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Abstract
A 3d transient viscous flow solver based on the ge3df code was used to predict the flow past an NACA
0012 airfoil in air. The modified ge3df code uses primitive pressure and velocity variables and the
appropriate finite difference continuity and momentum expressions. The results show that an unrefined
finite difference grid correctly determines the overall flow patterns. However, the flow solution near the
airfoil is distorted and corrupted due to the discrete steps in geometry. Grid refinement is needed.

1 Introduction

The objective is to solve a 3D Cartesian transient
viscous flows. The governing equations for conti-
nuity and momentum are reviewed[1]. Next, the
modified ge3df FORTRAN program is discussed.
Then, the geometry and fluid properties for the air-
foil flow problem are shown. Results are given and
discussed. Finally, conclusions are made.

2 Governing Equations

The fluid flow is solved for a transient, constant-
density 3D Cartesian coordinate system based on
velocities and pressures. Finally, the flow relation-
ships are transformed to discrete representations
for input into a computer routine.

2.1 Continuity

Continuity for a 3D Cartesian coordinate system is
given as,

du

dx
+

dv

dy
+

dw

dz
= 0

Continuity is enforced by adjusting the local pres-
sure. The cell velocities are adjusted by a pressure
correction which is applied at the cell faces. The
velocity correction is:

ui,j,k = ui,j,k +∆t∆p/∆x

ui−1,j,k = ui−1,j,k −∆t∆p/∆x

vi,j,k = vi,j,k +∆t∆p/∆y

vi,j−1,k = vi,j−1,k −∆t∆p/∆y

wi,j,k = wi,j,k +∆t∆p/∆z

wi,j,k−1 = wi,j,k−1 −∆t∆p/∆z

where the error in continuity is given the value D.
Thus, the pressure change required to enforce con-
tinutity is

∆p = −D/(2∆t(1/∆x2 + 1/∆y2 + 1/∆z2))

2.2 Momentum

Momentum is enforced by the conservative form of
the Navier Stokes equation. The continuous forms
of the Navier Stokes equation are:

du

dt
+

du2

dx
+

d(uv)
dy

+
d(uw)

dz
= −dP

dx
+ ν∇2u

dv

dt
+

d(uv)
dx

+
dv2

dy
+

d(vw)
dz

= −dP

dy
+ ν∇2v

dw

dt
+

d(uw)
dx

+
d(wv)

dy
+

dw2

dz
= −dP

dz
+ ν∇2w
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3 Computer Code

The ge3df FORTRAN computer code was modi-
fied to solve the 3D Cartesian transient governing
equations. The general program steps are given be-
low.

1. Problem Initilization: Geometry and vari-
able initialization occurs. General iteration
and problem constants are read and displayed.
Initial flow values are computed. Coordinates
for the airfoil boundaries are calculated and
tagged.

2. Initial Boundary Conditions: The initial
boundary conditions are created for the airfoil
and the outer solution domain.

3. Time Step Loop: The program enters the
time step loop.

4. Momentum: Velocities and viscous terms are
computed to enforce momentum conservation.
The velocity values are updated to the next
time step.

5. Boundary Conditions The overall boundary
conditions for both the computational domain
and the airfoil are determined. Boundary con-
ditions are enforced on velocity.

6. Continuity Iteration: Continuity is enforced
by iterating pressure and velocity terms. A ∆p
is calculated from the velocity divergence. The
local velocites are updated from this ∆p.

7. Enroute Output: The iteration numbers and
residuals are calculated and printed out.

8. Repeat Time March: The time march is re-
peated.

9. Output Results: Final pressure and velocity
values are output.

4 Problem Geometry

The problem geometry consists of a 2D NACA 0012
airfoil. The fluid is air at 20 degrees Celcius. Air-
foil coordinates are calculated from the four digit
NACA airfoil expression given in Abbott and von
Doenhoff[2]. The airfoil extends across the entire

flow field in the z direction. A typical 150 by 100
geometrical mesh is shown in Figure 1. This figure
shows a two dimensional slice; however, the entire
flow domain is three-dimensional.
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Figure 1: Solution Grid

5 Results and Discussion

The computer program was modified and run as
previously described. All computations were per-
formed on a NACA 0012 airfoil shown above. The
computations were restricted to an angle of attack
of zero degrees.
The flow solver was run until the residuals leveled

off. Figure 2 shows the residuals versus the num-
ber of iterations. The residuals spike downward at
regular intervals, however the power of maximum
residual envelope decreases linearly.
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Figure 2: Continuity Residual vs. Iteration

The velocity distribution for the NACA 0012 is
given in Figure 3. The overall distribution appears
correct. There is the expected stagnation point
forming off the leading edge. The flow is accelerat-
ing as it moves past the high curvature parts of the
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Figure 3: Velocity Distribution

airfoil. Finally, a wake is developed aft of the air-
foil. However, the wake appears too large. Perhaps
the flow is separating as it moves past the discrete
steps in the geometry. Increasing the grid resolution
required vastly more computational power. Worse
still, the same boundary normal problem still exists
with a fine grid.
The pressure distribution is given in Figure 4.

Once again, the flow solver seems to find the gen-
eral trend, however the near field distribution of
pressure is distorted. The chordwise pressure field
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Figure 4: Pressure Distribution

on the airfoil surface is shown in Figure 5. The gen-
eral trend in pressure distribution is correct but the
magnitudes and shapes are incorrect. The leading
edge pressure distribution is badly corrupted by the
coarse geometrical mesh. The solver fails to find the
maximum surface pressure due to “flow separation”
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Figure 5: Surface Pressure Distribution

effects of the mesh. The discrete steps around the
3/4 chord are visible in the surface pressure distri-
bution.
Computations were tried with a modified mesh

geometry. Increasing the grid resolution helped the
flow solution; however, local separations were still
present. For some solutions, the separation was so
severe that the airfoil started shedding alternating
vorticies! It appears that the largest problem with
the rectangular finite difference method is modeling
the correct boundary conditions. This particular
finite difference program is unable to incorporate
boundary normal vectors other than north, south,
east, west.

6 Conclusions

A modified version of thege3df flow solver was used
to predict the transient 3D viscous solutions around
an airfoil. The flow solution work well away for
any discrete geometric disturbances. Around the
airfoil boundary and especially around the lead-
ing edge, the finite difference grid can not handle
large flow gradients. Additionally, the coarse lead-
ing edge combined with the discrete rearward steps
seems to separate the flow. In short, an effective and
efficient CFD routine for airfoil prediction needs a
refined grid.
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