Optimization Applications 5703 Project B:
Avreraft-Based Communications Platform

Charles O’Neill

23 April 2004

Contents

1 Introduction
2 Problem Description
2.1 Aircraft Physics.
2.2 Endurance Function
2.3 Constraints
3 Optimization Algorithms
3.1 Unconstrained Conversion
3.2 Direct Cyclic Method
3.3 Indirect Steepest Descent Method . .
4 Algorithm Evaluation
4.1 Efficiency
4.2 Comparisons
4.3 Problems Encountered
5 Summary
Appendix

A Nomenclature

B Aircraft Discussion

B.1 Endurance Function
B.2 Constraints
B.2.1 Takeoff
B.2.2 Loiter
B.2.3 Geometry Limits
B.3 Aircraft Models
B.3.1 Loiter Flight Condition . . .
B.3.2 Aircraft Weight
B.3.3 Drag Model
B.3.4 Engine Performance

Algorithm Discussion

C.1 Unconstrained Conversion
C.2 Algorithm Flow Chart

C.2.1 Outer “Penalty Function” Algorithm

C.22 Cyclic
C.2.3 Steepest Descent

Results

D.1 Feasible Space.
D.2 Outer Loop Convergence
D.3 Comparison

Hand Calculations
E.1 Polynomial Objective Function Test

— — s

N DN =

SR R R R R W W W W

o N i e =] (S BV, BG1 B, B, BTN

o ©

F Programs 10

F.1 Optimization Routine: endure.m L 10
F.2 Cyclic Direct Routine: cyclicmo 0 o 11
F.3 Steepest Descent Indirect Routine: sd.m, 13
F.4 Penalty Function: penaltyfunction.m L oL 14
F.5 Endurance: endurance.m L. Lo e e 15
F.6 Weight: weight.m o e 15
F.7 Fuselage Volume: volume.m L e 17
F.8 Drag: drag.am 0 e 17
F.9 Fuel Burn: fuelburn.m 17
F.10 Takeoff Distance: takeoffm 17
F.11 Feasibility Map: mapout.m e 18

ii

1 Introduction

The objective of this project is to use constrained
objective function minimization techniques to maxi-
mize the endurance of an unmanned fan-jet powered
communications platform aircraft. This problem has
three degrees of freedom and four constraints. Cyclic
and steepest descent minimization algorithms! are
used with a penalty function for the objective func-
tion and constraints.

2 Problem Description

Conceptually, a high endurance aircraft circles over a
service area to provide high-bandwidth communica-
tion2. The objective is to maximize endurance.

This optimization considers three independent
variables: wing span (b), wing area (S), and fuel
weight (W). Nomenclature is given in Appendix A
(p-3).The variables are strongly coupled.

2.1 Aircraft Physics

One requirement is accurate modeling of aircraft
physics. The modeled flight phases are: takeoff and
loiter. These flight stages will be simulated as a
steady state maneuvers involving a balance of forces
(Fig. 2). Sizing and performance estimates come from
Aireraft Design®.

2.2 Endurance Function

A simplified jet aircraft endurance expression for a
constant lift-to-drag-ratio (Appendix B.1, p.3) de-
pends on aircraft efficiency, engine efficiency, and the
amount of fuel. The objective function is non-linear
and does not directly contain the independent vari-
ables!

2.3 Constraints

The constraints specify the aircraft’s physics. Con-
straints (Appendix B.2, p.3) are implemented as
penalty functions using squares of bracket operators .

e A takeoff ground roll under 8000 feet.

e The loiter phase requires maintaining altitude —
thus a positive excess-thrust.

e The geometry limits enforce feasible aircraft con-
figurations. The span is constrained to a positive

length less than 200 feet. The wing area is con-
strained to positive values.

3 Optimization Algorithms

This project uses a two level approach: inner local
iteration, and an outer ever-increasing penalty func-
tion iteration. For the inner loop, two methods were
selected: a direct cyclic method and an indirect steep-
est descent method. Appendix E (p.9) validates both.

3.1 Unconstrained Conversion

A penalty function approach! converted the prob-
lem from constrained to unconstrained. Increasing
the penalty function’s magnitude forces the uncon-
strained feasible space to approach the constrained
feasible space. The conversion is given in Appendix
C.1 (p.5) and coded in Appendix F penaltyfunc-
tion.m.

3.2 Cyclic

The direct cyclic method is implemented as de-
scribed in Appendix C.2.2 and coded in Appendix
F cyclic.m. At each iteration, a step is made in a
coordinate direction. Step size increases or decreases
as consecutive successes or failures occur. The rou-
tine stops on small changes in position and functional
values, or a small gradient.

3.3 Steepest Descent

The indirect steepest descent method —with discrete
derivatives— is implemented as given Appendix C.2.3
and coded in Appendix F sd.m. A Newton-Raphson
line search is made along the search direction in the
negative gradient direction. The routine stops on
small position or functional changes.

4 Algorithm Evaluation

Both algorithms found similar optimums near 52
hours (Appendix D, p.6); however, the algorithms
exhibited different behavior.

4.1 Efficiency

The cyclic method is more efficient than steepest de-
scent for function evaluations by more than 50 times.

Calculating derivatives and line searching is expen-
sive. Cyclic convergence is more uniform and faster
(Figs. 4 and 5).

4.2 Comparisons

A feasibility map (Fig. 3, p.7) provided significant
insight and served as a comparison. The map gives
an optimum of 50% hours. The larger, manned Pro-
teus? aircraft provides 207 hour communication ser-
vice with a heavier payload. Global Hawk* has a 32
hour endurance. The proposed optimum is feasible.

4.3 Problems Encountered

Modeling and constraint problems appeared. Find-
ing a set of models giving a reasonable feasible space
was initially difficult. Magnitudes complicated the
optimization routines—eg. fuel weight is 100 times
larger than wingspan!

Numerical problems also appeared. Matlab al-
lowed complex values —resulting from poor optimiza-
tion routine guesses— to pollute the variables. The
penalty function approach was sensitive to initializa-
tion and progression. Small penalty magnitudes cre-
ated unbounded optimums.

5 Summary

A constrained aircraft endurance optimization prob-
lem was investigated. The direct cyclic method gave
more efficient and robust performance than steepest
descent.

References

[1] High, K., “5703 Optimization Applications
Notes,” Stillwater, OK, Spring 2004.

[2] Scaled Composites, 1624 Flight Line, Mojave,
CA, Proteus Payload Users Guide, September
2003.

[3] Raymer, D. P., Aircraft Design: A Conceptual
Approach, ATAA, 3rd ed., 1999.

[4] Northrop Grumman, I., “RQ-4A Global Hawk,”
www.is.northropgrumman.com, April 2004.

[5] Abbott, I. H. and Von Doenhoff, A. E., Theory of
Wing Sections, Dover, New York, 1959.

[6] McCormick, B. W., Aerodynamics, Aeronautics,
and Flight Mechanics, John Wiley & Sons, New
York, 2nd ed., 1995.

APPENDICES

A Nomenclature

Aircraft

A Aspect Ratio

b Wing Span (ft)

C Specific Fuel Consumption (hr—1)

Cy, Lift Coefficient
Cp Drag Coefficient
Cp, Zero Lift Drag Coeflicient

D Drag (lbs)

E Endurance (hr)

e Oswald’s Efficiency Factor
q Dynamic Pressure (Ibs)

S Wing Area (ft?)

Takeoff Ground Roll (ft)
T Thrust (Ibs)

T Drag (I1bs)

\% Flight Velocity (ft-s™1)
Vi Climb Rate (ft-s1)

W Fuel Weight (Ibs)

0 Pitch Angle (deg)
Atmospheric

g Gravity (ft-s2)

p Density (slug - ft=3)
) Pressure Ratio

B Aircraft Discussion

This section discusses the relevant aircraft physics
and modeling in more depth. The basic physical ge-
ometry is a conventional aircraft powered by a small
fan-jet. The aircraft operates at 50,000 feet, well
above most civilian air traffic.

The aircraft layout is shown in Figure 1. The inde-
pendent variables are wingspan, wing area, and fuel
weight. The fuselage volume contains the fuselage
structure, fuel and the payload. The payload is a 300
pound, 3 x 3 x 5 foot communications package.

Reviewing some aerodynamics shows that increas-
ing wing area allows the aircraft to create more lift
force. Increasing Aspect Ratio (A) improves the effi-
ciency of the wing’s lift production. Increasing fuse-
lage volume allows for more internal fuel storage. The
conceptual constraints are structural weight, takeoff
distance, and fuel capacity. Increasing the aircraft’s

Fuel

Wing Area

‘7 Wing Span 4‘

Figure 1: Planform View

size increases the structural weight nonlinearly and
also increases the overall drag coefficient (Cp,).

The steady state aircraft equations of motion come
from a force balance (Fig. 2). Each force is generated
as a function of the aircraft’s physical geometry and
structure.

Lift

Drag

J Weight

Figure 2: Forces

B.1 Endurance Function

The objective function is a model of an aircraft’s
steady state endurance. From Raymer?®, the en-
durance is maximized at the maximum lift to drag
ratio. Endurance as a function of fuel consumption
(C) and initial and final weights W is:

1 |7Ae (1 Winitial
E=c 222 (2 I initial
2 CDO (C) n(Wfinal)
B.2 Constraints

This section discusses the details of the objective
function constraints. Four constraints are in 3 cat-
egories.

B.2.1 Takeoff

Takeoff is a thrust and mass dominated maneuver.
The ground distance (S) required when assuming a

constant thrust (Equation 17.101 in Raymer?) is:

1 Kr+ KaV}?
SG 1<T Af)

T ogKa Kr

The K1 and K 4 terms represent the thrust and aero-
dynamic forces. Vj is the liftoff velocity, which re-
duces to:

Vf = 2W/,OCL S

max

Liftoff velocity function of weight, maximum lift coef-
ficient and wing surface area. For this project, take-
off distance is a constraint. 8000 foot runways are
above average length, but are common enough within
a given region.

B.2.2 Loiter

Loitering requires excess thrust. For this project, the
climb rate —positive at the cruise altitude— is gov-
erned by the difference between thrust and drag.

1
Vi, o (T — 5,oVQCD S)
Thus V}, is required to be positive.

B.2.3 Geometry Limits

Geometry constraints were needed to prevent infeasi-
ble configurations. The span is limited between zero
and 200 feet. The wing area is constrained to be
positive.

0 < b< 200

0<S<oo

B.3 Aircraft Models

This section discusses the aircraft models used for this
project. These models are needed to ensure feasible
aircraft performance or configuration estimates.

B.3.1 Loiter Flight Condition

A critical assumption for the loiter flight condition
regards the aircraft’s attitude — pitch angle 6 in
Figure 2. Reviewing the endurance expression shows
that large lift to drag ratios are desired. From theory
reviewed in Raymer?, the best lift to drag ratio for a

finite wing is:
(£> 1 [7mle
D ma 2\ Cp,

Knowing Cp, also allows for determining a nominal
flight velocity, which is needed for re-dimensionalizing
the drag coefficient Cp.

B.3.2 Aircraft Weight

One difficult aspect of the aircraft model is the weight
estimate. The Aircraft Design book by Raymer3
contains parameterized aircraft component weights.
The individual formulas (Equations 15.46 — 15.59 in
Raymer?) are long, not intuitive nor instructive, and
are not included. Weights based on a general aviation
aircraft class are estimated for the wing, horizontal,
vertical, fuselage, fuel components, landing gear, and
engine accessories. The above parameterized weights
and aerodynamics appear to have bogus behavior for
Aspect Ratios above about 40. The aspect ratio term
was adjusted to (A/cos?A)%C . e(4/30) to prevent in-
feasibly large Aspect Ratio to weight ratios.

B.3.3 Drag Model

The drag model considers fuselage and wing drag.
Calculating wing drag required estimating an appro-
priate airfoil section —chosen to be a NACA 65:412.
Theory of Wing Sections® provided sectional data.
Fuselage drag is calculated from a volume based drag
coefficient.

B.3.4 Engine Performance

The William FJ44 fan-jet engine was selected. The
engine provides 1900 pounds of thrust at sea-level
and weighs 450 pounds dry. Dimensional analysis®
suggests that thrust decays with altitude as described
by the ambient to sea-level pressure ratio 4.

Ty
5

At 50,000 feet, the thrust decays from 1900 pounds
to 217 pounds.

T(h) =

C Algorithm Discussion

This section discusses application and initialization
of the optimization algorithms used for this project.
This project concerns a multi-variable, constrained,
non-linear objective function.

Two basic optimization methodologies were used:
cyclic and steepest descent. Constraint functions
were satisfied by adding a penalty function. The Mat-
lab functions and scripts are given in Appendix F.

C.1 Unconstrained Conversion

The constrained problem was converted to an uncon-
strained problem with the penalty function method.
The objective function has a sign switch to convert
from a maximization to a canonical minimization
form. The unconstrained objective function becomes:

P(b,SW,p) = ZE +p- (8000~ Se)?
—_———
endurance takeoff
+ p-(T=D)’+p-(200—b)>
loiter wing span
+ p(S)
———
wing area

As the optimization progresses, the penalty term, p,
increases in value. This form is sufficient for imple-
mentation in an unconstrained optimization routine.

C.2 Algorithm Flow Chart

This section details the algorithm flows for the con-
strained optimization using penalty functions with ei-
ther cyclic or steepest descent algorithms.

C.2.1 Outer “Penalty Function” Algorithm

The outer penalty function! loop provides the algo-
rithm to satisfy the constraints. The penalty func-
tion approach operates by successively increasing a
penalty term in the objective function as the op-
timization progresses. Increasing the penalty term
forces the optimization space to approach the con-
strained feasible space. Overall, this algorithm is easy
to code; successively increase a penalty term and re-
calculate an optimal point. The flow is:

1. Set an initial penalty magnitude p and final ob-
jective Pmax

2. Optimize the objective function (cyclic or steep-
est descent)

. Increase the penalty magnitude p = 2% p

. Write out current best values

[]

. If p < Pmas then goto 2
6. STOP

The Matlab program is given in Appendix F en-
dure.m (p.10).

C.2.2 Cyzclic

The cyclic method is a direct minimization algorithm
that operates by successively moving a discrete step
down-hill in each coordinate direction. The discrete
step size depends on the previous successes or failures
in the stepping history. Overall, the cyclic method is
intuitive, simple to code, and not especially excit-
ing as far as mathematical complexity. The average
number of function evaluations per step is 1.5 —50%
chance of a succesful single positive evaluation; 50%
chance of a failure in the positive direction with a
subsequent negative direction evaluation. The flow
of the cyclic method is:

1. Set a coordinate search direction
2. Evaluate function f(x) at a positive step +a.

3. If the function is smaller, update the current best
point. If the function is larger, search in the neg-
ative step direction —a. If the negative direction
is also larger, reduce the step size a = 0.618a.

4. If the step direction correlates with previous
successful step directions, increase the step size
a = wa.

5. If any two of the following criteria are met, then
STOP.
a<107*

(v —xp—1) < 1074
(f& = fr—1) <107
6. If Vf < 1E4 then STOP
7. Goto 1, unless iterations = 300
8. STOP
The Matlab program is given in Appendix F

cyclic.m (p.11).

C.2.3 Steepest Descent

The steepest descent method is an indirect minimiza-
tion algorithm that operates by successively moving
in the negative gradient direction. Thus the update
at step k is:

Tpy1 = Tk — a Vf(xg)

The method requires the gradient V f(zx) at each
point z. For this project, the gradient is determined

numerically from a 2 point centered difference expres-
sion where ¢; is evaluated at each coordinate direc-
tion.

fle+A-di) = fla—A- i)

Vi) = A

For this problem, A = 10~%. Evaluating the gra-
dient for N dimensions with this 2 point expression
requires 2N evaluations. The flow of the steepest de-
scent method with a Newton Raphson line search is':

1. Evaluate Gradient V f(zy)
2. Set Search direction s = —V f(zy)

3. Determine Newton Raphson components f’ and
f" in the search direction.

4. If f” # 0 Update the position by:

!/
$k+1:$k—ﬁ'8k

5. If the update is not an improvement, move a
small length along the search direction!

6. If any of the following criteria are met, then
STOP.
(:L’k — xk,l) < 10_4

(fr = fe—1) <1071
|V f(xr)| <107*

7. Goto 1 unless iterations is greater than 200
8. STOP

The Matlab program is given in Appendix F sd.m
(p-13).

D Results

The cyclic method found an optimum of 52.4 hours
with 737 function evaluations. The steepest descent
method found 52.0 hours with 39672 function evalu-
ations! The final cyclic results are tabulated below
for a starting vector of b = 60,5 = 200, W = 2000

Evaluations 737
Endurance 52.37[hr]
Wingspan 51.82[ft]
Area 80.83[ft"2]
Fuel 5610.4[1bs]

1Warning! This is not always a good correction when
Newton-Raphson fails.

Empty Weight 3812.99[1bs]
Takeoff 4922.68[ft]

Aspect Ratio 33.2

Drag 218.71[1bs]

Thrust 218.71[1bs]

Fuselage Volume 244.65[ft"~3]

The steepest descent results are tabulated below.

Evaluations 39672
Endurance 52.05[hr]
Wingspan 55.89[ft]

Area 98.18[ft"2]

Fuel 5539.9[1bs]

Empty Weight 3990.62[1bs]
Takeoff 4141.90[ft]
Aspect Ratio 31.8

Drag 218.74[1bs]

Thrust 218.71[1bs]
Fuselage Volume 243.25[ft"3]

Further investigation seems to indicate that the
maximum endurance region lies within a flat spot
in the feasible space. Small changes in wing span
and area are being traded off. However, both meth-
ods are finding similar endurance, drag, fuselage vol-
ume and aspect ratio. The difference appears to
be how much runway the takeoff requires. Thus a
smaller wing needs more runway. Further minimiza-
tion would need to consider multiple objectives such
as maintainability or hanger space.

The real surprise is that the cyclic method uses 50
times fewer functional evaluations for essentially the
same optimal point! A simple optimization routine
appears to be advantageous.

D.1 Feasible Space

The feasible space of this optimization problem is not
trivial. To understand the problem in more detail, an
endurance map (Fig. 3) was created. Figure 3 shows
cross sections of the feasible configurations and en-
durance. Endurance is mapped low to high from blue
to red. Admittedly this is a brute force approach, but
it gave more insight than all of the optimization rou-
tines combined!? The map gives a best endurance of
51 hours with a wing span of 60 feet, a wing area of
114 square feet, and a fuel weight of 5421 pounds.
The map also shows the insensitive optimum. Inter-
estingly, the feasible space has a needle pointed valley
for small wing spans. The map verifies the optimums
predicted by the cyclic and steepest descent methods.

2The map is computationally expensive though.

200

150
400
a
s
£ 50 -
=
0
0
2000
3000 -
Fuel Weight 4000
5000
6000

Figure 3: Feasible Space

D.2 Outer Loop Convergence

The outer loop convergence shows an interesting
comparison between the cyclic and steepest descent
method. Figure 4 shows the outer convergence of the
cyclic method with respect to the three independent
variables for three different starting points: a, b, and
c:
_ T
xq = [20,40, 300]

x, = [60, 200, 2000]”
z. = [160, 600, 9000]"

In figure 4, the penaly function effect is apparent from
the monotonic convergence to a “steady state” value.
Remembering that the constraints enforce physics ex-
plains why the values approach from oo. All three

cases, a,b, and c, are coincident. The cyclic method
converges fast! Past the first outer loop, even the
initial step differences are gone. Unfortunately, this
also explains why the cyclic method prefers a large
initial penalty function.

Figure 5 shows the corresponding convergence
trace for the steepest descent method. Convergence
is not as uniform. A small optimum point difference
occurs even with large penalty functions. This ap-
pears to be a byproduct of the weak optimum point;
small changes in configuration are relatively insensi-
tive to the endurance. This seems to indicate that the
steepest descent method as developed for this project
is not as efficient as possible. Further study should
be done to determine a better local convergence in-
side the sd.m code. Newton-Raphson often fails, so

@
@
o

Wing Span
@
N g
[
B
T

@
Y
T
L

a
a
o

®
&

Wing Area
® o
23
—
L

)
T
L

@
3

7000

6500 q

Fuel Weight

@

<}

3

3
T
L

5500 L L L
0 5 10 15 20 25 30
Outer Iterations

Figure 4: Cyclic Variables’ Convergence

Wing Span
@«
8
T

5 10 15 20 25 30

Wing Area
Now

8 8

8 8
—

=

15

5}
T

o

o
@
N
1S)
.
@
N
S
N
&

30

10000

Fuel Weight
a
2
8
S
:

0 5 10 15 20 25 30
Outer Iterations

Figure 5: Steepest Descent Variables’ Convergence

the alternative discrete step approach is used. Af-
ter reviewing the code again, the Newton-Raphson
only successfully updates within a restricted subset
of the feasible space. The Newton-Raphson portion
also fails near the minimum, as expected because f”
is near zero. This is not good.

D.3 Comparison

The Proteus aircraft from Scaled Composites allows
for a comparison. The Proteus used two William
engines yielding significantly higher weight capac-
ity (1500 lbs). The Proteus manual shows 20+
hours endurance at 45000 feet with two engines and
1500 pound payload. This project’s optimized air-
craft shows similar behavior, but with a much better
fuel fraction advantage and a much lighter payload.

Longer endurances for specialized aircraft with tiny
payloads are possible; the Voyager aircraft —also a
Scaled Composites creation— flew around the world
without refueling.

This project’s aircraft is similar to two other un-
manned aircraft, the Global Hawk and the Predator.
The Global Hawk operates at 65,000 feet and has a 32
hour endurance*. At a lower altitude, the propellor
driven Predator operates for 40 hours?.

E Hand Calculations

The purpose of this section is to validate the minimization routines on simple, known functions.

E.1 Polynomial Objective Function Test

Minimization routine validation is necessary. The solution was to create a polynomial test function with a
known minimum points. The function is:

f(x) = (21 — 100)2 + (22 — 600)* + (23 — 5000)8

which has a minimum of 2 = (100,600, 5000)”. The following tables show the cyclic and steepest descent
minimization for this polynomial test function. Table 1 for the cyclic method and Table 2 for the steepest
descent method show the convergence iterations for the polynomial test function. The direct method con-
verges with fewer function evaluations (72) when compared to the indirect method (703). Both methods
stopped on small changes in the functional values.

Direct
Iteration Evals 1 o T3 f(z)
1 2 0.000000 0.000000 100.000000 3.3 E29
2 3 0.000000 0.000000 414.159265 1.9 E29
3 4 0.000000 0.000000 1401.119705 2.8 E28
149 40 101.703822 599.357104 4995.431501 1.8 E5
150 40 101.703822 599.357104 4995.431501 1.8 E5
151 40 101.703822 599.357104 4995.431501 1.8 Eb
298 72 100.005917 599.997257 4999.998649 3.501305 E-5
299 72 100.005917 599.997257 4999.998649 3.501305 E-5
300 72 100.005917 599.997257 4999.998649 3.501305 E-5
Table 1: Polynomial Test with the Direct Cyclic routine
Indirect
Iteration Evals 1 To T3 f(x)
1 10 0.000000 0.000000 728.015099 1.10 E29
2 19 0.000000 0.000000 1373.263668 2.99 E28
3 28 0.000000 0.000000 1898.162997 8.56 E27
37 334 0.000000 0.549403 4983.762456 1.33 E11
38 343 0.000000 1.498313 4986.384482 1.29 E11
39 352 0.000002 7.461996 4991.210486 1.23 E11
76 685 99.999992 600.026170 4999.810457 2.13 E-6
77 694 100.000288 600.024818 4999.811783 2.03 E-6
78 703 99.999993 600.024787 4999.811817 1.95 E-6

Table 2: Polynomial Test with the Indirect Steepest Descent routine

N

© ® N o w

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

F Programs

This project used the Matlab codes given below. The codes are ordered in an approximate execution order.

Execution begins by starting the endure.m script.

F.1 Optimization Routine: endure.m

% 5703 Project
% Charles O’ Neill
% The independent wvariables are

% b——— wing span
% S——— Wing Area
% V——— Fuselage Volume

clear all;
global penalty; global fevals; global rho; global SFC;

% Initialize
fevals=0; Pprev=1E99; direct=0;

% Tolerence and Iteration Control
tol=1E—4;

penalty=100;

penalty _max=1E10;

imax=ceil (log(penalty_max/penalty)/log(2));

rho=0.3639E—-3; % 50000 ft
SFC=0.48;

x0=[60;200;2000];

b=x0(1);
S=x0(2);
Wfuel=x0(3) ;

for iter=1:imax
if (direct)
xstar=cyclic (x0);
else
xstar=sd (x0) ;
end
b=xstar (1); S=xstar(2); Wiuel=xstar (3) ;
P=penaltyfunction (xstar);
x0=xstar;
penalty=penalty x2;

% External output

fprintf (1, \n_.%4.0f_&_%4.0f_&_%10.6f_&%10.6f__.&%10.6f__&%10.6f__"

fevals ,xstar (1) ,xstar (2),xstar(3),P)
end

% Write out final optimized parameters

10

,1ter ,

44

45

46

47

48

49

50

51

52

53

54

© W N o U A W N e

WoOow W NN N NN N NN NN R s e e
P~ O © ® N o g A& ® N = O ©® W N o o A W N = O

w
@

[fb

,thrust]=fuelburn (b,S, Wfuel) ;

E=endurance(b,S, Wfuel) ;
SG=takeoff(b,S, Wfuel);
WEIGHT=weight (b,S, Wfuel) ;
FUEIL=Wfuel ;

VOLUME=volume (b, S, Wfuel) ;

DRAG= 1/2xrhoxvelocity (b,S, Wfuel) "2xSx(drag(b,S, Wfuel)+sqrt (drag(b,S, Wfuel)) x(

pixb"2/S%0.8)"(—-2/3));

AR=b"2/S;

fprintf (1, ’\nEndurance.%5.2f [hr]._.Wingspan_.%5.2f [ft |._Area_.%5.2f [t "2]__Fuel
fprintf (1, \nEmpty.Weight_.%5.2{[1bs]...Takeoff . %5.2f[ft]....Aspect_Ratio_.%3.1f

fprintf (1, \nDrag.%5.2f [1bs|_._._Thrust_-%5.2f [1bs]|_._._Fuselage_Volume.%5.2f [ft " 3]

_%6.1f[1bs]’ ,E,b,S, Wfuel) ;
' 'WEIGHT, SG,AR) ;

" ,DRAG, thrust ,VOLUME) ;

F.2 Cyclic Direct Routine: cyclic.m

% Cyclic

function xstar=cyclic (xm)
func=@penaltyfunction;
global fevals;

% Initial Starting point
dimensions=length (xm) ;
index=dimensions;
converged=zeros (dimensions ,1) ;
alpha=ones (dimensions ,1) ;
psteps=0; nsteps=0;

% Iterations and Stopping

imax=300;

der_tol=1E—4;

der_delta=1E—4;

x_tol=1E—4;

fxm=feval (func ,xm) ; fevals=fevals+1;
xpast=xm*1E99; fxpast=xpast;
xpast2=xmx*1E99; fxpast2=xpast2;

% Iteration

for

iter =1:imax

%cycle direction

if (index>dimensions)
index=1;

end

phi=zeros (dimensions ,1) ;

phi(index)=1;

%Step and test in cycle direction
if (feval (func ,xmtalpha (index)*phi)<fxm)% Positive move

11

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

76

77

78

79

80

81

82

83

84

fevals=fevals+1;

xm=xm+alpha (index)*phi;

xpast2=xpast; xpast=xm;
psteps=psteps+1; nsteps=0;
elseif(feval (func ,xm—alpha (index)*phi)<fxm)% Negative move
fevals=fevals+1;

xm=xnralpha (index)*phi;

xpast2=xpast; xpast=xm;
nsteps=nsteps+1; psteps=0;
else % no move
alpha (index)=alpha (index)*0.618;
nsteps=0; psteps=0;

index=index+1; % Step to nexzt direction

end

%Check convergance and adjust alpha
if ((psteps>=1) ||

(nsteps >=1))

alpha (index)=alpha (index)x*pi;
nsteps =0;
psteps=0;

end

% Stopping Criteria
%% small x change
if (norm(xm—xpast2) <x_tol)

converged(1)=1;

else

converged(1)=0;

end

%% small alpha
if (norm(alpha)<x_tol)
converged (2)=1;

else

converged(2)=0;

end

%% small f change
if (norm(fxm—fxpast2) <x_tol)
converged(3)=1;

else

converged (3)=0;

end

%% If all are converged ,

then stop

if (norm(converged) 2>dimensions —1)
break;

end

%% small jacobian

if (norm(converged) "2==2) %check jacobian

for

i=1l:dimensions

phi=zeros (dimensions ,1);

phi(i)=1;

12

if mecessary

if mostly converged

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

© ® N o o oA W N e

[I T N T T v S S S ~ S O o S S
@ N = O © ® N O o A W N = O

S
Ny

25

26

27

28

29

30

% % Internal output

% forintf (1, \n %4.0f & %4.0f & %10.6f €%10.6f
iter , fevals ,am(1) ,am(2) ,am(3) ,fxm)

end

xstar=xm;

return

F.3 Steepest Descent Indirect Routine: sd.m

fd(i)=(feval (func ,xmtder_deltaxphi)—feval(func ,xm—der_deltax

phi))/2/der_delta;
fevals=fevals+2;
end
if(sqrt(fd«fd’)<der_tol)
break;
end
end
fxpast2=fxpast; fxpast=fxm;
fxm=feval (func ,xm) ;

&%10.6 f

%10.6f \\\\’,

% Steepest Descent
function xstar=sd (xm)
func=@penaltyfunction;
global fevals;

% Initialize

delta=1E—4;

tol=1E—4; %Stopping tolerences
N=length (xm) ; % Dimensions
imax=200; %Maximum iterations
maxstep=20;

f_past=1E99;

xp=xm; xp-past=1E99;

fxp_past=1E99; fxp=feval(func,xp); fevals=fevals+1;

xpast=xmx1E99; fxpast=xpast;
xpast2=xm+1E99; fxpast2=xpast2;

% Iterate

for

iter=1:imax

%Gradient

for i=1:N
phi=zeros (N,1) ;
phi(i)=1;

gradient (i)=1/(2xdelta)*(feval(func ,xp+phixdelta)—feval(func ,xp—phix

delta)); fevals=fevals+2;
end

% Stopping Condition

if ((norm(gradient)<tol))
break;

end

13

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

end

% Search Direction
sk=—gradient ’ /norm(gradient) ;

% Derivative

fxp_p=feval (func ,xp+deltaxsk); fevals=fevals+1;
fxp.m=feval (func ,xp—deltaxsk); fevals=fevals+1;
fd=(fxp_-p—fxp.-m) /(2x delta);

% Newton Raphson Minimization
fdd=(fxp-p —2+fxp-+fxp.m) /(delta"2);

if (fdd<=0) % near a problem since fdd is almost negative

xp_kp=xp+sk;
else
xp-kp=xp—fd/fdd*sk;
end
fxp_kp=feval (func ,xp_kp); fevals=fevals+1;

% Check proposed point

if (fxp_kp<fxp_past) % NR improved guess
xp=xp-kp;
fxp=fxp_kp;

else
alpha=1;
fprintf(1,’.);
xp=xp+sk ;

end

Xp-past=xp;

fxp_past=fxp;

% Stopping Criteria

%% small = change

if (norm(xp—xpast2) <tol)
break;

end

%% small f change

if (norm(fxp—fxpast2) <tol)
break;

end

fxpast2=fxpast; fxpast=fxp;

xpast2=xpast; xpast=xp;

% % Internal output
% forintf (1, \n %4.0f & %4.0f & %10.6f €%10.6f
iter , fevals ,ap (1), xp(2),zp(3),frp)

xstar=xp;
return

F.4 Penalty Function: penaltyfunction.m

14

6%10.6f &%10.6f \\\\ ’,

© W N o U A W N e

W oW W W NN N NN N NN N N R R R e s e e
w K = © © ® N & G A& W N H O © ® N O « A& ®W N = O

w
=

N

© w N o o«

% Objective Function with Penalties
function P=penaltyfunction (xm)
global penalty; global rho;

e=0.80;

b=xm (1) ;

S=m(2) ;

Wiuel=xm(3) ;

%Constraints

[fb, thrust]=fuelburn(b,S, Wfuel) ;
Q=1/2«rhoxvelocity (b,S, Wfuel) " 2;
takeoff_max=8000;

span_max=200;

% Takeoff Length
hl=min(0, (takeoff_max—takeoff(b,S, Wfuel))/takeoff_max)"2;

% Wing Span Limit
h2=min ([0, (span_.max—b)/span.max, b]) "2;

% At—Altitude Minimum Climb Rate

CD=drag(b,S, Wfuel)+sqrt (drag(b,S, Wfuel)) «(pixb"2/Sxe) " (—2/3);
DRAG=Qx*S+CD;

ExcessThrust=thrust-DRAG;

h3=min (0, ExcessThrust/thrust) "2;

% Wing Area Limit
h4=min ([0 ,S]) " 2;

%0bjective Function
f=endurance (b,S, Wfuel) ;
——{+(h1+h2+h3+h4) xpenalty ;

return

F.5 Endurance: endurance.m

% Endurance

function hours=endurance(b,S, Wfuel)

global SFC

AR=b"2/S; %Aspect Ratio

e=0.80; %¥0Oswalds Wing Efficiency Factor

CLCD_best=sqrt (max (0, pi*ARxe/drag(b,S,Wfuel))); %Best Lift to Drag Ratio
Fuel_fraction=(weight (b,S, Wfuel)+Wfuel) /(weight (b,S, Wfuel) +100);

hours= 1/2 x CLCD_best / SFC * max(0, log(Fuel_fraction));

return

F.6 Weight: weight.m

15

© W N o U A W N e

T S = S =S
N o o A W N = O

-
3

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

% weight model weight (b,S, Wfuel)
function weight_total=weight (b,S, Wfuel)

%% Physical Constants

AR=Db"2/S; % Aspect ratio = span squared / Area
chord=max(0,S/b); % wing chord

lambda=0.4; % taper ratio

N.z= 8; % ultimate load factor

D=4; %Fuselage diameter

L=20; %Fuselage length

s _f=L«Dxpi; %Fuselage wetted area

L.t= 10; % Tail length

tc=0.12; % thickness

W_dg= 2800+Wfuel x0.5; % Design Flight weight
q=200; %Design Dynamic Pressure

% wing weight (general aviation Raymer p476)
wingweight=0.036xS"0.758 * Wfuel “0.0035 x* AR"0.6% exp(AR/30) % q~0.006 =
lambda “0.04 % (100 % tc) " —0.3 x (N_.z + W.dg) "0.49;

% Fuselage (general aviation Raymer pl76)
fuselageweight=0.052% s_f"1.086 x (N_zxW.dg) "0.177 « L_t"—0.051 % (L/D)
“—0.072 x q~0.241;

% Horizontal (general aviation Raymer p476)

SSh_ratio=0.50%chord/L_t;

horzweight =0.016% (N_.z *+ W.dg) "0.414 %« q"0.168 % (S*SSh_ratio) 0.896 * (100x*tc
)" —=0.12 « (AR) "0.043 =« lambda” —0.02;

% Vertical (general aviation Raymer p476)
verticalweight =0.7x horzweight ;

% Landing Gear
LGweight=100;

% Powerplant weight
W_en=450; % dry engine weight
W_powerplant=W_enx1.3; %(general aviation Raymer p476)

% Awvionics
Avweight=100;

% Comm Payload
W _payload=300;

%%% TOTAL WEIGHT %%%
weight_total=wingweight+fuselageweight+horzweight+verticalweight+LGweight+
W _powerplant+Avweight+W _payload;

return

16

© ® N o oA W N e

e e
v o= O

-
w

© ® N o o oA W N e

e
= o

-
©® N o o oA W N =)

oA W N e

F.7 Fuselage Volume: volume.m

% Volume

function volume_total=volume (b,S, Wfuel)
%Fuselage Structure
vol_fuse_structure=20%2x2;

%Payload volume

vol_payload=3%3%5;

%Avionics and Flight Systems Volume
vol_avionics =2%2%2;

%Fuel Volumes

vol_fuel=Wfuel /50.25;

%Total Volume
volume_total=vol_payload+vol_avionics+vol_fuse_structure+vol_fuel;
return

F.8 Drag: drag.m

% Drag model

function cdrag=drag(b,S, Wfuel)
% wing drag

Cd_wing=0.011;

% Fuselage Drag
% Drag per wvolume "(2/3) for a Fuselage/Nacelle
CD.V=0.030; % McCormick pl165

%%% TOTAL DRAG %%%
cdrag=Cd_wing+CD_Vxvolume (b,S, Wfuel) " (2/3)/S;

return

F.9 Fuel Burn: fuelburn.m

% Fuelburn

function [lbs,thrust]=fuelburn(b,S, Wfuel)
global SFC

delta=(243.6/2116.2); %50000 feet
thrust=1900xdelta;

hours=endurance (b,S, Wfuel) ;
Ibs=SFCxhours*thrust ;

return

F.10 Takeoff Distance: takeoff.m

% Takeoff Distance

function SG=takeoff(b,S, Wfuel)
% Rolling Resistance

mu=0.04;

% Gravity

17

© o N o

10

11

12

13

14

15

16

17

18

19

S

© w N o o«

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

g=32.2;

% Sea Level Density
rho_s1=2.37TE-3; % slug / ft 3
% Takeoff Lift Coefficient
CL_to=2.0;

% Thrust at SL
thrust=1900;
% Takeoff Velocity

Vi2=2«(Wfuel+weight (b,S, Wfuel))/rho_s1/CL_to/S;

KT=(thrust /(Wfuel+weight (b,S, Wfuel)))—mu;

KA=—rho_s1%S/2/(weight (b,S, Wfuel)+Wfuel) «xdrag(b,S, Wfuel) ;
% Takeoff Distance from Raymer p 565

SG=(2+g+KA) " —1 * log ((KTHKAxV{2) /(KT)) ;

return

F.11 Feasibility Map: mapout.m

% Feasibility Map
clear all;
global rho;
global SFC;
global penalty
for b=20:20:200
%b=100;
rho=0.3639E—-3; % 50000 ft
SFC=0.48;
imax=70;
jmax="70;

fmax=5500/imax ;
smax=800/jmax ;

penalty=10000000;

for

i=1:imax
Wiuel (1)
for j=1:

S(J)

[PP(j,i),hl,h2,h3 h4]=0bj([b,S(]),Wfuel(i)]);

constraints=((hl1==0) && (h2==0) && (h3==0) && (h4==0));

=ixfmax;
jmax
=j*smax;

if(constraints)

else

end

E(j,i)=endurance(b,S(j),Wfuel(i));

if (E(j,i)==0)
E(j,i)=NaN;
end

E(j,i)=NaN;

18

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

end

if (PP(j,1)>10)
PP(j ,i)=NaN;
end
end

end
%subplot (2,1,1)
surface (Wfuel ,S,E+b,E); hold on;
%subplot (2,1,2)
%surface (Wfuel ,S,PP); hold on;
[J,I]=find (E=max(max(E))) ;
fprintf(1,’)
WF _max=I *fmax
S_max=Jxsmax
b
E=endurance (b, S_max , WF_max)

19

