Charles O’Neill

STEP RESPONSES OF SECOND ORDER SYSTEMS

Second order systems with a step input have the general equation,
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where U is the step size. The characteristic equation of a 2nd order system is,
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The roots (r1,r2) of the characteristic equation give the coefficients of the general homo-

geneous solution. For step inputs, the particular solution is y, = w% Thus, the total

which contains the roots,

solution is,
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Over Damped
Overdamped systems occur when the roots of the characteristic equation are real. This

occurs when ¢ > 1. The solution to the 2nd order system equation is
y(t) = Yp + yn
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Critically Damped
When the roots of the characteristic equation are real and equal, the system is critically
damped. This occurs when ¢ = 1.
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Underdamped
Underdamped systems occur when the characteristic equation has imaginary components.
This occurs when 0 < ¢ < 1.
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Both r; and ry contain imaginary parts. Since the solution must contain only real parts,
Euler’s formula is applied.
e’? = cos(0) + 7sin(6)
e % = cos(f) — gsin()
Combining Euler’s formula and the general solution for 2nd order systems yields,
U
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