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1 Introduction

This design project simulates and controls a beam
and ball system. A ball rolls on a pivoting beam, see
Figure 1. The beam is connected through DC motor
through a linkage arm. The objective is to create an
output feedback control system.

Figure 1: Ball-Beam Layout

The physical system consists of coupled linkages
and a free-to-roll ball. The linkage motion is non-
linearly coupled to the gear angle. The beam has a
length of 1 meter. The gear arm has a radius of 0.03
meters, and the linking arm has a length of 0.2 me-
ters. The ball is steel with a radius of 15 millimeters.
The system has 2 energy storage components: beam
inertia and ball inertia. System control is allowed
through a voltage input into the DC motor, which
provides a torque applied at the gear arm. The gear
arm motion is harmonic; the gear can go past top-
dead-center in the straight up and down positions.

1.1 Beam-Lever-Gear Angles

This section describes the beam motion derivation.
Figure 2 was used for this derivation. The beam-

lever-gear connection constraint is:

d sin θ +A(1− cosβ)− L sinα = 0

Solving for the beam angle α yields:

α = arcsin
(
d

L
sin θ − A

L
(1− cosβ)

)

The lever arm angle β is:

A sinβ = d(1 − cos θ)− L(1− cosα)

The general solution for α and β is complicated with

Figure 2: Beam-Lever-Gear Connections

respect to the input θ. The general, non-closed-form,
solution to this 4-bar system is Freudenstein’s equa-
tion1.
The general solution to these governing equations

was tested. It was noticed that the lever-arm motion
is a higher order term in the overall beam angle be-
cause the gear arm length, d, is small. Also, noticing
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that the β term is a weak function of the beam angle
α allows for a closed form α = f(θ) expression.

β ≈ arcsin
(

d

A
(1− cos θ)

)

The beam angles and derivatives as functions of
the input gear angle θ are:

α = arcsin
(

d

L
sin θ

)
α̇ =

d
L cos θ√

1− d2

L2 sin2 θ
θ̇

β = arcsin
(

d

A
(1− cos θ)

)
β̇ =

d
A sin θ√

1− d2

L2 (1− cos θ)2
θ̇

For small d/L ratios as given in this problem, the
derivative denominator terms can be ignored.

1.2 Beam-Lever-Gear Dynamics

1.2.1 Beam

The primary function of the beam is to allow a flat
rolling surface for the ball. A sizing study based on
deflection, inertia, and availability was performed to
size the beam. 1/16 inch wall thickness 1 inch by
1/2 inch extruded aluminum tubing has sufficient me-
chanical properties and is readily available. Bending
at mid-beam is about 1/10 mm. The 1 meter beam
has a mass of 0.30 kg.
The beam rotates about the left end with an an-

gle α. The beam’s inertia is Jbeam = 1/3 mL2 at
the rotation point. Substituting yields an inertia of
0.10 kg m2.

1.2.2 Lever Arm

A lever-arm length of 0.2 m was chosen based on a
study of lever-arm motion versus lever-arm length.
Shorter lever-arms are lighter but causes larger β an-
gles. The 0.2 meter arm uses the same material size
as the beam and has a mass of 0.060kg and an inertia
of 8.0 · 10−4 kg m2.

1.2.3 Gear

The gear arm has a length of 0.03 m as specified in
the problem statement. The “gear” is assumed to be
a single lever similar to the lever-arm. The gear has
a mass of 0.009kg and an inertia of 2.7 · 10−6 kg m2.
The drive motor’s inertia is considered separately.

1.2.4 Overall Beam Dynamics

The overall beam-lever-gear governing equation was
derived through Lagrange’s equation2, which is based
on Hamiltonian kinetic and potential energy mini-
mization theory.∗ After some algebra the governing
equation in terms of the input gear angle θ is:

Jθ θ̈ = JT sin(2θ)θ̇2 − JL
d2

A2
sin(2θ)θ̇2

− JT

2
sin(2θ)θ̇2 +

JL

2
d2

A2
sin(2θ)θ̇2

− g cos θ
(
Mrd

L
+

Mbd

2
+MLd+

Mgd

2

)

+T (t)

The lumped inertia term Jθ is:

Jθ = JM + JG + JT cos2(θ) + JL
d2

A2
sin2(θ)

Also, JT is:

JT =
d2

L2

(
J + Jb +Mr2 +MLL

2
)

The above governing equation contains both dynamic
inertial terms and static force terms. By inspection,
the zero-input at-rest condition due to gravity occurs
at:

θ = −π

2
+ n 2π

1.3 Ball Dynamics

The governing differential equation for the ball dy-
namics was given in the project statement. However,
the coordinate system for the differential equation
and the corresponding figure in the handout do not
match. The correction consists of moving the ball’s ’r’
origin to the beam’s pivot end. Conceptually, the α̇2

term should indicate that the ball accelerates away
from the pivot point when the beam rotates. The
governing differential equation is:

(
J

R2
+M

)
r̈ +Mg sinα−Mr (α̇)2 = 0

One practical complication exists if the ball slips
instead of rolls. For smooth beam surfaces, balls with
large rotational inertias, and large beam angles, slip-
ping is certain. For this project, any nonlinear ball-
beam slipping behavior is neglected; rolling is linearly
coupled with translation.

∗Calculus of Variations is everywhere!
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1.4 DC Motor

The motor is a DC motor. Figure 3 shows a schematic
of the motor model. The overall torque is:

T = kM

(
V − keω

R

)

V
i

R

+

-

+

-
ω

kMke

Figure 3: Motor Schematic

Adding a gearbox changes the effective torque and
rotational constants by the gear ratio G. The effective
torque constant is:

kM = kM0 ·G · η
The effective back-emf constant is:

kE = kE0 ·G

1.4.1 Selection

The motor is a DC motor. Early on, intuition† sug-
gested that a geared motor would be needed. θ has
an effective operating range of ±π, so small output
motions and large torques are needed. An initial mo-
tor size was estimated from quasi-steady motion. For
an input angular velocity of 1 rev/s, the maximum
torque of 0.5 Nm occurs at θ = 0. Maximum power
is estimated to be below 7.5 W.
The Maxon RE-max 21 #250020 motor was se-

lected. The continuous rated output, 6W, is probably
higher than needed, but this allows for extra robust-
ness. Also, the motor series comes with reduction
gear drives and encoders. The Maxon GP 22 (53:1)
reduction gear #134163 was selected. The motor,
gear, and encoder specification sheets are attached in
the appendix.

1.4.2 Motor Validation

The motor model was validated by disconnecting the
linkages and starting the motor with a step input to

†Verified with the project’s problem statement.

its rated input voltage, 4 Volt. The spec sheet claims
a 21 millisecond startup time constant and a no-load
rotational velocity of 11500 rpm. Figure 4 shows the
model’s response: 11800 rpm and approximately a 20
millisecond startup time. The model does not include
motor friction, which accounts for the slightly high
no-load velocity.
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Figure 4: Motor Validation

1.4.3 Concerns

The motor model has some critical concerns. First,
the gearbox losses are idealized as a torque efficiency
(60%). This efficiency probably overestimates the
losses at low rpms. Second, the planetary gearbox
certainly has unmodeled non-linear behavior. For
typical static torques caused by gravity, the gearbox
will probably lock-up because of the high 51:1 gear
ratio. Third, the control system can act as a gener-
ator, which implies shorted motor leads for the open
loop response!

1.5 Simulink Model

The above ball-beam-motor system was implemented
in Simulink. The simulink model is shown in Figure
5. There are three parts —from top to bottom— of
the model: plant, controller, and observer. Also, the
left side includes the inputs signals; the right side
exports the states and animation.

1.6 Animation

An animation routine was created based on the sup-
plied Matlab s-function. The animation shows ball
location; beam, lever arm, and gear angles; and the
ball tracking point. Figure 6 diagrams the pieces.
The animation s-function (bb animate) is attached
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Figure 5: Ball-Beam Simulink Model
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Figure 6: Animation Diagram

in Appendix C.2.

1.7 Open Loop Response

The open loop response is simulated and plotted in
Figures 7 and 8. Torques caused by beam, ball,
and lever arm weights cause a non-zero beam an-
gle of θ = −π/2. The linkage system reaches its
90% equilibrium position in approximately 2/3 sec-
ond; however, the ball continues to roll, never reach-
ing equilibrium, and eventually falls off the beam’s
free —right— end. The gear equilibrium point is
θ = −1.57 as predicted. Significantly heavier beams
will slightly cause a further small negative gear ro-
tation due to the lever angle β at equilibrium. The
open loop stable-beam and unstable-ball response is
as expected.
Keeping the beam level requires an offset input

voltage uo. Trimming the control input voltage with
the bbtrimMatlab script (Appendix C.6) determines
uo. The trim voltage increases as the r increases,
which indicates an increasing ball’s moment arm. For
the mid beam ball position (r=0.5 m), the trim volt-
age is 0.69 Volt.
Next, the system is simulated open loop with an

0.0
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2.5

Figure 7: Open Loop Animation

offset input voltage uo of 0.688 Volt. Figure 9 shows
the response. The system is unstable; because the
ball’s weight moment changes and also because the
effective linkage arm “ gear ratio” changes. From the
figure, the trim voltage is slightly low. The ball ac-
celerates away from the pivot point, which increases
the required trim voltage. Eventually the ball falls
off removing the ball’s weight, which causes the gear
to accelerate past top-dead-center (θ = π/2).
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Figure 8: Open Loop States
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Figure 9: Open Loop with Input Offset

2 Linear Model

This section develops a linear model based on the
nonlinear simulink model. The linear model is cre-
ated about an operating point, so a perturbation rep-
resentation must be formed first. The entire ball-
beam system has 4 states: θ, θ̇, r, ṙ. For an assumed
linearization point xlin, the system response is:

x′ = x− xlin and x = x′ + xlin

Also, the input to the linear model needs a lineariza-
tion point:

u′ = u− ulin and u = u′ + ulin

The linear offset ulin is determined from equilibrium
with the bbtrim Matlab script (Appendix C.6).

2.1 Linearization with linmod

A linear state space model was created from
the sysidmodel.mdl simulink model with Matlab’s
linmod command. Sysidmodel.mdl (Fig. 10) is an
exact input-output representation of the ball-beam
model used in the full simulink system (Fig. 5). The
linmod routine outputs a system in the form:

ẋ = Ax+Bu and y = Cx+Du

The linearization requires linearization values for the
states and the input. For a trimmed system (uo =
0.687) with the ball at mid-beam with a level beam
(r=0.5, θ = 0), the state matrices are:

A =




0 1 0 0
0 −9.02 −14.82 0
0 0 0 1

−0.21 0 0 0


 B =




0
52.91

0
0




1

Out1

1
s

dotx --> x

ddot_theta

ddot_r

em

1

In1

Figure 10: Linearization Model

C =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 D =




0
0
0
0




The eigenvalues of the plant matrix A are:


0.68
−0.34 + 0.63i
−0.34 − 0.63i

−9.0




As seen in the open-loop non-linear simulation sec-
tion, the system is unstable. As expected and seen,
the unstable mode is the beam angle (s = +0.68).
The input B matrix has a positive term in the θ̇ row
as expected.

2.2 Simulation and Comparison

A comparison of the linear and nonlinear open loop
response with the input offset is shown in Figure 11.
The dark line is the linear response. The simulation
runs to 17 seconds, which is when the ball falls off
the beam for the nonlinear simulation. The linear re-
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Figure 11: Nonlinear vs Linear Open loop Compari-
son

sponse remains at zero, the nonlinear response drifts
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with the not-quite-perfect input offset. This particu-
lar linear simulation wrongly indicates that the sys-
tem is stable.
A better comparison simulates the response to a

step in input voltage. For this simulation, the input
offset voltage was reduced by 0.02 volts; the gear an-
gle should decrease and the ball should roll off the
beam’s far end. Figure 12 shows the nonlinear and
linear responses. The dark line is the linear response.
This simulation shows that the linear and nonlinear
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Figure 12: Nonlinear vs Linear Open loop Step Com-
parison

models are indistinguishable for small perturbations
—up to about 1 second. When the ball moves toward
the beam’s end, the beam angle α increases which in-
creases the ball’s acceleration. The linear model pre-
dicts less linkage inertia. As expected, both the non-
linear and linear simulations predict the ball rolling
off the beam’s end.

3 State Variable Feedback

A state variable feedback controller is designed based
on the steady state linear quadratic regulator3,4. The
cost function is:

J =
∫ ∞

0

xTR1x+ ρ uTR2u dt

The control signal based on the state vector x is:

u(t) = −R−1
2 BT P x(t)

where P is the solution to the corresponding Riccati
equation:

R1 − PBR−1
2 BTP + PA+ATP = 0

This formulation requires specifying the performance
index matrices R1 and R2. The state covariance for
an input noise, w, is:

AΣ + ΣAT +BSwBT = 0

3.1 Design Iteration

Here, the cost function design has a choice. By in-
spection, minimizing r deviations means leveling the
beam. It is expected that only penalizing r will create
a good-enough controller; however, the linear control
may cause past top-dead-center gear angles, which
are completely unwanted! Penalizing both ball dis-
tance, r, and gear angle, θ, should give a better con-
troller.

3.1.1 Cost: Ball and Control

This design only penalizes ball location, r. The cost
function is simple because the only tradeoff is be-
tween ball position and control input:

xTR1x = r2 and uTR2u = ρu2

Thus, the penalty matrices are:

R1 =



0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0


 R2 = ρ

The expected best ratio of R1 and R2 is estimated
from the maximum magnitudes of the r state and the
u input. r is restricted to be less than 1.0 m and u
must be less than 4 Volt. This ratio yields:

R2

R1
≈ 12

42
≈ 0.06

Figure 13 shows a the time response for a sweep of
ρ = [1, 0.1, 0.01, 0.001] with a unit step in desired
ball displacement from 0.5 m to 0.4 m. The linear
system is linearized about 0.5 m. The resulting con-
trol scheme doesn’t work very well. For large con-
trol penalties, the ball converges too slowly. When
switching to larger displacements (∆x > 0.1m) or
to the nonlinear model, the control scheme tends to
force the gear angle past top-dead-center. The r-only
cost function is rejected.

3.1.2 Cost: Ball, Gear angle, and Control

Adding the gear angle creates a cost function as:

xTR1x = r2 + θ2 and uTR2u = ρu2
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Figure 13: r: LQR Step Response

Now, ratios of θ and r must be considered. After
some experimenting, an error of 1/4 degree in θ is
considered equivalent to 3 mm in ball location. This
gives a r/θ ratio of 2.15 Also, the maximum allowable
values of r and θ are 1 m and π/2 radians. This gives
a ratio of 2.47. A ratio of 2.2 was chosen. Thus, the
penalty matrices are:

R1 =



1 0 0 0
0 0 0 0
0 0 2.2 0
0 0 0 0


 R2 = ρ

Figure 14 shows a the time response for a sweep of
ρ = [1, 0.1, 0.01] with a unit step in desired ball dis-
placement from 0.2 m to 0.8 m. The linear system is
linearized about 0.5 m. The overall performance has
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Figure 14: r θ: LQR Step Response (r/θ 2.2)

significantly improved compared to the r-only cost
function. No over center behavior occurs because the

cost function includes θ. However, the ball position
appears to be converging slowly and always over-
shoots. Decreasing the ball tolerance in R1 should
help.
For an error of 2 mm in r, the r/θ cost ratio is 4.

Figure 15 shows the system response. Increasing the
r/θ ratio helps. The limitation now lies with the mo-
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Figure 15: r θ: LQR Step Response (r/θ 4.0)

tor supply voltage. For this case, the input cost ρ is
limited to 0.1 because of the motor limit of 4 Volts.
Overloading the motor doesn’t seem to improve the
system response appreciably —especially when con-
sidering motor life degradation.
The final best control law for the r and θ cost func-

tion is with a r/θ of 4. Figure 16 shows the compari-
son between the states and control for the linear and
nonlinear models for two separate step responses: 0.5
to 0.6 and 0.2 to 0.8.
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Figure 16: Linear-Nonlinear State Comparison

The state error between the linear and nonlinear

7



model are shown in Figure 17 for their respective sim-
ulations. The linear model has a maximum ball lo-
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Figure 17: Linear-Nonlinear Error Comparison

cation error of 2 cm at the highest ball velocity near
2.5 seconds.

3.1.3 Controller Stochastic

The steady state covariance matrix for the state vec-
tor is determined from the Lyapunov equation.

AΣ + ΣAT +B Sw BT = 0

where Sw is the equivalent white noise intensity of the
plant input w. The motor disturbance is assumed to
be white noise with a standard deviation as a per-
centage of the rated motor torque.
For a 1% standard deviation based on the rated

motor torque of 14.6, which corresponds to a voltage
of 0.04 Volts, the state covariance matrix is:

Σ =




6.2 · 10−4 0.0000 1.7 · 10−5 0.0000
0.0000 0.11 0.0000 1.3 · 10−4

1.7 · 10−5 0.0000 9.1 · 10−6 0.0000
0.0000 1.3 · 10−4 0.0000 3.6 · 10−6




So 67% of the time, the ball location should be within
3mm of the desired location and the angle θ is within
1.4 degrees. Simulation inside simulink requires spec-
ifying a band limited white noise model. The inten-
sity is σ2. The sample time should be small enought
to approximate white noise. From the linear system,
the maximum eigenvalue with control (A-BK) is ap-
proximately 10 rad/s. So, an approximate system
sample time is:

∆t ≈ 2π
fmax

A ratio of system to noise sample time should be at
least 10:1.

The simulink model is simulated with a 100:1 ratio
of noise to system time and a 1% motor σ. Figure
18 shows the state time history with the nonlinear
system model. The experimental covariance matrix
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Figure 18: Controller Noise 1%

based on the nonlinear system’s states is:

Σ =




5.2 · 10−4 −2.8 · 10−5 8.3 · 10−6 −4.8 · 10−7

−2.8 · 10−5 0.097 1.4 · 10−7 1.0 · 10−4

8.3 · 10−6 1.4 · 10−7 2.9 · 10−6 1.5 · 10−7

−4.8 · 10−7 1.0 · 10−4 1.5 · 10−7 2.0 · 10−6




The interesting difference between the covariance ma-
trices is that the nonlinear experimental covariance
has stronger off-diagonal terms. The diagonal covari-
ance terms are slightly lower for the nonlinear simu-
lation.
For 10% motor torque noise in the nonlinear model,

the standard deviations for r and θ are 1.6 cm and
13 degrees. The control voltage variance is 1 Volt!
This much noise in the output is severely degrading
performance. The control system is working at its
limit as seen in Figure 19, routinely reaching a 4 Volt
control input.

3.1.4 Comments

1. Switching to the time varying Riccati based gain
would improve the convergence rate. Reducing
the input penalty R2 exceeds the motor volt-
age for the initial startup, so varying the gain
near the desired tracking point would certainly
be beneficial.

2. The linear model works reasonably well for this
controls system even away from its linearization
point. The closed loop linear system match with
the nonlinear system is better than the corre-
sponding open loop comparison.
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3. Constraining the control gain by adding addi-
tional state penalties helped prevent overshoot
and past top-dead-center behavior.

4 Output Feedback

Output feedback creates a control signal based on
measurable outputs. This requires estimating states
based on outputs that may not be clean signals. A
state observer is needed. The Kalman observer gov-
erning equation is3,4:

˙̂x = Ax̂ +Bu+Ko (y − cx̂)

where the gain is:

Ko = ΣCTS−1
v

where Σ is found from the corresponding steady state
Riccati equation:

AΣ + ΣAT +Bw Sw BT
w − ΣCTS−1

v CΣ = 0

The outputs and measurements have white noise in-
tensities of Sw and Sv.
The corresponding stochastic linear system is:

ẋ = Ax+Bu+ w

y = Cx+Du+ v

where w is the control noise and v is the measurement
noise.

4.1 Measurement Equipment

Measurement equipment for this project needs to be
chosen and characterized. This ball-beam system has

4 states: 2 second order systems. The measurement
equipment needs to measure ball motion and gear
motion. From the problem statement, the outputs
are ball position r, and gear angle θ.

4.1.1 Gear Angle

The gear angle θ is measured with a rotary encoder on
the DC motor. The selected encoder is a Maxon MR
type M #201937 (Appendix D), which is a factory
supported option for the Maxon motor. The encoder
gives 512 counts per turn at a sampling rate up to
320 kHz.
The encoder’s angle error probability function

is assumed to be flat with a symmetric width of
(rev/count)= π/512. With this assumption, the vari-
ance is:

σ2
v =

∫
λ2f(λ) dλ =

π2

3c2

where c is the number of counts. So, σ2
v = 1.255·10−5.

The covariance function is assumed to be a symmetric
triangle with height σ2 and a encoder sampling time
width. The encoder is capable of 320 kHz, but for
this project 100 Hz (∆t = 0.01) will be used. The
white noise approximation intensity is:

Sv =
∫ ∞

−∞
Rv(τ) = σ2

v ∆t

So, the white noise intensity is: Sv = 1.26 · 10−7.

4.1.2 Ball Position

The ball location r is measured with an ultrasonic
time-of-flight sensor as suggested. The selected sen-
sor is a SICK UM 30-13113. Data sheets are given
in Appendix D. Selecting a suitable ultrasonic sen-
sor was slightly troublesome for range and response
time. The selected sensor claims a 0.36mm resolu-
tion but with a 110 ms response time! It is suggested
to look in more depth for a better sensor technology
for this ball-beam system. Some laser sensors were
especially tempting. However, the distance measur-
ing sensor for this project will be the above SICK
ultrasonic sensor.
The process of converting the position measure-

ment system errors to a white noise is similar to the
rotary encoder’s. The sensor claims a resolution of
0.00036 m, but also states an accuracy of ≤ 2%. The
noise estimation will use a 1% resolution —based on
beam length— with a sampling time of 0.1 seconds.
So, σ2 = 1

12 (∆x)2 = 8.3 · 10−6 and Sv = 8.3 · 10−7.
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4.2 Validation Simulation

The observer gains were calculated with the
observer.m script. The noise intensities are those
calculated above. The observer gain is:

Ko =




100.56 −0.00105
5055.9 −0.07408
−0.0069 0.4042
−0.211 0.0816




For a step in ball location from 0.5 to 0.8, the ob-
server estimated the following states (Figure 20. The
measurements are noisy based on the resolution of
the measurement system. The observer appears to
be working correctly.
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Figure 20: Observer Step

Output feedback with measurement and control
noise is simulated in Figure 21. No large visible dif-
ferences could be seen between the output and state
control laws. The output feedback is more robust
because it considers measurement and output noises.

5 Conclusions

The ball-beam system was investigated in this
project. A linear system, state feedback control law,
and a output feedback control law were developed.
Both control laws stabilied the system. The output
feedback gives similar performance, but is more ro-
bust.
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Figure 21: Observer Step Comparison
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APPENDICES

A Nomenclature

M Ball Mass 0.11 kg
R Ball Radius 0.015 m
J Ball Rotational Inertia 9.99 · 10−6 kg ·m2

r Ball Position from Beam Pivot m

L Beam Length 1 m
Mb Beam Mass kg
Jb Beam Inertia kg ·m2

α Beam Angle rad

A Lever Arm Length m
ML Lever Arm Mass kg
JL Lever-Arm Inertia kg ·m2

β Lever-Arm Angle rad

d Gear Length 0.03 m
MG Gear Mass kg
JG Gear Arm Inertia kg ·m2

θ Servo Gear Angle rad

G Gearbox Ratio
T Motor Torque N ·m
JM Motor Inertia kg ·m2

η Motor Efficiency

g Gravitational Acceleration 9.81 m · s−1

B Instructions for Simulating

the Ball-Beam System

1. Setup the simulation parameters: execute the
bbsetup.m Matlab script. The bbsetup file con-
tains the linkage, motor, and sensor specifica-
tions.

2. Load the Simulink model: load bb.mdl

3. Trim the system with bbtrim.m. The control
voltage offset is found by trimming the system
at the particular initial conditions specified in
the bbsetup file.

4. Linearize the system with linearize.m. This
routine requires the sysidmodel.mdl simulink

model, which is an exact replication of the non-
linear model in bb.mdl. The linearization is per-
formed about the set point specified in the bb-
setup file. Linear state space matrices are stored
in Alinear, Blinear,... Warning: The linear ma-
trices in the bbsetup file are not automatically
changed when linearize.m is run.

5. Set Simulink model switches: All simulations are
made with the same Simulink model. Switches
turn on or off the tracking signal, controller,
noise, and observer.

6. Start the Simulink model. The animation auto-
matically brings up a new window.

7. Plot the state variables with plotterc.m.

8. Synthesize a LQR controller with bblqr. The
linear system is specified in the bbsetup file. The
control penalty multiplier ρ must first be speci-
fied at the command line. Control gains are au-
tomatically loaded when the simulink model is
run again.

9. Sythesize an observer with observer.m. Plot the
observer states with plottero.m.
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C Matlab Programs

This project used the Matlab codes given below.

C.1 Setup file bbsetup.m

%
% Setup Ba l l and Beam
%
clear a l l
global g
global R M J
global L Mb Jb
global A ML JL
global d MG JG
global km ke RM JM GR eta
global Kcontro l

% I n i t i a l Condit ion
x0 = [ 0 . 0 0 . 0 0 . 5 0 . 0 ] ;% the t a t h e t ado t r rdot
X l i n o f f s e t = [ 0 . 0 0 . 0 0 . 5 0 . 0 ] ;
Xl in0=x0−X l i n o f f s e t ;

% Linear System
Alin = [ . . .

0 1 0 0 ; . . .
0 −9.0169 −14.818 0 ; . . .
0 0 0 1 ; . . .

−0.20967 0 0 0 ; . . .
] ;
B l in =[ 0 ; . . .

5 2 . 9 1 3 ; . . .
0 ; . . .
0 ; . . .

] ;
Cl in =[ 1 0 0 0 ; . . .

0 1 0 0 ; . . .
0 0 1 0 ; . . .
0 0 0 1 ; . . .

] ;
Dl in = [ 0 ; 0 ; 0 ; 0 ] ;

% Control System
Uo f f s e t =0.68772;
Kcontro l =[3 .5229 0 .23233 −6.6108 −14 .586 ] ;
Sw=(0 .01∗4 )ˆ2 ; % Motor noise power
Sw time =0.006;

% Observer
QuanAngle=(2.0∗pi ) / 5 1 2 . 0 ;
QuanDist =0 .36/1000 .0 ;
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Kobserver = [ 1 0 0 . 5 6 −0.0010507;
5055 .9 −0.074048;

−0.0069212 0 . 4 0 4 2 ;
−0.211 0 .081691 ;

] ;

%%%%%%%%%%%%%%%%%%%%%%%%%
% Mechanical Proper t i e s

% Gravity
g=9.81 ;

% Bal l Proper t i e s
R=0.015;
M=0.11;
J=9.99E−6;

% Beam Proper t i e s
L=1.0 ;
Mb=0.301;
Jb=0.1 ;

% Lever Arm Proper t i e s
A=0.2 ;
ML=0.060134;
JL=8.01792E−4;

% Gear Proper t i e s
d=0.03 ;
MG=9.020156E−3;
JG=2.70605E−6+0.002;

% Motor Proper t i e s Maxon RE−max 21
GR=53.0 ;% Gear Ratio
JMGEARBOX=0.4∗ (1000 .0∗100.0∗100 .0)ˆ−1 ;% kg mˆ2
JMMOTOR=2.48∗ (1000 .0∗100 .0∗100.0)ˆ−1 ;% kg mˆ2
JM=JMGEARBOX+JMMOTOR∗GR;% Motor+Gearbox I n e r t i a
km=3.21∗ (1 .0/1000 .0 )∗GR; % Nm/amp <−−(7.062E−3) oz−in /amp
ke=2970.0ˆ−1.0∗GR∗ (60 . 0/2 .0/ pi ) ; % V s/rad <−− (2∗ p i /60∗10E−3) mV/rpm
RM=0.883 ; %Ohms
eta =0 .60 ; %Motor−Gearbox Torque E f f i c i e n c y

C.2 Animation bb animate.m

% Animation Function f o r Bal l−Beam Pro jec t in 5413 Opt . Control
function [ sys , x0 , s t r , t s ]=animdemo( t , x , u , flag , L ,A,R, d , x0 )
%%%%
% Rewrit ten by Char les O’ N e i l l
% This f i l e i s based on :
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%==
% ANIMDEMO S−f unc t ion animation demo fo r ECEN/MAE 3723
% Written by : Jason Horn
% 11/24/03
% Revised 3/31/04
%===

% Declare g l o b a l v a r i a b l e s .
global xbeam ybeam xba l l yba l l vba l l xgear ygear x l e v e r y l e v e r xba l lw i sh

% Globa l v a r i a b l e s f o r hand les o f drawings
global beam ba l l gear l e v e r s p i nd l e ba l lw i sh

% Globa l v a r i a b l e f o r the handle o f the animation f i g u r e .
global AnimDemoFigure

% Set v a r i a b l e s s t r and t s according to S−f unc t ion s p e c i f i c a t i o n s
s t r = [ ] ;
% t s =[ time between samples , s t a r t t ime ] Decreasing time between
% samples w i l l s low the s imu la t ion down i f i t runs too f a s t .
t s = [ 0 . 1 0 ] ;%[ 0 . 0 5 0 ] ;

% Ba l l Ve loc i t y due to g r a v i t y −−− o f f the beam !
vba l l =0;

% Check the va lu e o f f l a g .
i f f lag==2

% Update the ac t u a l ang l e s from the s t a t e s
theta=u ( 1 ) ;
thetadot=u ( 2 ) ;
thetadotdot=0;
[ alpha , alphadot ,beta , betadot ]= fourbar mot ion ( theta , thetadot ) ;
r=u ( 3 ) ;
xba l lw i sh=u ( 5 ) ;

% Make sure co r r e c t f i g u r e i s s e l e c t e d and br ing i t to the f r on t .
i f any(get (0 , ’ Chi ldren ’)==AnimDemoFigure )

set ( 0 , ’ CurrentFigure ’ , AnimDemoFigure ) ;
i f any(get (gca , ’ Chi ldren ’)==beam)

% Calcu la t e new coord ina t e s f o r each f i g u r e .

% Beam
xbeam=[0 L ]∗ cos ( alpha ) ;
ybeam=[0 L ]∗ sin ( alpha ) ;

% Bal l
i f ( ( r < 0 ) | | ( r>1))

vba l l=vba l l −9.81∗ t s ( 1 ) ;
xba l l=r ;
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yba l l=max(−1 , yba l l+vba l l ∗ t s ( 1 ) ) ;
else

xba l l=r ;
yba l l=r∗ sin ( alpha )+R/cos ( alpha ) ;

end

% Gear
xgear=[1−d, 1−d+d∗cos ( theta ) ] ;
ygear=[−0.2 , −0.2+d∗ sin ( theta ) ] ;

% Lever Arm
x l e v e r=[xgear ( 2 ) , xbeam ( 2 ) ] ;
y l e v e r=[ygear ( 2 ) , ybeam ( 2 ) ] ;

% Set new coord ina t e s f o r each f i g u r e and redraw .
% Note : Damper in S t r e t c h was drawn as two pieces ,
% so each p iece must be s e t . Draw f i g u r e s as one
% piece whenever p o s s i b l e to s imp l i f y .
set (beam , ’XData ’ , xbeam , ’YData ’ , ybeam ) ;
set ( ba l l , ’XData ’ , xba l l , ’YData ’ , yba l l ) ;
set ( ba l lwi sh , ’XData ’ , xba l lwi sh , ’YData ’ , −0 .03 ) ;
set ( gear , ’XData ’ , xgear , ’YData ’ , ygear ) ;
set ( l eve r , ’XData ’ , x l ever , ’YData ’ , y l e v e r ) ;

drawnow
end

end

% Spec i f y sys according to s−f unc t ion s p e c i f i c a t i o n s .
sys = [ ] ;

e l s e i f f lag==0

% I n i t i a l i z a t i o n − se tup f i g u r e , c r ea t e and draw base shapes .
[ alpha , alphadot ,beta , betadot ]= fourbar mot ion ( x0 (1 ) , x0 ( 2 ) ) ;

% Check f o r e x i s t i n g f i g u r e .
[ f i g , f lag ]= f i g f l a g ( ’ Animation Demo Figure ’ , 0 ) ;
% I f f i g u r e e x i s t s , c l e a r i t .
i f f lag

AnimDemoFigure=f i g ;
cla reset ;

% I f not , c r ea t e new f i g u r e .
else

AnimDemoFigure=figure ;
end

% Set t i t l e o f f i g u r e .
set (AnimDemoFigure , . . .

’Name ’ , ’ Bal l−Beam Animation ’ , . . .
’ NumberTitle ’ , ’ o f f ’ )
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% Set p r ope r t i e s and l i m i t s o f the axes .
set (gca , . . .

’ V i s i b l e ’ , ’ o f f ’ , . . .
’DrawMode ’ , ’ f a s t ’ , . . .
’XLim ’ , [ − 0 . 2 1 . 2 ] , . . .
’YLim ’ , [ − 1 0 . 4 ] ) ;

% Beam
xbeam= [ 0 1 ] ;
ybeam= [ 0 0 ] ;

% Bal l
xba l l= x0 ( 3 ) ;
yba l l = x0 (3)∗ sin ( x0 (1))+R/cos ( x0 ( 1 ) ) ;

% Bal l Wish
xba l lw i sh=x0 ( 3 ) ;

% Gear
xgear=[1−d 1 ] ;
ygear =[−0.2 −0.2 ] ;
angle=0:pi /20 :2∗pi ;
x sp ind l e=d∗cos (angle)+xgear ( 1 ) ;
y sp ind l e=d∗ sin (angle)+ygear ( 1 ) ;

% Lever Arm
x l e v e r=[ xgear ( 2 ) , xbeam ( 2 ) ] ;
y l e v e r=[ ygear ( 2 ) , ybeam ( 2 ) ] ;

% Draw base shapes at i n i t i a l p o s i t i o n s .
hold on ;
b a l l=plot ( xba l l , yba l l , ’ ko ’ ) ;
ba l lw i sh=plot ( xba l lwi sh , −0 .03 , ’+ ’ ) ;
beam=plot (xbeam , ybeam , ’ k ’ ) ;
gear=plot ( xgear , ygear , ’ k ’ ) ;
l e v e r=plot ( x lever , y l ever , ’ k ’ ) ;
s p i nd l e=plot ( xsp ind le , ysp ind le , ’ k ’ ) ;

% Draw Misc Visua l Support Shapes
plot (0 ,−0.02 , ’ kˆ ’ ) ; % Beam Rotat ion po in t

% Define sys and x0 according to S−f unc t ion s p e c i f i c a t i o n .
% sys =[0 0 0 (# of inpu t s ) 0 0 1 ]
sys = [ 0 0 0 5 0 0 1 ] ;
x0 = [ ] ;

end

C.3 Beam Motion fourbar motion.m

%
% Motion Terms fo r a 4 bar
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%
function [ alpha , alphadot ,beta , betadot ]= fourbar mot ion ( theta , thetadot )

global A d L

% Displacements
alpha=asin (d/L∗ sin ( theta ) ) ;
beta=asin (d/A∗(1−cos ( theta ) ) ) ;

% Ve l o c i t i e s
alphadot=d/L∗cos ( theta )∗ thetadot ;
betadot=d/A∗ sin ( theta )∗ thetadot ;

return

C.4 Ball Governing Equation ddotr.m

%
%
%
function output=ddotr ( theta , thetadot , r , rdot , motor )
global g Jb L J M R d

[ alpha , alphadot ,beta , betadot ]= fourbar mot ion ( theta , thetadot ) ;
i f ( r<1 && r>0)

output=(M∗ r ∗ alphadotˆ2−M∗g∗ sin ( alpha ) ) / ( J/Rˆ2 + M) ;
else

output=0;
end

return

C.5 Beam Governing Equation ddottheta.m

%
%
%
function thetadotdot=ddottheta ( theta , thetadot , r , rdot , vo l tag e )

global g
global R M J
global L Mb Jb
global A ML JL
global d MG JG
global km ke RM JM eta

i f ( r > 1 | | r<0)
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r=0;
end

[ alpha , alphadot ,beta , betadot ]= fourbar mot ion ( theta , thetadot ) ;

% Dynamic Terms
JT=(J+Jb+M∗ rˆ2+ML∗Lˆ2)∗dˆ2/Lˆ2 ;
JTHETA=JM+JG+JT∗cos ( theta )ˆ2+JL∗dˆ2/Aˆ2∗ sin ( theta ) ˆ 2 ;
thetadotdot=JT∗ sin (2∗ theta )∗ thetadot ˆ2/JTHETA−JL∗dˆ2/Aˆ2∗ sin (2∗ theta )∗ thetadot ˆ2/JTHETA−sin

% S t a t i c ‘ Gravity ’ Terms
thetadotdot=thetadotdot−cos ( theta )∗ (M∗ r∗d/L+Mb∗d/2+ML∗d+MG∗d/2)∗ g/JTHETA;

% Motor Terms
%i f ( v o l t a g e ˜=0)

torque=km∗( vo l tage−ke∗ thetadot )/RM∗ eta ;
thetadotdot=thetadotdot+torque /JTHETA;
%end

return

C.6 Trim trim.m

%
% Trim the system
% ( f in d con t r o l v o l t a g e f o r g r a v i t y o f f s e t )
%
%

% Trim
x = [ 0 ; 0 ; 0 . 5 ; 0 ] ;
u = 0 ;
y = [ 0 ; 0 ; 0 . 5 ; 0 ] ;
i x = [ ] ; % Don’ t f i x any o f the s t a t e s
iu = [ ] ; % Don’ t f i x the input
i y = [ 1 ; 2 ; 3 ; 4 ] ; % Fix both outpu t 1 and outpu t 2
[ x , u , y , dx ] = trim ( ’ sys idmodel ’ , x , u , y , ix , iu , i y )

C.7 Linearize linearize.m

%
%
% Linear i z e
%
bbsetup

u=Uo f f s e t

x0p = [ 0 ; 0 ; 0 . 5 ; 0 ] ;
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[ Al inear , B l inear , Cl inear , Dl inear ]= linmod ( ’ sys idmodel ’ , x0p , u )

C.8 State/Control Plotter plotterc.m

%
%
%
rows=5
c o l s=1

subplot ( rows , co l s , 1 )
hold on ;
plot ( time , s t a t e s ( : , 1 ) )
ylabel ( ’ \ theta ’ ) ;

subplot ( rows , co l s , 2 )
hold on ;
plot ( time , s t a t e s ( : , 2 ) )
ylabel ( ’d\ theta /dt ’ ) ;

subplot ( rows , co l s , 3 )
hold on ;
plot ( time , s t a t e s ( : , 3 ) )
ylabel ( ’ r ’ ) ;

subplot ( rows , co l s , 4 )
hold on ;
plot ( time , s t a t e s ( : , 4 ) )
ylabel ( ’ dr/dt ’ ) ;

subplot ( rows , co l s , 5 )
hold on ;
plot ( time , c on t r o l ( : , 1 ) )
ylabel ( ’V ’ ) ;

C.9 Control Law Sythesis bblqr.m

%
% LQR rou t ine
%

% S ta t e s
R1= [ 1 . 0 0 0 0 ;

0 0 0 0 ;
0 0 2 0 0 ;
0 0 0 0 ;

]

% Control
R2=rho ;
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%LQR
[ Kcontrol , SS ,EE]= l q r ( Alin , Blin ,R1 ,R2)

C.10 Control Law control law.m

%
%
%
function vo l tag e=con t r o l l aw ( theta , thetadot , r , rdot , vo l tag e )

global g
global R M J
global L Mb Jb
global A ML JL
global d MG JG
global km ke RM JM
global Kcontro l

vo l tag e=−Kcontro l ∗ [ theta thetadot r rdot ] ’ ;

return

C.11 Control Law Sythesis observer.m

%
%
% bb lyap
%

% Control noise
Sw=Sw;

% Measurement
Ce f f e c t i v e = [ 1 0 0 0 ;

0 0 1 0 ;
] ;

RR=[1.26E−7 0 ; 0 8 . 3E−7;
] ;

% Control
QQ=Bl in ∗Sw∗Blin ’ ;

%LQR
[ Kobserver , SSS ,EEE]= l q r ( Alin ’ , C e f f e c t i v e ’ ,QQ,RR) ;
Kobserver=Kobserver ’

20



D Equipment Data Sheets
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