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Abstract

The 3 and 4 point Simpson rules numerically integrate equally-spaced
discrete data values. The 4 point rule is typically named Simpson's 3/8
rule. This short note describes an interesting and fast derivation of Simp-
son's rules including the associated partial integrals. Non-multiple data
point integration is discussed in a surprising �nale to Simpson's 3/8ths
rule.

Simpson Rule

Deriving the time integration follows the traditional method of exactly inte-
grating a known 2nd order function for arbitrary coe�cients. Second order
integration uses three data points, conveniently represented in this derivation
by the three coe�cient b-spline.

φ(t) =
[
(1− t)

2
2t (1− t) t2

]
Exactly integrating the basis φ gives de�nite integrals in terms of an arbitrary
coe�cient vector a. In matrix form, the de�nite integral

rt − r1 = It =

ˆ t

t1

φ(s) ds
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The matrix representation to convert from coe�cients to values is u1
u2
u3

 =

 1 0 0
1
4

1
2

1
4

0 0 1

 a1
a2
a3


Inverting gives the required matrix representation for converting values to coef-
�cients  a1

a2
a3

 =

 1 0 0
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2 2 − 1
2

0 0 1

 u1
u2
u3


Combining the integral and conversion matrices produces the de�nite integrals
in terms of function values(
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)
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This traditional Simpson rule integrator from t1 to t3 is

r3 − r1 = h

(
1

6
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2

3
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1

6
U3

)
The partial integral t1 to t2 rule is

r2 − r1 = h

(
5

24
U1 +

1

3
U2 −

1
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U3

)
By subtraction, the partial integral t2 to t3 rule is

r3 − r2 = h

(
− 1
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1

3
U2 +

5
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U3

)

Simpson's 3/8 Rule

Proceeding as before, we now pick a four coe�cient basis

φ(t) =


(1− t)

3

3t (1− t)
2

3t2 (1− t)
t3


In matrix form, the de�nite integral

rt − r1 = It =

ˆ t

t1

φ(s) ds
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reduces to 
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I3
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The matrix representation to convert from coe�cients to equally spaced values,
t =

[
0, 13 ,

2
3 , 1
]
, is 

u1
u2
u3
u4

 =
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Inverting gives the required matrix representation for converting values to coef-
�cients 

a1
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 =
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Combining the integral and conversion matrices produces the de�nite integrals
in terms of function values
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The familiar Simpson 3/8 rule is recovered on the bottom row.

I = h

(
1

8
U1 +

3

8
U2 +

3

8
U3 +

1

8
U4

)
Interestingly, the 3rd row contains a partial integral up to the third point (at
2/3) with zero contribution from the 4th point. Stretched to an equivalent
stepsize, the 3rd row rule is exactly the previously derived 3 point Simpson
rule! Knapsacking these methods as advised in most numerical methods classes
actually has merit.
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