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STEP RESPONSES OF SECOND ORDER SYSTEMS

Second order systems with a step input have the general equation,
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where U is the step size. The characteristic equation of a 2nd order system is,
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which contains the roots,
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The roots (r1, r2) of the characteristic equation give the coefficients of the general homo-
geneous solution. For step inputs, the particular solution is yp = U

ω2
n
. Thus, the total

solution is,
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Over Damped
Overdamped systems occur when the roots of the characteristic equation are real. This
occurs when ζ > 1. The solution to the 2nd order system equation is
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Critically Damped
When the roots of the characteristic equation are real and equal, the system is critically
damped. This occurs when ζ = 1.
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Underdamped
Underdamped systems occur when the characteristic equation has imaginary components.
This occurs when 0 < ζ < 1.
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Both r1 and r2 contain imaginary parts. Since the solution must contain only real parts,
Euler’s formula is applied.

eθ = cos(θ) + sin(θ)

e−θ = cos(θ)− sin(θ)
Combining Euler’s formula and the general solution for 2nd order systems yields,
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