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ABSTRACT

A formula for solving elliptic partial differential equations using finite differences and

iteration was derived. A computer program was made to iteratively calculate the solutions

of Laplacian and Poisson elliptic partial differential equations. The results show that

the finite differences method does find an approximate solution but can be sensitive to

boundary types and step size. Implications of these results are discussed.
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INTRODUCTION

Physical processes commonly can be related to the change in the properties of the

substance undergoing the process. Those processes that depend on more than two variables

are called partial differential equations. Laplace and Poisson’s equations are examples of

elliptic partial differential equations and are used to model the steady state time-invariant

response of physical systems. Slicing the system into small segments of equal length yields a

set of finite difference equations which can theoretically be solved using any matrix solving

method. The potential for large matrices, which are mostly filled with zeros, makes the

iterative method of solving a matrix attractive. A common example of the elliptic partial

differential equation is the heated plate, which will be the physical model used even though

these equations can be used on many other problems.

The objective is to use an iterative technique to solve partial differential equations

of the Poisson and Laplacian form. A computer program will use the derived iterative

methods to calculate a steady state response to a physical model specified in a data file.

Overrelaxation will be used to decrease the number of computer calculations. Three cases

of the Laplace and Poisson equations will be used to verify the validity of the method and

computer program. A further three cases will be analyized to determine the solutions to

the class project problems given.

THEORY

Partial differential equations (PDEs) depend on the changing of two or more variables.

In particular, the solutions to elliptic PDEs are the steady state responses of the system’s

boundary conditions. Poisson’s Equation is

∂2T

∂x2
+

∂2T

∂y2
= f(x, y)
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The Laplace Equation is a special case of the Poisson equation where f(x, y) = 0.

∂2T

∂x2
+

∂2T

∂y2
= 0

Using a 3 point centered formula for the 2nd numerical derivative with respect to x and

to y yields the relationship,
∂2T

∂x2
=

TW + TE − 2TP

∆x2

∂2T

∂y2
=

TN + TS − 2TP

∆y2

When the x and y spacing are equal,∆x = ∆y = ∆, Poisson’s equation becomes,

∂2T

∂x2
+

∂2T

∂y2
=

TN + TS + TW + TE − 4TP

∆2

which can be further simplified to

TN + TS + TW + TE − 4TP

∆2
= f(x, y)

Solving for TP yields,

TP =
TN + TS + TW + TE −∆2 · f(x, y)

4

Thus TP can now be solved iterativly to approximate the solution of the partial differential

equation.

Overrelaxation is the scaling of an iterated solution more than the iteration specifies

in an attempt to converge the solution faster. By applying the principle of overrelaxation,

the number of iterations to converge on the correct solution can be reduced significantly.

Overrelaxation can be included by adding and subtracting TP on the right side of the

equation while also specifying the degree of overrelaxation ω. This yields,

TP = TP +
ω

4
· (TN + TS + TW + TE − 4TP −∆2 · f(x, y))
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Where ω is subject to the condition 1 ≤ ω < 2 For matrices over [10 × 10] and where p

and q are the number of x and y intervals respectivly, ω can be approximated by

ω ≈ 2− π ·
√

2
p2

+
2
q2

METHOD OF CALCULATION

A computer program written in FORTRAN 77 was developed to calculate the solution

to Poisson’s and the Laplacian equation by iteration. The program first initializes a matrix

T to store the temperature values at all the x and y values. A data file is used to input the

necessary boundaries, boundary conditions, spacing and internal heat generation values.

When the east temperature is given as -999 or smaller, the program assumes an adiabatic

east boundary. All temperature values are implicitly declared floating point single pre-

cision. All index values are implicitly declared as integers. Next, a series of DO loops

initialize the boundary values with the values obtained from the data file. Three nested

DO loops iteratively calculate the value of each point inside of the external edge points

using the method derived in the theory section. When the program uses an adiabatic

boundary on the east boundary, a fictional point just outside of the adiabatic boundary is

made to reflect the temperature seen at the point just inside the adiabatic boundary. The

matrix of temperatures is printed at specified intervals and the end iteration while inside

the outer DO loop. When an adiabatic boundary is specified, the fictional points are also

printed. The program then exits.

RESULTS AND DISCUSSION

Calculations have been performed as described above on three test cases and three

project problems. The three test cases consist of one trivial case, one internal heat gen-

eration case and one adiabatic boundary case. The project problems are those given in
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the MAE 3403 class and consist of one internal heat generation problem, a boundary

temperature case and an adiabatic boundary case.

For Case 1, a trivial solution case, a square plate was heated from an initial tempera-

ture of zero degrees to steady state with 100 degree boundaries at the edges. The solution

of 100 degrees throughout the plate was found as expected by the boundary conditions

(Appendix B. Case 1). The contour plot is given in Figure C1 (Appendix C).

For Case 2, a square plate was internally heated with boundary temperatures of zero

degrees. The internal heat generation should create a rounded rise in the plate temperature

and the data (Appendix B. Case 2) confirms this. A contour plot is given in Figure C2.

For Case 3. a square plate was heated at the north, south and west boundary while the

east boundary had a adiabatic surface. This case is solved as example 29.3 in Chapra(1998).

The data (Appendix B. Case 3) gives the fictional temperatures past the adiabatic surface

boundary; however, all other data conforms with Chapra’s solution. A contour plot is

given in Figure C3.

Problem 7.1 considers a plate with an internally generated heat source with bound-

ary temperatures of zero degrees. The temperatures and boundaries were as followed:

T(0,y)=0, T(x,0)=0, T(3,y)=0 and T(x,1)=0. The function to be solved is

∂2T

∂x2
+

∂2T

∂y2
= −21

The computer program returned final answers of 2.56 degrees at the center (x=1.5, y=.5)

of the plate (Appendix B. Problem 7.1). The values are similar to the test Case 2 in that

the temperature reaches a rounded peak maximum value at the center of the plate (Figure

P1). The peak is symmetric when divided along the center of the plate for both the x

and y axis. A physical type of solution such as a long-uninsulated bar carrying electricity

could be modeled with this type of equation and boundary conditions.
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Problem 7.2a is a square plate with boundary temperatures of different temperatures

as followed: North=100, South=300 and East=West=192. The data file is given (Appendix

B. Problem 7.2a). The function to be solved is

∂2T

∂x2
+

∂2T

∂y2
= 0

Two calculations were performed with different grid sizes. The middle temperature is the

same between the fine and coarse grid at 196 degrees. Extrapolating to the limit at the

quarter temperature (y=0.25, x=0.25) yields

Texact ≈ Tfine +
1
3
(Tfine − Tcoarse) =

4
3
· 194.94− 1

3
· 195.0 = 194.92

This problem’s contours (Figure P2) would be typical of a plate subjected to different

temperatures.

Problem 7.2b reduces the computation of 7.2a by considering the plate as having an

adiabatic surface at the symmetry line of 7.2a. This symmetry line is at x values of 0.5

after which the plate can be truncated. The contour plot (Figure P4.) gives the same

solution as the left side of Figure P2. The solution (Appendix B. Problem 7.2b) shows the

same data as in Problem 7.2a up to one value past the adiabatic line.

The iterative solution to Poisson and Laplace equations does work. Depending on the

accuracy, the method can provide a rough, poor solution or a solution that approaches the

precision of the computer. Results from the test cases did show a stable and repeatable

method. This method is adaptable to many types of problems and can easily be modified

for different conditions and boundary types. Iteration does have problems. Most serious is

that the method uses finite segments. This prevents the exact answers from occurring and

limits high quality answers to those calculations with many iterations. A second problem,

slow convergence, is inherited from the first problem due to the number of points required.
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This slow convergence can be offset to some degree using overrelaxation techniques, but

high quality answers with large systems still require many calculations. Using properties

of symmetry can help the computational load as shown in Problem 7.2b but only for

larger systems. Not calculating the extra half of the plate did allow for a slight shorter

computation; however, when the plate is modeled with a few number of points as in

the coarse grid, the overhead of calculating the adiabatic boundary almost equals the

calculation of the entire plate. A final problem is that the modeling method breaks at

corners due to the presence of two different temperatures with no separating distance and

maintaining the same step value. This can be seen in the corners of the contour plots in

many of the Appendix C figures.

CONCLUSION

Iteration when combined with finite difference derivative and properly used provides

good quality solutions to partial differential equations. The method is computationally

better than solving plate temperatures by elimination matrix methods for sparse matrices;

however, it still has faults that can create problems. Particularly, the method is dependent

upon finite differences which creates many computations and no exact answers. When

large computing power is available and the problem is sufficently formulated, the finite

difference equations combined with iteration is powerful and adaptable.
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APPENDIX A

Computer Program
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APPENDIX B

Input and Output



Elliptic Partial Differential Equations 22

APPENDIX C

Figures
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TEST CASES:

Figure C1. Contour plot of test case 1

Figure C2. Contour plot of test case 2
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Figure C3. Contour plot of test case 3
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PROJECT SOLUTIONS

Figure P1. Contour plot of 7.1

Figure P2. Contour plot of 7.2a coarse grid
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Figure P3. Contour plot of 7.2a fine grid

Figure P4. Contour plot of 7.2b coarse grid
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Figure P5. Contour plot of 7.2b fine grid


