
Term Project 2: Electronic Directional Gyro

MAE 5483

Charles O’Neill

10 December 2004

1 Introduction

This project developed an one degree-of-freedom electronic aircraft directional
gyro (DG). The mechanical inertial gyro in a 1960’s vintage DG was removed
and replaced with an stepping motor driven by a micro controller connected to
an electronic rate gyro.

2 Theory

The governing equation is the aircraft strap-down equation for rigid body kine-
matics. Using Euler angles (Φ Θ Ψ), the strap-down equation is:



Φ̇
Θ̇
Ψ̇


 =



1 sinΦ tan θ cosΦ tan θ
0 cosΦ − sinΦ
0 sinΦ sec θ cosΦ sec θ







p
q
r




where Φ, Θ, and Ψ are the roll, pitch, and yaw angles in the inertial frame, and
p, q, and r are the body fixed rates. Assuming one degree-of-freedom (yaw) with
zero roll and pitch angles, the matrix equation reduces to a single first order
ODE:

Ψ̇(t) = r(t) with Ψ(0) = Ψ0

The numerical discrete-time ODE solution will assume a zero order hold on rate:

Ψ(k + 1) = Ψ(k) + r(k)∆T

3 Hardware

This section discusses the mechanical and electrical hardware required. An
overall electrical schematic is shown in Figure 1. The hardware consists of
several major parts: the stepping motor, Driver, Directional Gyro, Rate Gyro,
and the PIC micro controller. These major parts are discussed in more detail
below.

1

C0

1 28

PI
C

 1
6F

87
6

A B

C

I/O

B0

5V

470Ω

Button

B

1KΩ

1KΩ

1KΩ

1KΩ

12V

NPN

LED Array

C1

C2

C3

C

E

Stepping Motor

70Ω

70Ω

70Ω

70Ω

Driver

1KΩ 1KΩ

Rate Gyro
A0

5V

5V

360Ω

Calibration

 A
n

al
o

g
 D

ev
ic

es
A

D
X

RS
15

0E
B

1

2

8 13

A1

5ΚΩ

5ΚΩ

Figure 1: Schematic

3.1 Stepping Motor

This project requires precise mechanical angular motions. Stepping motors are
a class of multipole-multiphase DC motors with precision tracking capabili-
ties. The stepping motor rotates in finite steps by energizing sequential motor
phases; any further rotation requires energizing the next phase. Clockwise ro-
tation require energizing —in sequence— the phases: 1, 2, 3, 4, and so on.
Counterclockwise rotation requires the reverse order: 4, 3, 2, 1. Energizing each
phase requires a voltage step to the appropriate coil(s) provided by a driver.
By necessity, multiple step sequences are required for one revolution. Common
stepping motor resolutions are 200 and 400 steps —1.8◦ and 0.9◦ respectively.
Half stepping recognizes that two adjacent phases can be energized simultane-
ously to move the rotor between steps; the price of half-stepping is double the
current draw with 2 active phases rather than 1.

This project’s motor (Fig. 2) was salvaged from an obsolete 5.25 inch floppy
disk drive’s track selector motor. This project’s 200 step motor has 4 phases,
for a total of 5 wires when including the common or ground wire. Each phase
has a resistance of approximately 70 Ohms to common or 140 Ohms between
any two phases. Thus, at 12 Volts, each phase will draw slightly over 170 mA.

2

Figure 2: Stepping Motor

3.2 Stepping Motor Driver

A stepping motor driver is required to connect the low power microcontroller
to the high power, low impedence motor. A simple driver was constructed
from TIP31 NPN transistors in a TO-220 case. The transistors are connected
with the common to the motor, base to the microcontroller, and the emmitter
to ground. Each transistor is capable of more than about 500mA continuous
current. The transistors’ data sheet is given in the appendix. Referring to the
schematic (Fig. 1), diodes placed across each driver circuit to prevent back EMF
or motor generated current from burning out the transistors. Total driver cost
is approximately $2.

An LED array is used to indicate the active motor phases. Four LEDs are
connected to each of the driver outputs. 470 Ohm resistors restrict the current
from a 5 volt input to a maximum of 10 mA. The LED’s voltage drop improves
the margin by even more.

3.3 Directional Gyro

The project’s goal suggested using an actual DG, which was salvaged from an
A&P mechanic’s scrap pile. The vacuum powered DG, Part Number 23-600,
was produced by Garwin in the 1960’s1 for Cessna2.

The first step involved removing the existing mechanical gyro assembly and
support structure. Because the selected stepping motor has only 400 discrete
steps (0.45 degrees) per revolution using half-stepping, a 32:105 reduction drive
connects the stepping motor output shaft to the DG’s dial. The drive was
designed and built by the author at no cost. The stepping motor’s electrical
input is through a 15 pin connector. The final electrically driven directional
gyro is shown in Figure 3.

1The FAA stamp shows December 6, 1961.
2The Cessna logo is prominent on the display window

3

Figure 3: Converted Directional Gyro

3.4 Rate Gyro

Angular rates are sensed by an Analog Devices ADXRS150EB, which is the
evaluation board for the 150 degree per second ADXRS150 gyroscope. From
the datasheet3, the rate gyro senses the Coriolis force resulting from angular
rate and motion. A partial data sheet is in the appendix. The rate gyro chip
requires 5 volts DC and outputs 12.5 mV per degree per second with a range
of ±150 degrees per second. A temperature compensation output was available
but not used. The chip costs $50.

Figure 4 shows the analog voltage output for a known input motion. The
gyro was tested with approximated, human generated input motions: ±45 de-
grees per second, ±90 degrees per second, two impulses, a chirp, and two small
impulses.

3.5 Microcontroller

A PIC 16F876 microcontroller provided the signal processing and motor control.
The micro-controller is a 28 pin DIP Microchip PIC16F876 clocked at 20 MHz.
The PIC voltage input is +5 volts DC via a µA7805 dc/dc voltage regulator. The

3Available at www.analog.com

4

500 mV 2 s

+45 deg/s

-45 deg/s

+90 deg/s

-90 deg/s

Impulse
Chirp

Figure 4: Rate Gyro Test

compiler is the CCS C compiler (v. 3.207) for 14 bit PIC chips. C compilation
occurs on a x86 based PC. Data transfer between the PIC and the PC is through
a 9 pin serial cable.

3.5.1 External Interrupt Button

The external button is connected to pin B0, the external interrupt pin. Pushing
the single pole momentary button shorts pin B0 to ground. Otherwise, a hold-up
resistor maintains about 5 volts on pin B0.

3.5.2 Calibration Circuit

A calibration circuit is connected to the PIC’s A1 port. For improved calibra-
tion, a voltage divider circuit is used. The calibration will be within several
millivolts of 2.5 volts, so two 5000 Ohm resistors4 with a centered 360 Ohm
potentiometer create a sensitive voltage adjustment.

4 Software

This section discusses the microcontroller software. The C source code is given
in dg.c (p. 5) in the Code Listing section. The main() function contains a while
loop with sequential motor updates and sensor readings. The external interrupt
is used for an emergency shutoff switch.

4.1 Motor Control

The motor control software is contained in the update dial() function. The
function converts desired motor steps, both positive and negative, to motor

4Actually, one 5000 Ohm resistor is a 5000 Ohm potentiometer to account for resistor
variance.

5

control outputs on the C port. The current motor position is necessary and is
kept in the motor pole positions variable. Stepping motor phase and position
correlation is specified in the positions array:

int positions[8]={0x01, 0x03, 0x02, 0x06, 0x04, 0x0C, 0x08, 0x09};

Half stepping is implemented; the native step locations are at hex 01, 02, 04,
and 08; the half steps are at hex 03, 06, 0C. The update dial() function moves
the motor one step depending on the sign of the motor pole positions variable.
The function returns the new motor pole positions.

4.2 Rate Sensing

Rate sensing and the strap down equation are acquired and calculated in the
velocity() function. The rate gyro voltage is determined with a read adc()
function call.

Two important code lines are in this function. The first is the conversion of
the rate sensor voltage to a heading change.

delta_heading += rate_sensor / SENSOR_VOLT_PER_DEG_S * (float) time *TIMER1_SCALE;

The second important code line converts the heading change to a motor position
without dropping the non-integer part of the heading change. The residual
headings are accumulated and added back into the delta heading above; hence
the += statement.

residual_heading= modf(delta_heading*GEAR_RATIO, &delta_heading);

5 Improvements and Suggestions

The electronic directional gyro was implemented as described above. The final
cost excluding the PIC chip is approximately $60. The DG worked and properly
moved the DG dial to the correct heading. Equivalently, a pointer on the
stepping motor remained in a constant inertial heading. However, more DG
drift than expected was encountered because of the PIC’s A/D conversion.

The following items were observed:

1. This project assumes no pitch nor roll motion. Thus this project is not a
true Directional Gyro as would be useful for aircraft navigation.

2. The PIC analog to digital conversion is noisy with a variance much larger
than the rate gyro’s. Additionally, the PIC’s noise appears non-Gaussian,
impulsive, and periodic. Attempts to filter the rate gyro failed, because
the noise is coming from inside the PIC chip.

3. The PIC 16F876 was not designed for a critical sensor application and
was a poor choice for the microcontroller. Choosing an off-board A/D
converter would be preferable. Also, the current PIC chip does not have
enough floating point power to implement efficient digital filtering.

6

4. Time accuracy is not trivial in real-time sensor applications. Proper con-
version to and from a floating point heading was essential.

5. Regardless of the rate gyro’s sophistication, the system will drift. From
theory, integration from rate to angle will resemble a random walk process
when assuming no bias. The angular error’s variance will approach infinity
as time approaches infinity.

6. Using a stepping motor for an angle application by default gives discrete
angles. A regular dc motor with an encoder would give mostly continuous
angles with the extra advantage of allowing position feedback.

7. Adding an electronic magnetic compass would allow for a Kalman filter to
be added. Magnetic compass errors during turns, accelerated flight, etc.
would be mitigated with a small gain (assuming large magnetic variances).

7

References

LM324 Operational Amplifier DataSheet http://onsemi.com
ADXRS150 Yaw Rate Gyroscope http://www.analog.com

8

Code Listing

dg.c

/∗
∗ dg . c −−− Di r e c t i ona l Gyro
∗
∗ Char les O’ Ne i l l
∗ MAE 5483
∗ Term Pro j ec t 2
∗/

/∗−−−
∗ Defau l t PIC I n i t i l i z a t i o n
∗−−∗/
#include <16F876 . h>
#dev ice ADC=10
#include <math . h>
#use de lay (c lock =20000000)
#f u s e s HS,NOWDT
#use rs232 (baud=19200 , p a r i t y=N, xmit=PIN C6 , rcv=PIN C7)

/∗−−−
∗ Function Prototypes
∗−−∗/
signed i n t16 update d ia l (signed in t16 number of steps) ;
signed i n t16 v e l o c i t y (void) ;

/∗−−−
∗ Globa l De f i n i t i on s
∗−−∗/
#define OFF 0x00
#define MOTOR STEP DELAY 1
#define ADC RES 5.0/1024 .0
#define SENSOR VOLT PER DEG S 0.0125
#define TIMER1 SCALE 1.6E−6
#define GEAR RATIO (400 . 0/360 . 0)

/∗−−−
∗ Globa l Var i ab l e s
∗−−∗/
i n t1 s t a t e =1;
in t1 s amp l e t r i g g e r ;
signed i n t16 moto r s t ep s d e s i r ed =0;
in t16 moto r po l e po s i t i on =0;
f loat heading , heading motor , de l t a head ing ;
in t16 c a l i b r a t e ;
f loat v o l t c a l i b r a t e =2.5 ;

9

/∗−−−
∗ Externa l I n t e r rup t
∗−−∗/
#i n t e x t
void but ton in t (void) {

s t a t e ˆ=1;
delay ms (50) ;

}

/∗−−−
∗ Main Program f o r c a l c u l a t i o n t imer
∗−−∗/
void main () {

/∗ Setup Analog to D i g i t a l Conversion ∗/
s e t up ad c po r t s (ALL ANALOG) ;
setup adc (ADC CLOCK DIV 32) ;
s e t ad c channe l (0) ;

/∗ Setup Timer ∗/
s e tup t imer 1 (T1 INTERNAL | T1 DIV BY 8) ;

/∗ I n i t i a l i z e I n t e r rup t s ∗/
e n ab l e i n t e r r u p t s (INT EXT) ; // Port B In t e r rup t
e n ab l e i n t e r r u p t s (GLOBAL) ; // Turn on In t e r rup t s

/∗ I n i t i a l i z e Heading ∗/
moto r s t ep s d e s i r ed =0;
heading=heading motor =0;

/∗ Ve l o c i t y Tracking ∗/
s t a t e =1;
while (s t a t e) {

moto r s t ep s d e s i r ed=update d ia l (moto r s t ep s d e s i r ed) ;
delay ms (MOTOR STEP DELAY) ;
moto r s t ep s d e s i r ed += v e l o c i t y () ;

}

/∗ Emergency Out ∗/
s t a t e =1;
output c (OFF) ;

}

/∗−−−
∗ Sample Rate Sensor
∗−−∗/
signed i n t16 v e l o c i t y (void) {

signed i n t16 motion , time ;
in t16 sen sor ;
f loat r a t e s en so r , r e s i dua l h ead in g ;

10

/∗ Read Sensor Rate ∗/
s en sor = read adc () ;
time=get t imer1 () ;
s e t t ime r 1 (2) ;

/∗ Ca l i b ra t i on ∗/
s e t ad c channe l (1) ;
c a l i b r a t e = read adc () ;
v o l t c a l i b r a t e = (f loat) c a l i b r a t e ∗ ADC RES;
s e t ad c channe l (0) ;

/∗ Update heading ∗/
r a t e s e n s o r = (f loat) s en sor ∗ ADC RES − v o l t c a l i b r a t e ;
de l t a head ing += ra t e s e n s o r / SENSOR VOLT PER DEG S ∗ (f loat) time ∗

TIMER1 SCALE;

/∗ Convert to i n t e g e r ∗/
r e s i dua l h ead in g = modf (de l ta head ing ∗GEAR RATIO, & de l ta head ing) ;
motion = (signed i n t16) (de l ta head ing) ;

de l t a head ing=r e s i dua l h ead in g ;
return (motion) ;

}

/∗−−
∗ Update Dia l
∗−−∗/
signed i n t16 update d ia l (signed i n t16 s t ep s) {

/∗ I n i t i a l i z e ∗/
int p o s i t i o n s [8]={0 x01 , 0 x03 , 0 x02 , 0 x06 , 0 x04 , 0 x0C , 0 x08 , 0 x09 } ;

mo t o r po l e po s i t i on%=8;

/∗ Rotate Clockwise ∗/
i f (steps >0){

output c (p o s i t i o n s [−−moto r po l e po s i t i on %8]) ;
return(−−s t ep s) ;
/∗ Rotate Counter Clockwise ∗/

} else i f (steps <0){
output c (p o s i t i o n s [++moto r po l e po s i t i on %8]) ;
return(++s t ep s) ;

/∗ No Rotat ion ∗/
} else {

output c (p o s i t i o n s [moto r po l e po s i t i on %8]) ;
return (s t ep s) ;

}
}

11

Data Sheets

12

