
declaration in an inner scope shall hide a declaration in an outer scope.
[MISRA-C:2004 Rule 8.7, 8.10; Power of Ten Rule 6]

This rule supports a well-known principle of data-hiding. If an object is not in scope, its
value cannot be referenced or corrupted. Similarly, if an erroneous value of an object has
to be diagnosed, the fewer the number of statements where the value could have been
assigned; the easier it is to diagnose the problem. The rule discourages the re-use of
variables for multiple, incompatible purposes, which complicates fault diagnosis.

The rule is consistent with the principle of preferring pure functions that do not touch
global data, that avoid storing local state, and that do not modify data declared in the
calling function indirectly. The use of distributed state information can significantly
reduce code transparency, reduce the effectiveness of standard software test strategies,
and complicate the debugging process if anomalies occur. Good programming practice is
further to prefer the use of immutable data objects and references. This means that data
objects should by preference be declared of C type enum or with the C qualifier const.
Especially function parameters should be declared with the type qualifier const
wherever possible.

Although their use is sometimes unavoidable, there is a hidden danger in the use of
extern declarations in C. Without precautions, if we declare a global data object named
x as type A (e.g., int) in one source file, and then place an extern declaration to the
same object x in another source file, while accidentally using another type B (e.g.,
double), most current compilers (including gcc with all warnings enabled at the highest
setting) and most current static analyzers, will not detect the type inconsistency. Clearly,
if the two types have different size (as in our example of int and double) havoc will result
(mitigated only partially by the use of barrier patterns, as recommended in Rule 10). The
correct remedy for this significant flaw in current compiler technology is to:

Place all extern declarations in a header file. The header file must be included in
every file that refers to the corresponding data object: both the source file in which
the actual declaration appears and the files in which the object is used.

If this rule is followed, the compiler will be able to flag all type inconsistencies reliably.
Note the similarity in this treatment of extern declarations and the standard use of
function prototypes (which follows very similar rules).

Rule 14 (checking return values)
The return value of non-void functions shall be checked or used by each
calling function, or explicitly cast to (void) if irrelevant. [MISRA-C:2004 Rule
16.10; Power of Ten Rule 7]

 13

JPL DOCID D-60411

Rule 15 (checking parameter values)
The validity of function parameters shall be checked at the start of each
public function.6 The validity of function parameters to other functions shall
be checked by either the function called or by the calling function. [MISRA-
C:2004 Rule 20.3; Power of Ten Rule 7]

This is consistent with the principle that the use of total functions is preferable over
non-total functions. A total function is setup to handle all possible input values, not
just those parameter values that are expected when the software functions normally.

Rule 16 (use of assertions)
Assertions shall be used to perform basic sanity checks throughout the
code. All functions of more than 10 lines should have at least one
assertion. [Power of Ten Rule 5]

Assertions are used to check for anomalous conditions that should never happen in real-
life executions. Assertions must be side-effect free and can be defined as Boolean tests.
When an assertion fails, an explicit recovery action should be taken, e.g., by returning an
error condition to the caller of the function. No assertion should be used for which a static
checking tool can prove that it can never fail or never hold.

Statistics for industrial coding efforts indicate that unit tests often find at least one defect
per one hundred lines of code written. The odds of intercepting defects increase with a
liberal use of assertions. Assertions can be used to verify pre- and post-conditions of
functions, parameter values, expected function return values, and loop-invariants.
Because assertions are side-effect free, they can be selectively disabled after testing in
performance-critical code. A recommended use of assertions is to follow the following
pattern:

 if (!c_assert(p >= 0) == true) {
 return ERROR;
 }

where the assertion is defined during testing as:

 #define c_assert(e) ((e) ? (true) : \
 tst_debugging("%s,%d: assertion '%s' failed\n", \
 __FILE__, __LINE__, #e), false)

In this definition, __FILE__ and __LINE__ are predefined by the macro preprocessor to
produce the filename and line-number of the failing assertion. The syntax #e turns the
assertion condition e into a string that is printed as part of the error message. Because in
flight there is no convenient place to print an error message, the call to tst_debugging can
be turned into a call to a different error-logging routine after testing. In flight, the

6 A public function is a function that is used by multiple tasks, such as a library
function. In a multi-threaded environment, library functions are typically re-entrant.

 14

JPL DOCID D-60411

assertion then turns into a Boolean test that protects, and enables recovery, from
anomalous behavior, automatically logging every violation encountered.

The examples above are for dynamic assertions that can provide protection against
unexpected conditions encountered at runtime. An even stronger check can be provided
by static assertions that can be evaluated by the compiler at the time code is compiled. A
static assertion can be defined like the c_assert above, but can be used standalone (i.e.,
not in a conditional), for instance as follows:

 c_assert(1 / (4 – sizeof(void *));

This assertion will trigger a “division by zero” warning from the compiler when the code
is compiled on 32-bit machines (thus triggering Rule 2). To check the opposite
requirement, i.e., to make sure that we are executing on a 32-bit machine only, the
following static assertion can be used:

 c_assert(1 / (sizeof(void *) & 4));

This version will trigger the “division by zero” warning from the compiler when the code
is compiled on machines that do not have a 32-bit wordsize.

Rule 17 (types)
Typedefs that indicate size and signedness should be used in place of the
basic types. [MISRA-C:2004 Rule 6.3]

This rule appears in most coding standards for embedded software and is meant to
enhance code transparency and secure type safety. Typical definitions include I32 for
signed 32-bit integer variables, U16 for unsigned 16-bit integer variables, etc.

Rule 18
In compound expressions with multiple sub-expressions the intended
order of evaluation shall be made explicit with parentheses. [cf. MISRA-
C:2004 Rule 12.2]

Rule 19
The evaluation of a Boolean expression shall have no side effects.
[MISRA-C:2004 Rule 13.1]

 15

JPL DOCID D-60411

LOC-4: Code Clarity

Especially mission critical code should be written to be readily understandable by any
competent developer, without requiring significant effort to reconstruct the thought
processes and assumptions of the original developer. The rules in this section aim to
secure compliance with this requirement.

The purpose of these rules is that all code remains readily understandable and
maintainable, also years after it is written, and especially when examined under time
pressure and by anyone other than the original developer. Code does not just serve to
communicate a developer’s intent to a computer, but also to current and future colleagues
that must be able to maintain, revise, or extend the code reliably. Code clarity cannot
easily be captured in a comprehensive set of mechanically verifiable checks, so the
specific rules included here serve primarily as examples of safe coding practice.

Rule 20 (preprocessor use)
Use of the C preprocessor shall be limited to file inclusion and simple macros.
[Power of Ten Rule 8]

The C preprocessor is a powerful obfuscation tool that can destroy code clarity and
befuddle both human- and tool-based checkers. The effect of constructs in unrestricted
preprocessor code can be extremely hard to decipher, even with a formal language
definition in hand. In new implementations of the C preprocessor, developers often have
to resort to using earlier implementations as the referee for interpreting complex defining
language in the C standard.

Specifically, the use of token pasting (cf. MISRA-C:2004 Rules 19.12 and 19.13),
variable argument lists (ellipses) (cf. MISRA-C:2004 Rule 16.1), and recursive macro
calls are excluded by this rule. All macros are required to expand into complete syntactic
units (cf. MISRA-C:2004 Rule 19.4).

The use of conditional compilation directives (#ifdef, #if, #elif) should be limited to the
standard boilerplate that avoids multiple inclusion of the same header file in large
projects. (See also Rule 23.) There is rarely a justification for the use of other conditional
compilation directives even in large software development efforts. Each such use should
be justified in the code. Note that with just ten conditional compilation directives, there
could be up to 210 (i.e., 1024) possible versions of the code, each of which would have to
be tested – causing a generally unaffordable increase in the required test effort.

Rule 21 (preprocessor use)
Macros shall not be #define'd within a function or a block. [MISRA-C:2004
Rule 19.5]

Rule 22 (preprocessor use)
#undef shall not be used. [MISRA-C:2004 Rule 19.6]

 16

JPL DOCID D-60411

Rule 23 (preprocessor use)
All #else, #elif and #endif preprocessor directives shall reside in the same
file as the #if or #ifdef directive to which they are related. [MISRA-C:2004
Rule 19.17]

Rule 24
There should be no more than one statement or variable declaration per
line. A single exception is the C for-loop, where the three controlling
expressions (initialization, loop bound, and increment) can be placed on a
single line.

Rule 25
Functions should be no longer than 60 lines of text and define no more
than 6 parameters. [Power of Ten Rule 4]

A function should not be longer than what can be printed on a single sheet of paper in a
standard reference format with one line per statement and one line per declaration.
Typically, this means no more than about 60 lines of code per function. Long lists of
function parameters similarly compromise code clarity and should be avoided.

Each function should be a logical unit in the code that is understandable and verifiable as
a unit. It is much harder to understand a logical unit that spans multiple screens on a
computer display or multiple pages when printed. Excessively long functions are often a
sign of poorly structured code.

Rule 26
The declaration of an object should contain no more than two levels of
indirection. [MISRA-C:2004 Rule 17.5]

Rule 27
Statements should contain no more than two levels of dereferencing per
object. [Power of Ten Rule 9]

Rule 28
Pointer dereference operations should not be hidden in macro definitions
or inside typedef declarations.

Rule 29
Non-constant pointers to functions should not be used.

Rule 30 (type conversion)
Conversions shall not be performed between a pointer to a function and
any type other than an integral type. [MISRA-C:2004 Rule 11.1]

 17

JPL DOCID D-60411

Pointers are easily misused, even by experienced programmers. They can make it hard to
follow or analyze the flow of data in a program, especially by tool-based checkers.
Function pointers especially can restrict the types of checks that can be performed by
static analyzers and should only be used if there is a strong justification, and when
alternate means are provided to maintain transparency of the flow of control. If function
pointers are used, it can become difficult for tools to prove absence of recursion. In these
cases alternate guarantees should be provided to make up for this loss in analytical
capabilities.

Rule 31 (preprocessor use)
#include directives in a file shall only be preceded by other preprocessor
directives or comments. [MISRA-C:2004 Rule 19.1]

The recommended file format is to structure the main standard components of a file in the
following sequence: include files, macro definitions, typedefs (where not provided in
system-wide include files), external declarations, file static declarations, followed by
function declarations.

[Levels 5 and 6 omitted in this version for copyright
restrictions – consult the original MISRA C guidelines for
details.]

 18

JPL DOCID D-60411

References

Primary documents:

Motor Industry Software Reliability Association (MISRA), MISRA-C: 2004, Guidelines for the
use of the C language in critical systems, October, 2004.

''The Power of Ten -- Rules for Developing Safety Critical Code,'' IEEE Computer, June 2006,
pp. 93-95.

International Standard, ISO/IEC 9899:1999 (E) – Programming Languages – C, Second Edition,
1999-12-01. Date of ISO approval 5/22/2000. Published by ANSI, New York, NY, 2002, 538
pgs.

The C Programming Language, Brian W. Kernighan and Dennis M. Ritchie, Prentice-Hall, Inc.
1978, 2nd Edition 1988.

Other relevant publications and standards:

European Space Agency (ESA) Board for Software Standardization and Control, C and C++
Coding Standards, March 30, 2000.

UK Ministry of Defence, Defence Standard 00-55. Requirements for safety related software in
defence equipment. Part 2: Guidance, UK Ministry of Defence, Aug. 1997.

DOD-178B, Software Considerations in Airborne Systems and Equipment Certifications, RTCA,
Washington D.C., 1992.

Steve Maguire, Writing Solid Code, Microsoft Press, 1993.

Andrew Koenig, C Traps and Pitfalls, Addison_Wesley, 1989, ISBN 0-201-17928-8.

Jerry Doland and Jon Vallett, C Style Guide, Tech. Report SEI-94-003, Software Eng. Branch,
Code 552, Goddard Space Flight Center, Aug. 1994.

Les Hatton, Safer C: Developing software for high-integrity and safety-critical systems, McGraw-
Hill, 1995.

Thomas Plum, C Programming guidelines, Plum Hall, 1989, ISBN 0-911537-07-4.

Robert C. Seacord, Secure Coding in C and C++, Addison-Wesley, 2005.

David Straker, C-Style standards and guidelines, Prentice Hall, 1992, ISBN 0-13-116898-3.

 19

JPL DOCID D-60411

Other documents and standards consulted

Spencer's 10 commandments from 1991 (10 rules)
Nuclear Regulatory Commission from 1995 (22 rules)
Original MISRA rules from 1997 (127 rules)
Software System Safety Handbook from 1999 (34 rules)
European Space Agency coding rules from 2000 (ESA) (123 rules)
Goddard Flight Software Branch coding standard from 2000 (GSFC) (100 rules)
MRO coding rules from 2002 (LMA) (132 rules)
Hatton's ISO C subset proposal from 2003 (20 rules)
MSAP coding rules from 2005 (JPL/MSAP) (141 rules)
JSF AV Rules Rev. C (joint strike fighter air vehicle) from 2005 (154 rules)
SIM Realtime Control Subsystem Coding Rules from 2005 (JPL/SIM) (24 rules)
MSL Coding Rules from 2006 (JPL/MSL) (82 rules)
Rules suggested by JPL developers, 2007 (38 rules)

 20

JPL DOCID D-60411

Appendix A
Unspecified, Undefined, and Implementation-Dependent Behavior in C

As a short synopsis of the basic definition of unspecified, undefined and implementation defined
behavior – the following may suffice (based on a definition proposed by Clive Pygott in ISO SC22
in its study of language vulnerabilities:

• Unspecified behaviour: The compiler has to make a choice from a finite set of

alternatives, but that choice is not in general predictable by the programmer.
 Example: the order in which the sub-expressions of a C expression are evaluated, or the

order in which the actual parameters in a function call are evaluated.

• Implementation defined behaviour: The compiler has to make a choice that is clearly

documented and available to the programmer.
Example: the range of values that can be stored in C variables of type short, int, or long.

• Undefined behaviour: The definition of the language can give no indication of what
behavior to expect from a program – it may be some form of catastrophic failure (a
‘crash’) or continued execution with some arbitrary data.

The following more detailed list is reproduced from Appendix J in ISO/IEC 9899-1999. All
references contained in this list are to numbered sections in the ISO document.

[Remainder omitted, for copyright restrictions.]

 21

JPL DOCID D-60411

 22

Index

A
alloca, 10
analyzer, 8, 9
assertions, 14

B
barrier patterns, 12
bound, 10
buffer overflow, 12

C
call graph, 10
const, 13

D
data-hiding, 13
dereferencing, 17
dynamic assertions, 15

E
ellipses, 16
embedded software, 6, 15
enumerator list, 12
error, 8, 10, 11, 14

F
function parameters, 13, 14, 17

G
goto, 12

H
heritage code, 7

hiding, 11

I
immutable data, 13
indirection, 17
IPC, 11

J
JPL Rules, 6

L
libraries, 14
locking, 11
longjmp, 12
loop, 10
loop-invariants, 14

M
malloc, 10
memory protection, 12
modularity, 11
multiple inclusion, 16

N
non-terminating loop, 10

O
order of evaluation, 15

P
pedantic, 8
pragma, 8
preprocessor, 14, 16, 17, 18
public function, 14
pure functions, 13

R
recursion, 10
recursive macro, 16
return value, 13

S
safety margins, 12
sbrk, 10
scope, 2, 6, 13
semaphores, 11
setjmp, 12
shared objects, 11
side effects, 15
stack, 10
stack limit, 12
stack overflow, 12
static assertions, 15
synchronization, 11

T
task communication, 11
task delays, 11
token pasting, 16
total functions, 14
typedef, 17
typedefs, 15, 18

W
warning, 8, 9, 15

	The presence of statically verifiable loop bounds and the absence of recursion prevent runaway code, and help to secure predictable performance for all tasks. The absence of recursion also simplifies the task of deriving reliable bounds on stack use. The two rules combined secure a strictly acyclic function call graph and control-flow structure, which in turn enhances the capabilities for static checking tools to catch a broad range of coding defects.
	One way to enforce secure loop bounds is to add an explicit upper-bound to all loops that can have a variable number of iterations (e.g., code that traverses a linked list). When the upper-bound is exceeded an assertion failure and error exit can be triggered. For standard for-loops, the loop bound requirement can be satisfied by making sure that the loop variables are not referenced or modified inside the body of the loop.
	The purpose of these rules is that all code remains readily understandable and maintainable, also years after it is written, and especially when examined under time pressure and by anyone other than the original developer. Code does not just serve to communicate a developer’s intent to a computer, but also to current and future colleagues that must be able to maintain, revise, or extend the code reliably. Code clarity cannot easily be captured in a comprehensive set of mechanically verifiable checks, so the specific rules included here serve primarily as examples of safe coding practice.

