Cubic Spline
 Root Finding

Charles O'Neill

14 December 2010

A need exists for determining a solution to the following cubic spline

$$
f(x)=a_{i}\left(x-x_{i}\right)^{3}+b_{i}\left(x-x_{i}\right)^{3}+c_{i}\left(x-x_{i}\right)^{3}+d_{i}=V
$$

The solution is the real root of a cubic spline

$$
f(x)=a_{i}\left(x-x_{i}\right)^{3}+b_{i}\left(x-x_{i}\right)^{3}+c_{i}\left(x-x_{i}\right)^{3}+\left(d_{i}-V\right)=0
$$

Part I

Analytical Solution

One-step analytical solutions exist for a cubic polynomial ${ }^{1}$. The history behind this solution is quite interesting and only a few hundred years old. Given an arbitrary cubic polynomial,

$$
f(x)=a_{i}\left(x-x_{i}\right)^{3}+b_{i}\left(x-x_{i}\right)^{3}+c_{i}\left(x-x_{i}\right)^{3}+d_{i}
$$

the polynomial is non-dimensionalized by a_{i} to give

$$
F(x)=\left(x-x_{i}\right)^{3}+a_{2}\left(x-x_{i}\right)^{3}+a_{1}\left(x-x_{i}\right)^{3}+a_{0}
$$

Three intermediate terms are calculated

$$
\begin{gathered}
Q=\frac{3 a_{1}-a_{2}^{2}}{9} \\
R=\frac{9 a_{2} a_{1}-27 a_{0}-2 a_{2}^{3}}{54} \\
\theta=\arccos \left(\frac{R}{\sqrt{-Q^{3}}}\right)
\end{gathered}
$$

[^0]The real solutions are

$$
\begin{gathered}
z_{1}=2 \sqrt{-Q} \cos \left(\frac{\theta}{3}\right)-\frac{a_{2}}{3} \\
z_{2}=2 \sqrt{-Q} \cos \left(\frac{\theta+2 \pi}{3}\right)-\frac{a_{2}}{3} \\
z_{3}=2 \sqrt{-Q} \cos \left(\frac{\theta+4 \pi}{3}\right)-\frac{a_{2}}{3}
\end{gathered}
$$

The roots are selected from the z value calculated above

$$
x=\left\{z_{1}, z_{2}, z_{3}\right\}
$$

0.1 Issues

There are several issues associated with this method.

- Out of Range: θ will not exist if the search value is outside the range of possible function values $f(x)$.
- Picking the correct solution: multiple solutions may exist, you must ensure the calculated x lies in the correct domain.

Part II

Numerical Methods

Quick comments:

- Suggested to avoid Newton-Raphson iterative root finding since division by a near zero derivative causes problems. N-R is however excellent for polishing a root after a prior routine gets "close".
- Simple bisection would likely be the most robust especially if a human can identify a known upper and lower bound.

1 Bisection Root Finding

Bisection Iteration for a set of spline curves

$$
f(x)=a_{i} \hat{x}^{3}+b_{i} \hat{x}^{2}+c_{i} \hat{x}+d_{i}
$$

with a constraint

$$
f(x)=V
$$

gives a residual equation

$$
g(x)=f(x)-V
$$

1.1 Search for $f(x)=0.141531$

Start with an initial bound of $x_{b}=\{0,1000\}$ with the values

$$
\begin{gathered}
g(0)=-0.04937 \\
g(1000)=0.0567623
\end{gathered}
$$

Iteration 1 Pick a new point at the midpoint of the boundary

$$
x=500
$$

with the value

$$
g(500)=0.0257831
$$

Since $g(1000)$ and $g(500)$ are both positive, the right hand side boundary is reduced to $x=500$. Thus the new boundary is $x_{b}=\{0,500\}$.

Iteration 2 Pick a new point at the midpoint of the boundary

$$
x=250
$$

with the value

$$
g(250)=-0.02103
$$

Since $g(0)$ and $g(250)$ are both negative, the left hand side boundary is reduced to $x=250$. Thus the new boundary is $x_{b}=\{250,500\}$.

Iteration 3 Pick a new point at the midpoint of the boundary

$$
x=375
$$

with the value

$$
g(375)=0.0037887
$$

Thus the new boundary is $x_{b}=\{250,375\}$.
Iteration 4 Pick a new point at the midpoint of the boundary

$$
x=312.5
$$

with the value

$$
g(312.5)=-0.00876
$$

Thus the new boundary is $x_{b}=\{312.5,375\}$.
Bisection converges slowly but at a bounded rate!

1.2 Search for $f(x)=0.16721$

Start with an initial bound of $x_{b}=\{0,1000\}$ with the values

$$
\begin{gathered}
g(0)=-0.075 \\
g(1000)=0.03108
\end{gathered}
$$

Iteration 1 Pick a new point at the midpoint of the boundary

$$
x=500
$$

with the value

$$
g(500)=0.0001041
$$

Since $g(1000)$ and $g(500)$ are both positive, the right hand side boundary is reduced to $x=500$. Thus the new boundary is $x_{b}=\{0,500\}$.

Iteration 2 Pick a new point at the midpoint of the boundary

$$
x=250
$$

with the value

$$
g(500)=-0.046
$$

Since $g(0)$ and $g(250)$ are both negative, the left hand side boundary is reduced to $x=250$. Thus the new boundary is $x_{b}=\{250,500\}$.

Iteration 3 Pick a new point at the midpoint of the boundary

$$
x=375
$$

Since and $g(375)$ and $g(250)$ are both negative, the left hand side boundary is reduced to $x=375$. Thus the new boundary is $x_{b}=\{375,500\}$.

Since $V=0.16721$ is so close to the value at $x=500$, almost all boundary reduction will be on the left hand side.

2 Newton-Raphson Root Finding

Newton Raphson Iteration for a set of spline curves
The definition of $\mathrm{N}-\mathrm{R}$ for a given function f and desired value V is

$$
x_{\text {new }}=x_{\text {old }}-\frac{f\left(x_{\text {old }}\right)-V}{f^{\prime}\left(x_{\text {old }}\right)}
$$

where

$$
\begin{gathered}
\hat{x}=x-x_{i} \\
f(x)=a_{i} \hat{x}^{3}+b_{i} \hat{x}^{2}+c_{i} \hat{x}+d_{i} \\
f^{\prime}(x)=3 a_{i} \hat{x}^{2}+2 b_{i} \hat{x}+c_{i}
\end{gathered}
$$

2.1 Search for $f(x)=0.141531$

Start with an initial guess of $x=500$ at the edge of segment 2 and 3

Iteration 1

$$
\begin{gathered}
f(500)=0.1673141 \\
f^{\prime}(500)=0.000143 \\
x_{\text {new }}=500-\frac{0.1673141-0.141531}{0.000143}=320.0
\end{gathered}
$$

Iteration 2

$$
\begin{gathered}
f(320.0)=0.1342735 \\
f^{\prime}(320.0)=0.000202 \\
x_{\text {new }}=320.0-\frac{0.1342735-0.141531}{0.000202}=355.99
\end{gathered}
$$

Iteration 3

$$
\begin{gathered}
f(355.99)=0.1415281 \\
f^{\prime}(355.99)=0.000201 \\
x_{\text {new }}=320.0-\frac{0.1415281-0.141531}{0.000201}=356
\end{gathered}
$$

This matches a manual search of:

$$
f(356)=0.141531
$$

2.2 Search for $f(x)=0.167314$

Start with an initial guess of $x=100$ at the edge of segment 1 and 2

Iteration 1

$$
\begin{gathered}
f(100)=0.0982628 \\
f^{\prime}(100)=9.3 \cdot 10^{-5} \\
x_{\text {new }}=845.5921
\end{gathered}
$$

Iteration 2

$$
\begin{gathered}
f(845.5921)=0.1673140 \\
f^{\prime}(845.5921)=0.000143 \\
x_{\text {new }}=251.7
\end{gathered}
$$

Iteration 3

$$
\begin{gathered}
f(251.7)=0.1208250 \\
f^{\prime}(251.7)=0.000189 \\
x_{\text {new }}=497.6057
\end{gathered}
$$

Iteration 4

$$
x_{\text {new }}=499.98
$$

Iteration 5

$$
x_{\text {new }}=499.9992
$$

This is converging on the exact solution of $x=500$. Notice that NR overshot on the first iteration; this overshoot can for certain "S" shaped curves cause divergence or a limit cycle rather than convergence.

[^0]: ${ }^{1}$ See http://mathworld.wolfram.com/CubicFormula.html

