
Project 4: Assembly Programming

on the PIC16F876

MAE 5483

Charles O’Neill

29 October 2004

Introduction

This project’s purpose is to become familiar with analog to digital conversion
on a PIC micro-controller. Four programs demonstrate: assembly timing, A/D
conversions, A/D conversion rates, and RC circuit time constants.

The micro-controller is a 28 pin DIP PIC16F876 clocked at 20 MHz man-
ufactured by Microchip. The PIC voltage input is +5 volts DC via a µA7805
dc/dc voltage regulator. The compiler is the CCS C compiler (v. 3.207) for
14 bit PIC chips. C compilation occurs on a x86 based PC. Data transfer be-
tween the PIC and the PC is through a 9 pin serial cable at 19200 baud. All
programming and experiments were performed by Charles O’Neill.

1 CCS Compiler Assembly

1.1 Type Declarations

This part investigates how variables are declared and stored in assembly as
compiled from the C source. The code is given in asm.c in the Code Listings
section (p.14). The first test is storing the value 13 to an integer.

.................... /* Type Declaration Experiment */

.................... int a = 13;
0231: MOVLW 0D
0232: MOVWF 2A

Line 0231 moves the literal 0x0D (13 decimal) to the W register. Line 0232
copies the W register to file 0x2A. The assembler operates in hexadecimal for
both addresses and literals.

Next, an integer pointer is defined to the integer a. Remembering that the
above declaration stores ‘A’ in 0x2A, the pointer address should also be 0x2A
stored in the memory address 0x2B.

1

.................... int *pa = &a;
0233: MOVLW 2A
0234: MOVWF 2B

Next, a signed integer is declared. The compiler recalls that 0x0D (13 decimal)
is already in the W register, so this declaration requires only a copy from the
W register to the address of b, which is 0x2C.

.................... signed int b = 13;
0233: MOVWF 2C

Next, a signed integer is defined as -20 decimal. The 16F876’s integer is 8
bits for 256 total representations. So, -20 decimal signed maps to 236 decimal
unsigned (0xEC).

.................... signed int c = -20;
0234: MOVLW EC
0235: MOVWF 2D

The signed integer has an 8bit range of −127–128. The next few instructions
test the compiler’s assumptions for variable overflows.

.................... signed int d2 = -128;
023B: MOVLW 80
023C: MOVWF 2F
.................... signed int d3 = 255;
023D: MOVLW FF
023E: MOVWF 30
.................... signed int d4 = 256;
023F: CLRF 31

An overflow of -128 compiles to 0x80, which maps to 128 decimal. 255 decimal
maps to 0xFF (255 unsigned decimal or -127 signed decimal). 256 decimal gives
a silent compiler failure which stores zero (0x00). No visible or formal compiler
errors occurred. Apparently, the compiler maps out-of-range signed integers to
the corresponding signed integer.

Characters are represented as integers starting at decimal 65 (0x41) for
uppercase and 97 (0x61) for lowercase. The character e is located at a+5
97 + 4 = 101 (0x65).

.................... char e = ’e’;
0238: MOVLW 65
0239: MOVWF 2F

An array of characters is similar. Again, the compiler recognizes that c is already
in the W register for f[4]=c.

.................... char f[4] = {’a’, ’b’,’c’,’c’};
0242: MOVLW 61

2

0243: MOVWF 33
0244: MOVLW 62
0245: MOVWF 34
0246: MOVLW 63
0247: MOVWF 35
0248: MOVWF 36

1.2 Math Operations

This section investigates the CCS compiler’s math operations assembly code.
Eight bit operations will be shown; however, 16 bit and floating point math
operations will be compared.

1.2.1 8 bit (1 Byte) Math Operations

The first operation is addition. The eight bit addition requires 2 operations:
moving a to the register, and adding and moving a to its memory location.

.................... /* Addition */

.................... a = a + 1;
00B1: MOVLW 01
00B2: ADDWF 37,F

Incrementing a requires 1 assembly operation: INCF. The operation savings of
incrementing obviously only occurs for an addition of 1.

.................... /* Increment++ */

.................... a++;
00B3: INCF 37,F

Subtraction is similar to addition. The order of operation for subwf is register-
file.

.................... /* Subtract */

.................... a = a - b;
00B4: MOVF 38,W
00B5: SUBWF 37,F

Multiplication is much more complicated and requires a specialized goto to
the multiplication routine at 0x063. This can be verified with the symbolic map:
0063 @MUL88. Division is similar to multiplication.

.................... /* Multiply */

.................... a = a * b;
00B6: MOVF 37,W
00B7: MOVWF 39
00B8: MOVF 38,W
00B9: MOVWF 3A
00BA: GOTO 063

3

00BB: MOVF 78,W
00BC: MOVWF 37
.................... /* Divide */
.................... a = a / b;
00BD: MOVF 37,W
00BE: MOVWF 39
00BF: MOVF 38,W
00C0: MOVWF 3A
00C1: GOTO 08A
00C2: MOVF 78,W
00C3: MOVWF 37

1.2.2 Multi Byte and Float Math Operations

Comparing the 8 bit math operations to 16 bit operations shows that the PIC
effectively uses two bytes to store a 16 bit integer. All mathematical operations
requires operations on both bytes. Thus, 16 bit arithmetic requires approxi-
mately twice the time as 8 bit arithmetic. For example, the 16 bit increment
has an increment for the lower byte (0x37) and possibly the upper byte if the
lower byte overflows.

.................... /* Increment++ */

.................... a++;
011D: INCF 37,F
011E: BTFSC 03.2
011F: INCF 38,F

Floating point math operations are significantly more complicated. A single
float addition operation requires 28 operations plus a call. Remembering a
previous project, floating point arithmetic requires approximately 2 order of
magnitude more time.

1.3 Logical Operations and Branching

1.3.1 Equality

The next instruction a==1 —an equality operator— results in code that stores 0
in the W register if a equals 0, or 1 if a does not equal 0. This is valid assembly
code that does nothing. Interestingly, while the C code does nothing, the result
could be useful for creating a stack based processing method.

.................... a==1; // compare only (1)
0259: DECFSZ 2A,W
025A: GOTO 25C
025B: GOTO 25D
025C: MOVLW 00

4

Next, a non-unity integer is tested for equality. The method for logical oper-
ations appears to be: subtract and test for zero. For a==13, the value of a is
moved to the W register; 13 (0x0D) is subtracted from the W register; if the
result in the status register bit 2 —zero bit in the status register— does not
equal 0 then set the W register to 0.

.................... a==13; // compare only (13)
025D: MOVF 2A,W
025E: SUBLW 0D
025F: BTFSS 03.2
0260: MOVLW 00

1.3.2 If else

An if-else statement is similar with the addition of bit-test-file-skip-set (BTFSS)
assembly statements and GOTO statements. First, a compare occurs (4D1
through 4D3) with a bit test (BTFSS) of the ‘zero’ status register (bit 2). If
BTFSS finds an inequality and doesn’t skip an instruction, a goto moves to the
next compare at 4D8. Otherwise, a literal is moved first to the w register and
then to the a memory location.

.................... if(a==14) { // If else
04D1: MOVF 2A,W
04D2: SUBLW 0E
04D3: BTFSS 03.2
04D4: GOTO 4D8
.................... a=2;
04D5: MOVLW 02
04D6: MOVWF 2A
.................... } else if(a==4){
04D7: GOTO 4DE
04D8: MOVF 2A,W
04D9: SUBLW 04
04DA: BTFSC 03.2
.................... a=a;
.................... } else {
04DB: GOTO 4DE
.................... a=3;
04DC: MOVLW 03
04DD: MOVWF 2A
.................... }
.................... }

1.3.3 Conditional Operator

The conditional operator — () ? : — is similar to the if statement but requires
significantly fewer operations, 8 vs 14, for 2 branch operations. The condi-

5

tional operator uses bit-test (BTFSS) and goto operations. The series of goto
statements deflect the fall-out to the memory write (MOVWF).

.................... a=(b==13)?2 : 3; // conditional operator (13)
0272: MOVF 2C,W
0273: SUBLW 0D
0274: BTFSS 03.2
0275: GOTO 278
0276: MOVLW 02
0277: GOTO 279
0278: MOVLW 03
0279: MOVWF 2A

1.3.4 GOTO

The infamous goto is not generally accepted as a good programming operator.
The C to assembly compilation is simple: the C label is hard coded to an
address. The CCS compiler did not catch the dead a++; code.

.................... /* Infamous GOTO statement */

.................... goto imhere; // Nasty goto
04E6: GOTO 4E8
.................... a++; // Should NOT increment a
04E7: INCF 2A,F
.................... imhere: --a; // labeled for goto reference
04E8: DECF 2A,F

1.3.5 Switch Operator

The switch operator consists of a series of XOR tests with GOTO statements.
The C switch statement requires about 3 assembly statements for each case.

.................... /* Switch */

.................... switch(a) {
027D: MOVF 2A,W
027E: XORLW 01
027F: BTFSC 03.2
0280: GOTO 285
0281: XORLW 03
0282: BTFSC 03.2
0283: GOTO 286
0284: GOTO 287
.................... case 1: a++;
0285: INCF 2A,F
.................... case 2: a--;
0286: DECF 2A,F
.................... }

6

1.4 Miscellaneous

This section investigates other miscellaneous operators.

1.4.1 Pointers

Pointers in C become simple memory addresses stored in other memory ad-
dresses. Again, the assembler uses hexadecimal.

.................... /* Pointer */

.................... pa=&a;
0287: MOVLW 2A
0288: MOVWF 2B
.................... *pa;
....................

1.4.2 Do-Nothing and Dead Code

First is a do-nothing operation1 in C. This statement legally compiles but prac-
tically does nothing; the resulting assembly code should reflect this. The in-
struction a; results in no assembly code.

.................... /* Do Nothing Code */

.................... a; // do nothing

Dead code often is compiled out.

.................... if(0){ // Dead Code

.................... a=12;

.................... b=12;

.................... c=13;

.................... }

.................... while(0); // Dead Code

....................

1.4.3 Including Assembly Code

Including inline assembly code is provided with the #asm keyword. Interestingly,
an assembly GOTO can refer to a C label!

.................... /* Assembly Code */

.................... #asm

.................... NOP
0289: NOP
.................... NOP
028A: NOP
.................... GOTO 0x0267

1do-nothing is not no-operation

7

028B: GOTO 267
.................... GOTO imhere
028C: GOTO 4E8
.................... #endasm

2 Printf() Timing

This program times the C printf() function. Intuition suggests that serial data
transfer occurs at significantly reduced rates when compared to internal pro-
cessing data rates. The objective is to use theory and experiments to determine
the PIC’s serial port transfer rate.

2.1 Theoretical Data Rate

Theory provides an estimate for serial port data rates. The heart of the printf
assembly code is moving the character to the serial port buffer at file 0x19.

049B: MOVWF 19

The rate that the buffer can transmit bits down the serial connection is the
limiting factor, not the processor’s MOVWF command. By definition, the serial
port must transfer each bit sequentially. From Nigel Gardner’s Introduction to
CCS PIC C, each transfered byte —assuming no parity— requires 10 bits: 1
start bit, 1 stop bit, and 8 data bits for a total of 10 total bits. Thus, the time
required to transfer 1 byte is:

∆tchar =
bits

Baud
=

10
Baud

For 19200 baud, the time required to transfer one byte is: ∆tchar = 10
19200 =

0.5ms

2.2 Experimental Data Rate

This section experimentally determines the actual serial data transfer rate. The
code is given in printf time.c in the Code Listings section (p.17). For 14 char-
acters including the linefeed and carriage return, the transfer required 8.3 ms.
This is 0.59 ms per byte.

\0Ahello, world\0D

∆t14 = 8.32ms For 100 characters, the time required is 52 ms. This is 0.52 ms.

printf("12345678901234567890123456789012345678901234567890");

Next, the printf() overhead is tested. A single empty printf compiles to no-
code. A series of 10 printf(" "); statements require 5.2 ms. The assembly
code is:

8

.................... printf(" ");
063E: MOVLW 20
063F: BTFSS 0C.4
0640: GOTO 63F
0641: MOVWF 19

A space ‘ ’ character is represented by 0x20 on line 063E. The BTFSS and
GOTO statements wait until the transmit buffer is empty —register 0x0C bit
4. Then, the character is moved to file 19, the transmit buffer.

The overhead appears minuscule compared to the serial transfer rate.
This experiment might be biased. The serial data is buffered, so the timer

probably stops before last bytes are transferred through the serial cable. Using
an oscilloscope, the actual data timing can be determined. Figure 1 gives a total
time of 52 ms per 10 printfs2.

Figure 1: Oscilloscope Timing

The printf() function is slow compared to the PIC’s internal processing rate.
For a 19200 baud serial link and a 20MHz clock, a typical one byte printf requires
approximately 26000 times longer than one opcode operation!

3 C vs ASM

This part compares C and assembly code fragments. The objective is to become
familiar with compiler assembly and hand written assembly and their relation-
ship to C code with respect to efficiency. The code is given in rewrite.c in the
Code Listings section (p.19).

2The character ‘U’ is used because the ASCII representation is 0x55 or 01010101 binary.

9

3.1 8bit stored to 16bit

This program adds two 8bit integers and stores the result in a 16bit integer. It
was assumed that the problem statement meant: in terms of 16 bit arithmetic,
add two 8bit integers. The other possibility is boring and will be ignored —the
upper 8 bits will always be zero!

The 16 bit integer is composed of two 8 bit memory addresses at 0x23 and
0x24. The 8 bit integers reside at 0x22 and 0x21. The C and assembly codes
are given below. For an unknown reason, a general purpose memory location
0x7A is cleared and added to the 16 bit integer’s upper byte.

.................... c= (int16)a + (int16)b;
007C: CLRF 28
007D: CLRF 7A
007E: MOVF 22,W
007F: ADDWF 21,W
0080: MOVWF 23
0081: MOVF 28,W
0082: MOVWF 24
0083: BTFSC 03.0
0084: INCF 24,F
0085: MOVF 7A,W
0086: ADDWF 24,F

The compiled C code requires 11 assembly operations. The output of this pro-
gram for inputs a=255 and b=123 is c=378.

Now, assembly code is directly written to perform the same operation. The
assembly code is given below.

#asm
clrf &d+1 ; clear upper byte
movf a,w ; put a in register
addwf b,w ; add b to register and put in w
btfsc 3,0 ; check the carry bit
incf &d+1 ; increment bit 9 of d if carry bit was set
movwf d ; move lower bits to d

#endasm

The hand written assembly is 6 operations. Again, the program correctly returns
378.

3.2 For loop

This more complicated program investigated the file-select-register for indirect
addressing. The file-select-register allows for variable addressing by creating a
pointer FSR to a memory location. The effective dereference operator is the
INDF register. The objective of this program was to write a code fragment in
C and duplicate the operation with hand-written assembly code. This program
freed the author from the bulkiness and waste of direct addressing!

10

3.2.1 C code and CCS compiler output

The C code is straight forward: a ‘for loop’ sets an array to a constant value.
This is effectively a one-line C operation. Values are stored to a changing
memory address. C code and the CCS compiler generated assembly are given
below. A total of about 116 operations occur for a MAX of 10.

.................... for(index=0; index<MAX; index++) array[index]=1;
*
0117: CLRF 21
0118: MOVF 21,W
0119: SUBLW 09
011A: BTFSS 03.0
011B: GOTO 123
011C: MOVLW 22
011D: ADDWF 21,W
011E: MOVWF 04
011F: MOVLW 01
0120: MOVWF 00
0121: INCF 21,F
0122: GOTO 118

3.2.2 Hand Generated ASM

The hand generated ‘for loop’ is given below. Indirect addressing information
was found in the 16F876 Datasheet (p.27). Operation is simple. First, the
number of iterations is determined from the defined MAX and set into index.
Next, the FSR requires a memory address, so a pointer to array was given with
movlw (literal move). The loop structure sets the given value for the memory
given in the FSR. Next, the FSR is updated. Finally, the loop stops if the
decremented index equals zero.

#asm
// Setup Maximum iterations
movlw MAX ; set the maximum array
movwf index ; and set to index

// Pointer to array
movlw array
movwf FSR ; file select register

// Value to set
movlw 2 ; value 2

// Looping
loop:

movwf INDF ; set value at Indirect register

11

incf FSR,f ; increment pointer address
decfsz index,f ; Stop loop if decremented index is zero

goto loop
#endasm

Overall, this assembly program has 10 operations with 4 being in a loop. Thus
a total of 45 operations occur for a MAX of 10. For this problem, compiled C
code is about 50% as efficient as handcoded assembly.

4 Assembly Function

This program creates assembly and C functions to bitwise flip a byte. For
example, 0x01 would become 0x80. The code is given in asm-function.c in the
Code Listings section (p.21). The objective is to become familiar with assembly
functions.

The heart of the assembly code is a looped bitwise test btfsc temp,7, setrrf
temp,f, and rotate rlf number,f. The assembly code has 18 lines.

The C code is a looped masked test. A mask and a mirror mask are created
for each iteration. The flipped bits are set with:

temp \ |= ((mask & number)==0)? ZEROS : mirror mask ;

The program output is given below. For the assembly code, there are 4
initial, 8 loops of 7 and 2 final instructions for a total of 62 instructions. At
0.2 us per instruction, the loop should require about 12.4 us. The ASM actual
loop requires 17.6 us. The compiled C code had 52 lines of assembly giving an
estimated execution time of 0.8 ms. The actual time was 1.0 ms.

Assembly Functions:
Assembly Code:
1 0 1 0 0 0 1 0
0 1 0 0 0 1 0 1
Time= .1744000 milliseconds
C code:
1 0 1 0 0 0 1 0
0 1 0 0 0 1 0 1
Time= 1.0464000 milliseconds

For this program, the assembly was about 6 times faster than compiled C.
One small change to the C program improve the efficiency by almost 75%.

Remembering that the masks are symmetrical allows for reducing by half the
main count loop! Now, the C program requires 0.75 ms, which is still more than
4 times slower than the assembly.

C code: v2
1 0 1 0 0 0 1 0
0 1 0 0 0 1 0 1
Time= .7536000 milliseconds

12

Conclusions

This project investigated assembly programming on the PIC 16F876. The pro-
grams experimented with the CCS C compiler and its assembly generation, with
the expensive printf() function, inline assembly, and assembly functions. The
trivial conclusion is that assembly is faster than C code —up to 10 times faster
seems reasonable. However, the largest disadvantage is that assembly quickly
lacks code leverage and efficiency due to human constraints. The point appears
to be: Use assembly when needed but no more.

13

Code Listings

asm.c

/∗
∗ ca l c t imer . c −−− Times var i ous opera t i ons
∗
∗ Char les O’ Ne i l l
∗ MAE 5483
∗ Pro j ec t 3 . 1
∗/

/∗−−−
∗ Defau l t PIC I n i t i l i z a t i o n
∗−−∗/
#include <16F876 . h>
#include <math . h>
#use de lay (c lock =20000000)
#f u s e s HS,NOWDT
#use rs232 (baud=19200 , p a r i t y=N, xmit=PIN C6 , rcv=PIN C7)

/∗−−−
∗ Globa l Var i ab l e s
∗−−∗/
char type [1 0] ;

/∗−−−
∗ Function Prototypes
∗−−∗/
void pr in tout (in t16 time , int ca l c s , char ∗ type) ;
void i n t e g e r 8 (void) ;
void i n t e g e r 16 (void) ;
void f l o a t s (void) ;

/∗−−−
∗ Main Program f o r c a l c u l a t i o n t imer
∗−−∗/
void main () {

/∗ Type Dec l ara t i on Experiment ∗/
int a = 13 ;
int ∗pa = &a ;
signed int b = 13 ;
signed int c = −20;
signed int d = 129;
signed int d2 = −128;
signed int d3 = 255;
signed int d4 = 256;
char e = ’ e ’ ;

14

char f [4] = { ’ a ’ , ’ b ’ , ’ c ’ , ’ c ’ } ;

/∗ Inform the user what i s happening . ∗/
p r i n t f (”\n\ r \n\ r \n\ rAssembly Experiment : ”) ;

/∗ 8 b i t I n t e g e r ∗/
i n t e g e r 8 () ;

/∗ 16 b i t I n t e g e r ∗/
i n t e g e r 16 () ;

/∗ Floa t ing Point ∗/
f l o a t s () ;

/∗ Log i ca l Operations ∗/
a==1; // compare only (1)
a==13; // compare only (13)
i f (a==14) { // I f e l s e

a=2;
} else i f (a==4){

a=a ;
} else {

a=3;
}
a=(b==13) ? 2 : 3 ; // cond i t i ona l opera tor (13)

/∗ Infamous GOTO statement ∗/
goto imhere ; // Nasty goto
a++; // Should NOT increment a
imhere : −−a ; // l a b e l e d f o r goto r e f e r ence

/∗ Switch ∗/
switch (a) {

case 1 : a++;
case 2 : a−−;

}

/∗ Pointer ∗/
pa=&a ;
∗pa ;

/∗ Do Nothing Code ∗/
a ; // do nothing
i f (0) { // Dead Code

a=12;
b=12;
c=13;

}
while (0) ; // Dead Code

15

/∗ Assembly Code ∗/
#asm
NOP
NOP
GOTO 0 x0267
GOTO imhere
#endasm

}

/∗−−−
∗ I n t e g e r 8 b i t
∗−−−∗/
void i n t e g e r 8 (void) {

int a = 1;
int b = 1;

/∗ Print Ca l cu l a t i on ’ s Data Type ∗/
p r i n t f (”\n\ r I n t e g e r 8 b i t : ”) ;
/∗ Addi t ion ∗/
a = a + 1;
/∗ Increment++ ∗/
a++;
/∗ Sub t rac t ∗/
a = a − 1;
/∗ Mul t i p l y ∗/
a = a ∗ b ;
/∗ Divide ∗/
a = a / b ;

}

/∗−−−
∗ I n t e g e r 16 b i t
∗−−−∗/
void i n t e g e r 16 (void) {

i n t16 a = 1;
in t16 b = 1;

/∗ Print Ca l cu l a t i on ’ s Data Type ∗/
p r i n t f (”\n\ r I n t e g e r 16 b i t : ”) ;
/∗ Addi t ion ∗/
a = a + 1;
/∗ Increment++ ∗/
a++;
/∗ Sub t rac t ∗/
a = a − 1;
/∗ Mul t i p l y ∗/
a = a ∗ b ;
/∗ Divide ∗/
a = a / b ;

16

}

/∗−−−
∗ Floa t ing Point
∗−−−∗/
void f l o a t s (void) {

f loat a = 1;
f loat b = 1;
/∗ Print Ca l cu l a t i on ’ s Data Type ∗/
p r i n t f (”\n\ rF loat ing Point : ”) ;

/∗ Addi t ion ∗/
a = a + b ;
/∗ Sub t rac t ∗/
a = a − b ;
/∗ Mul t i p l y ∗/
a = a ∗ b ;
/∗ Divide ∗/
a = a / b ;
/∗ exp () ∗/
a = exp (b) ;
/∗ l o g () ∗/
a = log (b) ;
/∗ s q r t () ∗/
a = sq r t (b) ;
/∗ cos () ∗/
a = cos (b) ;

}

printf time.c

/∗
∗ p r i n t f t im e . c −−− Time the p r i n t f f unc t i on
∗
∗ Char les O’ Ne i l l
∗ MAE 5483
∗ Pro j ec t 4 . 2
∗/

/∗−−−
∗ Defau l t PIC I n i t i l i z a t i o n
∗−−∗/
#include <16F876 . h>
#use de lay (c lock =20000000)
#f u s e s HS,NOWDT
#use rs232 (baud=19200 , p a r i t y=N, xmit=PIN C6 , rcv=PIN C7)

/∗−−−
∗ Globa l Var i ab l e s

17

∗−−∗/
#define TIME SCALE 0 . 2 // 4/2E6 microseconds per t i c k

/∗−−−
∗ Main Program f o r c a l c u l a t i o n t imer
∗−−∗/
void main () {

/∗ Type Dec l ara t i ons ∗/
i n t16 time ;
int index =0;

/∗ Inform the user what i s happening . ∗/
p r i n t f (”\n\ r \n\ r \n\ r P r i n t f () Timer : ”) ;

/∗ Setup Timer ∗/
s e tup t imer 1 (T1 INTERNAL | T1 DIV BY 8) ;

/∗ Pr i n t f Function Ca l l ∗/
s e t t ime r 1 (0) ;
p r i n t f (”\ r \nhel lo , world \ r \n”) ;
time=get t imer1 () ;
p r i n t f (”\ r \n Time= %9.7 f m i l l i s e c o n d s ” , ((f loat) time) ∗ 0 . 2 / 1 . 0 E3 ∗ 8 . 0) ;

/∗ Mul t i p l e Pr i n t f Function Ca l l s ∗/
p r i n t f (”\ r \n\ r \n”) ;
s e t t ime r 1 (0) ;
p r i n t f (” 12345678901234567890123456789012345678901234567890”) ;
p r i n t f (” 12345678901234567890123456789012345678901234567890”) ;
time=get t imer1 () ;
p r i n t f (”\ r \n Time= %9.7 f m i l l i s e c o n d s ” , ((f loat) time) ∗ 0 . 2 / 1 . 0 E3 ∗ 8 . 0) ;

/∗ Setup Timer ∗/
s e tup t imer 1 (T1 INTERNAL | T1 DIV BY 1) ;

/∗ Pr i n t f Function Ca l l ∗/
p r i n t f (”\ r \n\ r \n”) ;
s e t t ime r 1 (0) ;
p r i n t f (” ”) ;
p r i n t f (” ”) ;
p r i n t f (” ”) ;
p r i n t f (” ”) ;
p r i n t f (” ”) ;
p r i n t f (” ”) ;
p r i n t f (” ”) ;
p r i n t f (” ”) ;
p r i n t f (” ”) ;
p r i n t f (” ”) ;
time=get t imer1 () ;
p r i n t f (”\ r \n Time= %9.7 f m i l l i s e c o n d s ” , ((f loat) time−2) ∗ 0 . 2 / 1 . 0 E3) ;

18

while (1) {
delay ms (10) ;
p r i n t f (”U”) ;
p r i n t f (”U”) ;
p r i n t f (”U”) ;
p r i n t f (”U”) ;
p r i n t f (”U”) ;
p r i n t f (”U”) ;
p r i n t f (”U”) ;
p r i n t f (”U”) ;
p r i n t f (”U”) ;
p r i n t f (”U”) ;

}

}

rewrite.c

/∗
∗ r ewr i t e . c −−− Assembly wi th the CCS Compiler
∗
∗ Char les O’ Ne i l l
∗ MAE 5483
∗ Pro j ec t 4 . 3
∗/

/∗−−−
∗ Defau l t PIC I n i t i l i z a t i o n
∗−−∗/
#include <16F876 . h>
#use de lay (c lock =20000000)
#f u s e s HS,NOWDT
#use rs232 (baud=19200 , p a r i t y=N, xmit=PIN C6 , rcv=PIN C7)

/∗−−−
∗ Globa l d e f i n e s and f unc t i on s
∗−−∗/
#define BYTE LENGTH BITS 8
void f o r l o op (void) ;
void adding (void) ;

/∗−−−
∗ Main Program f o r c a l c u l a t i o n t imer
∗−−∗/
void main () {

adding () ;
f o r l o op () ;

}

19

/∗−−−
∗ Adding
∗−−∗/
void adding (void) {

/∗ Var iab l e s ∗/
int a=255;
int b=123;
in t16 c ;
in t16 d ;

/∗ Adding two 8 b i t i n t e g e r s i n t o a 16 b i t i n t e g e r ∗/
c= (in t16) a + (in t16)b ;
p r i n t f (” a+b=%lu ” , c) ;

#asm
c l r f &d+1 ; c l e a r upper byte
movf a ,w ; put a in register
addwf b ,w ; add b to register and put in w
b t f s c 3 , 0 ; check the car ry b i t
i n c f &d+1 ; increment b i t 9 o f d i f car ry b i t was s e t
movwf d ; move lower b i t s to d

#endasm
p r i n t f (” a+b=%lu ” , d) ;

}

/∗−−−
∗ For loop
∗−−∗/
#define MAX 10
#define FSR 0 x04
#define INDF 0 x00
void f o r l o op (void) {

int index ;
int array [MAX] ;

/∗ C squares ‘ f o r loop ’ ∗/
for (index =0; index<MAX; index++) array [index]=1;

/∗ Generic wr i t e ou t s tatement ∗/
p r i n t f (”\n\ r ”) ;
for (index =0; index<MAX; index++){

p r i n t f (”%d ” , array [index]) ;
}

20

/∗ ASM squares ‘ f o r loop ’ ∗/

#asm
// Setup Maximum i t e r a t i o n s
movlw MAX ; s e t the maximum array
movwf index ; and s e t to index

// Pointer to array
movlw array
movwf FSR ; f i l e s e l e c t register

// Value to s e t
movlw 2 ; value 2

// Looping
loop :

movwf INDF ; s e t value at I n d i r e c t register
i n c f FSR, f ; increment po in t e r address
d e c f s z index , f ; Stop loop i f decremented index i s ze ro

goto loop
#endasm

/∗ Generic wr i t e ou t s tatement ∗/
p r i n t f (”\n\ r ”) ;
for (index =0; index<MAX; index++){

p r i n t f (”%d ” , array [index]) ;
}

}

asm-function.c

/∗
∗ asm . c −−− Assembly wi th the CCS Compiler
∗
∗ Char les O’ Ne i l l
∗ MAE 5483
∗ Pro j ec t 4 . 1
∗/

/∗−−−
∗ Defau l t PIC I n i t i l i z a t i o n
∗−−∗/
#include <16F876 . h>
#use de lay (c lock =20000000)
#f u s e s HS,NOWDT

21

#use rs232 (baud=19200 , p a r i t y=N, xmit=PIN C6 , rcv=PIN C7)

/∗−−−
∗ Globa l Var i ab l e s
∗−−∗/
#define TIME SCALE 5 // 2E6/4 t i c k s per microsecond

/∗−−−
∗ Function Prototypes
∗−−∗/
void pr in tout (in t16 time , int ca l c s , char ∗ type) ;

/∗−−−
∗ Assembly Function
∗−−∗/
int testasm (int number){

int count=0;

#asm
loop :

i n c f count , f ;
d e c f s z number , f ;

goto loop ; loop

movf count ,w ; move count in to w register
movwf r e t u r n ; return w

#endasm

}

int testasmC (int number){
int count=0;

while(−−number) {
count++;

}

}

/∗−−−
∗ Main Program f o r c a l c u l a t i o n t imer
∗−−∗/
void main () {

int a ;

/∗ Inform the user what i s happening . ∗/

22

p r i n t f (”\n\ r \n\ r \n\ rAssembly Functions : ”) ;

/∗ Setup Timer ∗/
s e tup t imer 1 (T1 INTERNAL | T1 DIV BY 1) ;

a=testasm (52) ;
p r i n t f (”\n\ r %d ” , a) ;
a=testasmC (52) ;
p r i n t f (”\n\ r %d ” , a) ;

}

23

