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1 Introduction

This project investigates aerodynamic system identification. An airfoil produces
time varying loads based on the current and past boundary conditions; this
project seeks to identify the lift loads resulting from pitch motion.

The first part discusses some unsteady aerodynamic theory. The second part
discusses the identification process. The final part discusses conclusions and
observations. Aerodynamic nomenclature is given after the reference section.

2 Unsteady Airfoil Theory

A classic unsteady aerodynamic theory is the incompressible, inviscid, flat plate,
harmonic motion Theodorsen Problem. This project uses a reduced form of the
Theodorsen result based on simplified geometry1 and motion.2 A survey of the
method is found in Hodges and Pierce. The Theodorsen relationship between
harmonic lift L and harmonic translational h and angular motions α is:

L = πρb2
(
ḧ+ Uα̇ − baα̈

)
+ 2πbρU

(
ḣ+ Uα+ bα̇

(
1
2
− a

))

where C(k) is a complex valued function of Hankel functions

C(k) =
H

(2)
1 (k)

H
(2)
1 (k) + iH

(2)
0 (k)

The Theodorsen function C(k) is plotted in Figure 1 for reduced frequencies
from 0 up to 10. The important concept to discover is that low frequencies
approach the steady state lift, C(0) ≈ 1. For high frequencies, C(k) approaches
0.5.

1Pitch axis is about the midchord
2Motion is only angular pitch motion.
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Figure 1: Theodorsen Function C(k)

For this project, simplified geometry and only the α degree of freedom reduce
Theodorsen to a transfer function G. Lift is non-dimensionalized by the steady
state lift qSCLα . The transfer function G is:

G(ω) = C(k) + iω
c

4U
(1 + C(k))

The Bode plot for G for the flight conditions used in the following system
identification is given in Figure 2. The theo.m Matlab function generated the
data. Three distinct areas are visible. First, a steady state lift occurs below
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Figure 2: Theodorsen Lift

about about 10 Hertz. Between 10 and 500 Hz, lift magnitude decreases. Finally,
above 500 Hz, the non-circulatory (ie. impulsive loading with C(k)=0.5) lift
dominates. This section has an increase of approximately 40 dB per decade.
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3 Aerodynamics

3.1 Fluid

A non-inertial, inviscid, finite element Computational Fluid Dynamics (CFD)
program solves for the flow properties. The airfoil geometry is an NACA 0010
with a Mach 0.50 steady state flow solution shown in Figure 3.

Figure 3: NACA 0010 Steady State Flow Solution

The CFD solver requires time-accurate displacement and velocity boundary
conditions to maintain overall time-accuracy in the flow solution. Additionally,
the CFD solver requires a relatively small solution timescale (0.2 ms) compared
with the flow unsteadiness timescale.

3.2 Structure

Motion input is specified through a single time varying pitch boundary condition
about the mid-chord. The training signal is input from force to displacement
through a 2nd order mechanical system. Thus, all input signals are guaranteed
two integrations for a total of -40 dB per decade. A negative side effect of this
motion input is that the displacement has an increasing variance in time.

For this project, the input u(t) will be the angular displacement α; the
output y(t) will be the lift force L. CFD data output is through the xn.dat
data file shown in Figure 4. The input training signal was generated with
generatefrc.m.

4 System Model

This projects investigates two signals y(t) and u(t) generated with an CFD
solver. The objective is to analyze and develop a linear model with system
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Figure 4: CFD data output xn.dat

identification techniques.
The system model will be the Box-Jenkins form:

y(t) =
B(q)
F (q)

u(t) +
C(q)
D(q)

e(t)

with the following one step ahead predictor:

ŷ(t) =
D(q)B(q)
C(q)F (q)

u(t) +
C(q)− D(q)

C(q)
y(t)

5 Preliminary Identification

The objective of this section is to estimate time scales and model orders.

5.1 Time Scales

The Theodorsen theory allows for an initial time scale estimate. As discussed
above, resampling the CFD data is likely to be needed. Figure 2 shows that
above approximately 1000 Hz is dominated by a zero type behavior, so resam-
pling to below 10000 Hz appears reasonable. In practice, the actual resampling
rate (1:10) was determined through experimentation and model order tests. The
sampling occurs in the orderest.mMatlab script with the downsample function.

5.2 Non-Linearity Test

A bispectrum estimate —based purely on the dimensional fft, not a normalized
bispectrum— was generated to test for non-linearities in the output y(t). The
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objective was to determine the presence of any non-linearities, not to fully char-
acterize them. The bispectrum of y(t) is given in Figure 5. The bispectrum
is non-zero and is not constant; however, the frequency distribution appears
concentrated in the low frequencies (The bispectrum approaches zero asymp-
totically). Thus, the aerodynamics appear slightly non-linear.
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Figure 5: Bispectrum of y(t)

5.3 GPAC Order Estimation

Generalized partial autocorrelation (GPAC) techniques were used to estimate
preliminary model orders. The G and H GPAC plots are given in Figure 6. The
G-GPAC gives mixed results. A promising model order of nb=1, nf=1 (1,1)
appears strong, but intuition suggests that the (1,1) model order only captures
the quasi steady-state response. A second model order partially appears at
(7,7) when excepting the rows after 10. Previous experiments with Box-Jenkins
generated data often gives similar partial columns.

The H-GPAC gives two strong candidates: (0,1) and (1,2). The v(t) noise
term’s characteristics are unknown for this aerodynamic identification, but v(t)
will need to account for the sampling rate truncation, CFD solution error, non-
linear unsteadiness, etc. Intuition suggests that H(q) will need more than a
(1,2) noise model.

6 Parameter Estimation and Diagnostic Testing

Parameter estimation is performed with a Levenberg Marquardt algorithm given
in lmpar.m using the estimate.mMatlab script. Diagnostic testing is performed
with the estimate.m, gpac.m, and speccompare.m scripts.

5



5 10 15

0

2

4

6

8

10

12

14

G−GPAC

k

i−
1

5 10 15

0

2

4

6

8

10

12

14

H−GPAC

k

i−
1

Figure 6: GPAC Order Estimate

6.1 Model 1: Quasi Steady State G(q) Model

The first parameter estimation is for the (1,1) model with the (1,2) noise model,
which should only model the quasi steady state aerodynamics. The estimation
gives low prediction errors (y − ŷ ≈ 10−6), but the transfer function spectrum
is incorrect as shown in Figure 7. Despite the good training data fit, even the
low frequency response is incorrect. Evidently, prediction error is a extremely
poor model quality indicator! The (1,1) model is rejected.
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Figure 7: (1,1) Spectrum

6.2 Model 2: (7,7) Model

The next promising G(q) model starts with the nb=7, nf=7 (7,7) model with
the (1,2) noise model. An initial parameter estimation gives excellent data fit.
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However, the Q statistic for K=20 is 220, which is rather large. Significantly
increasing the noise model order to (12,12) reduced Q to 14 with K=40, which
is within the χ2 tail limit.

Next, the G(q) and H(q) eigenvalues are determined for possible pole-zero
cancellations. Iteration of parameter estimates and coincident eigenvalues sug-
gests a model order of (4,4,7,7). The final eigenvalue plot is shown in Figure 8.
Unfortunately, reducing the H(q) model order pushes Q=170 well outside the χ2

tail limits. From this analysis, the plant model appears too low, which results
in an overly complex noise model.
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Figure 8: Model 2: (4,4,7,7) Eigenvalues

Model 2 will be rejected. For later comparison, the transfer functions G(q)
and H(q) as modified with confidence intervals are shown below.

G(q) =
0.0034− 0.0094q−1 + 0.0091q−2 − 0.0036q−3 + 0.00046q−4

1− 2.5q−1 + 2.1q−2 − 0.52q−3 − 0.063q−4

H(q) =
1− 1.2q−1 + 1.1q−2 − 0.47q−4 + 0.77q−5 − 0.28q−6 + 0.31q−7

1− 2.3q−12.9q−2 − 1.8q−3 + 0.099q−4 + 0.93q−5 − 0.77q−6 + 0.28q−7

The bode plot is shown in Figure 9. Notice that the low frequencies are properly
modeled, but that the higher frequency spectrum is too smooth. The high fre-
quency spectrum differs from the Theodorsen theory; however the low frequency
response is remarkably similar to theory!

6.3 Model 3: Higher Order G(q) Model

The previous results suggest using a higher order G(q) model to reduce the dy-
namics captured in the H(q) noise term. The order estimation section provided
no general guidelines on this high of a model order. After some experimenta-
tion, a (20,20,5,5) model gave good results with a nice spectrum fit at the higher
frequencies. This high order seems to indicate resampling is needed.

6.4 Model 4: Resampled

The sampling rate was increased to 1:20. This sampling rate is the maximum
allowable to keep the interesting high frequency characteristics.
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Figure 9: Model 2: Spectrum

Preliminary model order estimation with the GPAC seems to indicate pos-
sible models in the nb=nf=10 to 17 area (Fig 10) with H(q) orders of (1,1). Of
course, these high orders are troublesome to find exact model orders. The high
model orders seem to indicate inherent non-linear behavior.
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Figure 10: Model 4: GPAC

After some experimentation, a (10,10,4,4) model was selected. The Q and S
statistics are still too large for K=30, but increasing the model order of either
H(q) or G(q) creates pole-zero cancellations. The eigenvalues are shown in
Figure 11. Notice that the aerodynamics seem to almost be a distributed system
with an infinite number of eigenvalues spread around the unit circle. The G and
H transfer functions are now quite long —21 terms for G!

The residual GPAC is shown in Figure 12. No improvements appeared feasi-
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Figure 11: Model 4: Eigenvalues

ble based on this GPAC. Unfortunately, the input signal u(t) is filtered through
a 2nd order system, so the equivalent white noise α(t) was created based on
the structural input forcing function. Non-white inputs are troublesome for the
diagnostic testing.
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Figure 12: Model 4: GPAC

The final spectrum is shown in Figure 13. This model fits the data’s spectrum
even up into the higher frequencies.

7 Chosen Model

The final model #4 was chosen in spite of the model’s complexity. The final
transfer function has orders of: nb=10, nf=10, nc=4, and nd=4. The relatively
large model order is needed to fit to the higher frequencies.

A final test involves validating the model against new system data. The
CFD solver generated forces based on a chirp input signal. The CFD output
forces (lines) are plotted against the Box-Jenkins model (dots) in Figure 14.
The model appears to give a good response for significantly different input data
(smooth chirp vs. white noise). Thus, the good prediction test is satisfied.
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Figure 13: Model 4: Spectrum

8 Conclusions

This project investigated a Box-Jenkins model for aerodynamic system iden-
tification. The identification involved lift force estimation based on rotational
angle input motions. An incompressible, inviscid, harmonic Theodorsen theory
was used to develop an conceptual aerodynamic transfer function.

A Box-Jenkins model successfully modeled the low and moderate airfoil re-
duced frequencies, but was troublesome at higher frequencies. Interestingly, the
Theodorsen theory qualitatively matches the CFD results except above approx-
imately a reduced frequency of unity. The moderate frequency lift deficiency
predicted by Theodorsen was found in the CFD solution and the Box-Jenkins
model. Interestingly, as the high frequencies were resolved, the system appears
more distributed. The final Box-Jenkins model accurately predicted the forces
resulting from a validation input signal.

8.1 Difficulties

1. Differing Time Scales were caused by the difference between the CFD
sampling rate and the Box-Jenkins sampling rate. This project’s solution
was to blindly sample the CFD output by truncating data points. A more
sophisticated method would reduce the noise generated by truncation.

2. A non-white input resulted from a CFD requirement of consistent bound-
ary conditions. Thus a white noise was input into a mass integrated (2nd
order response) system. Two integrations created significant, but slow,
variance in the actual displacement signal. This caused skewed inputs
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and outputs.

A better method might be to train with a restoring spring force and then
remove the spring’s contribution manually after the system identification.

3. The dominant aerodynamics appear linear, however non-linear properties
were found with the bispectrum. In practice, the system model was re-
quiring a significant number of eigenvalues.

4. Data set sizes were restricted by the CFD solver’s speed. The high frequen-
cies are overly noisy because of the small number of data points remaining
after resampling.
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Nomenclature

L Lift
U Fluid Velocity
ρ Fluid Density
S Surface Area
c Chord
b Half Chord
a Pitch Axis Offset
h Heaving Displacement
α Pitch Angle (Angle of Attack)
CLα Coefficient of Lift per radian
k Reduced Frequency, ωc

2U
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Code Listings

theo.m

%
%
%
clear a l l ;

c=1;
U=500;
rho =0.002;
CLa=2∗pi ;
q=0.5∗ rho∗Uˆ2;
S= 0.02 ;

omega=logspace ( −0 , 4 , 100)

c k=be s s e l h (1 ,2 , omega∗c /2/U) . / ( b e s s e l h (1 ,2 , omega∗ c/2/U)+ i ∗ be s s e l h (0 ,2 , omega∗ c /2/
U) )

%p l o t ( r e a l ( c k ) , imag ( c k ) )

%G=q∗CLa∗c∗ c k + i ∗ q∗CLa∗( c ˆ2/4∗U)∗(1+ c k ) .∗ omega ;
G=c k + i ∗ ( c /4/U) ∗(1+c k ) .∗ omega ;
G=G;
Gtf=20∗ log (abs (G) )
semilogx ( omega , Gtf )
xlabel ( ’ Frequency ’ ) ;
ylabel ( ’ Transfer Function Magnitude , dB ’ ) ;

generatefrc.m

%
%

N=20000;
var u =1000;
u=randn(N, 1 ) ∗var u ˆ 0 . 5 ;
u= [0 ; u ] ;

o=zeros (N+1 ,1) ;

t =0:N;
x=[t ’ o u ] ; save 2 dstab . f r c x − a s c i i
plot ( t , u)
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orderest.m

%
%
%
%

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% I n i t i a l i z e
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
SAMPLE RATE=20;

load xn . dat
xn=downsample (xn ,SAMPLE RATE) ;
i s t e p s =(0:( s ize (xn , 1 ) −1) ) ’ ;
t=xn ( : , 2 ) ;
u=xn ( : , 4 ) ;
y=xn ( : , 7 )−xn (1 ,7 ) ;
output=[ i s t e p s t u y ] ;
save 2 dstab . t r a i n 1 output − a s c i i −double

% Get Raw Forcing Input
load 2 dstab . f r c
X2dstab=downsample ( X2dstab ,SAMPLE RATE) ;
u white=X2dstab ( : , 3 ) ;

% Setup the process
N=s ize (u , 1 ) ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Estimate the impul se Response g ( k )
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% R s h i f t e d by N −> R(N)= R( tau=0)
Ru=xcor r (u ) ;
Ruy=xcor r (y , u ) ; %xcorr = E[ A( t ) B( t−m) ] backwards !
KMAX=100;
R=zeros (KMAX,KMAX) ;
for tau=1:KMAX

for i =1:KMAX
R( tau , i )=Ru(abs ( tau−i )+N) ;

end
end
g=Rˆ−1∗ Ruy(N:KMAX+N−1) ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Compute G GPAC from Impulse Response
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
NB MAX=30;
NF MAX=30;
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G phi=ggpac (g ,NB MAX,NF MAX) ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Compute v ( t ) from y ( t ) u( t ) and g ( k )
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ye=f i l t e r (g , 1 , u) ;
ve=y−ye ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Estimate the au to co r r e l a t i o n func t i on o f v ( t )
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% R s h i f t e d by N −> R(N)= R( tau=0)
Rv e=xcor r ( ve ) ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Compute H GPAC from acorr o f v ( t )
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
NCMAX=30;
NDMAX=30;
H phi=hgpac (Rv e ,NC MAX, ND MAX, N) ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Plo t the r e s u l t s
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
subplot (1 ,2 ,1 )
t i t l e ( ’G−GPAC’ ) ;
p lo tph i ( G phi ,NB MAX,NF MAX)
axis t i gh t
subplot (1 ,2 ,2 )
t i t l e ( ’H−GPAC’ ) ;
p lo tph i ( H phi ,NC MAX,NDMAX)
axis t i gh t

break
c l f
hold o f f
t i t l e ( ’H−GPAC’ ) ;
p lo tph i ( H phi ,NC MAX,NDMAX)
axis t i gh t

ggpac.m

%
% Computes G−GPAC
% CO
function phi=ggpac ( g ,NB MAX,NF MAX)
warning o f f MATLAB: divideByZero
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% Step through nb terms
for i =1:NB MAX

% Create g i matrix
clear gm
for j =1:NF MAX

for k=1:NF MAX
index=(i −1)+(j −1)−(k−1) ;
i f ( index+1>0)

gm( j , k )=g ( index+1) ;
else

gm( j , k )=0;
end

end
end

% Create g ( i +1) v e c t o r
clear gv
for j =1:NF MAX

index=(i −1)+(j −1)+1;
i f ( index >0)

gv ( j , 1 )=g ( index+1) ;
else

gv ( j , 1 ) =0;
end

end

% Determine Phi term f o r each nf s e t
for k=1:NF MAX

% gm/gv
phi ( i , k )=det ( horzcat (gm( 1 : k , 1 : k−1) , gv ( 1 : k , 1 ) ) ) /det (gm( 1 : k , 1 : k ) ) ;

end

end
warning on MATLAB: divideByZero

hgpac.m

function phi=hgpac (Ry e , NC MAX, ND MAX, OFFSET)

% Step through nb terms
for i =1:NC MAX

% Create g i matrix
clear gm
for j =1:NDMAX

for k=1:ND MAX
index=(i −1)+(j −1)−(k−1) ;
gm( j , k )=Ry e ( index+OFFSET) ;

end
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end

% Create g ( i +1) v e c t o r
clear gv
for j =1:NDMAX

index=(i −1)+(j −1)+1;
gv ( j , 1 )=Ry e ( index+OFFSET) ;

end

% Determine Phi term f o r each nf s e t
for k=1:NDMAX

% gm/gv
phi ( i , k )=det ( horzcat (gm( 1 : k , 1 : k−1) , gv ( 1 : k , 1 ) ) ) /det (gm( 1 : k , 1 : k ) ) ;

end

end

plotphi.m

function p lotph i ( phi ,NB MAX,NF MAX)

axis i j equal
hold on
for i =0:NB MAX−1

nb=i +1;
for j =1:NF MAX

nf=j ;
SCALE=abs (atan ( phi (nb , n f ) . ∗ 1 . 2 5 ) ) ∗0 . 25 ;

i f ( phi (nb , n f )>0)
COLOR= [ 0 . 4 0 . 4 0 . 4 ] ;

else
COLOR= [ 0 . 7 0 . 7 0 . 7 ] ;

end
f i l l ( SCALE∗ [−1 −1 1 1]+ nf ,SCALE∗ [−1 1 1 −1]+(nb−1) ,COLOR)

end
end

xlabel ( ’ k ’ ) ;
ylabel ( ’ i−1 ’ ) ;

estimate.m

%
%
%

N=s ize (y , 1 ) ;

17



% Model Parameters
nb=1 +10;
n f=10
nc=4;
nd=4;
order s =[nb nf nc nd ] ;

% Estimate Parameters
EPS=1.0E−10;
[ theta , J]=lmpar (y , u ,EPS , order s ) ;

% Output Estimated Parameters
B=theta ( 1 : nb) ’
F=[1 theta (nb+1 : nb+nf ) ’ ]
C=[1 theta (nb+nf +1 : nb+nf+nc ) ’ ]
D=[1 theta (nb+nf+nc +1 : nb+nf+nc+nd) ’ ]
[ yhat , e e s t ]=boxres (y , u , theta ’ , o rde r s ) ;
error=norm( e e s t )
i f (0)

load e
y model=boxsim (u , e , theta ’ , o rde r s ) ;
a c t u a l e r r o r=norm(y−y model )
plot ( y model , ’ r .− ’ ) ;

end
hold on ;
%p l o t ( y ) ;
%p l o t ( yhat , ’ . ’ ) ;
plot ( yhat−y ) ;

% Covariance Estimate
cov parameters=norm( e e s t . ˆ 2 ) /N∗(J ’∗ J ) ˆ−1;
parameter dev=diag ( cov parameters ) . ˆ 0 . 5

% Estimate Q
e e s t c o r=xcor r ( e e s t , e e s t ) ;
u cor=xcor r ( u white , u white ) ;
K=30
Q=sum( ( e e s t c o r (N+1:N+K)/ e e s t c o r (N) ) . ˆ2 ) ∗N

% Estimate S
ae co r=xcor r ( e e s t , u white ) ;
S=sum( a e co r (N:N+K) .ˆ2/ e e s t c o r (N) / u cor (N) ) ∗N

% GPAC Diagnos t i c
%[G GPAC, H GPAC]=gpac (u , e e s t ) ;

lmpar.m
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%
%
%
%
function [ f i n a l t h e t a , f i n a l J ]=lmpar (y , u ,EPS, order s )

% CONSTANTS
MAXMU=1.0E100 ;
DELTA=1.0E−6;
OUTER ITERATIONS=300;
INNER ITERATIONS=8;

ORDER=sum( order s ) ;
nb=order s (1) ;
n f=order s (2) ;
nc=order s (3) ;
nd=order s (4) ;

N=s ize (y , 1 ) ;

% I n i t i l i z e Theta
theta=zeros (ORDER, 1 ) ;

% Check Roots
F est=theta (nb+1 : nb+nf ) ;
D est=theta (nb+nf+nc +1 : nb+nf+nc+nd) ;

mu=1;
[ yhat , e e s t ]=boxres (y , u , theta ’ , o rde r s ) ;
F er ro r=norm( e e s t ) ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Outer Loop
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
for k=1:OUTER ITERATIONS

fprintf ( ’ \n . ’ ) ;

% Calcu l a te Epsi lon
[ yhat , e e s t ]=boxres (y , u , theta ’ , o rde r s ) ;
mu=mu/10 ;

% Calcu l a te J
for i =1:sum( order s )

t h e t a j=zeros (ORDER, 1 ) ;
t h e t a j ( i )=DELTA;

[ yhat j , e e s t j ]=boxres (y , u , ( theta+th e t a j ) ’ , o rde r s ) ;
[ yhat j2 , e e s t j ]=boxres (y , u , ( theta−t h e t a j ) ’ , o rde r s ) ;
J ( : , i )=(yhat j−yhat j2 ) / ( 2∗DELTA) ;

end
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%−−−−−−−−−−−−−−−−−−−−−−
% Inner Loop
%−−−−−−−−−−−−−−−−−−−−−−
for i t e r =1:INNER ITERATIONS

% Calcu l a te Del ta Theta
de l t a th e t a = ( J ’ ∗ J + mu∗eye (ORDER) ) \ ( J ’ ∗ e e s t ) ;

% Update Parameters
theta kk = theta + de l t a th e t a ;

% Check Res i dua l s
[ yhat kk , e e s t k k ]= boxres (y , u , theta kk ’ , o rde r s ) ;
i f (norm( e e s t k k ) < F error )

su c c e s s =1;
fprintf ( ’ g ’ ) ;
F er ro r=norm( e e s t k k ) ;
theta=theta kk ;
break ;

else
su c c e s s =0;
fprintf ( ’b ’ ) ;
mu=mu∗10 ;

end

end

% Stopping Cr i t e r i a
i f ( (norm(2∗J ’∗ e e s t k k ) ∗N <EPS) & ( su c c e s s==0))

fprintf ( ’ \n Small Gradient Stopping C r i t e r i a at %d ’ , k ) ;
break ;

end
i f ( (mu<EPS | | mu>MAXMU) & ( su c c e s s==0))

fprintf ( ’ \n Mu Stopping C r i t e r i a at %d ’ , k ) ;
break ;

end
end

%Conclusion
f i n a l t h e t a=theta ;
f i n a l J=J ;

gpac.m

%
%
%
%
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%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% I n i t i a l i z e
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
function [ G phi , H phi ]=gpac (u , y )

% Setup the process
N=s ize (u , 1 ) ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Estimate the impul se Response g ( k )
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% R s h i f t e d by N −> R(N)= R( tau=0)
Ru=xcor r (u ) ;
Ruy=xcor r (y , u ) ; %xcorr = E[ A( t ) B( t−m) ] backwards !
KMAX=80;
R=zeros (KMAX,KMAX) ;
for tau=1:KMAX

for i =1:KMAX
R( tau , i )=Ru(abs ( tau−i )+N) ;

end
end
g=Rˆ−1∗ Ruy(N:KMAX+N−1) ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Compute G GPAC from Impulse Response
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
NB MAX=20;
NF MAX=20;
G phi=ggpac (g ,NB MAX,NF MAX) ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Compute v ( t ) from y ( t ) u( t ) and g ( k )
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ye=f i l t e r (g , 1 , u) ;
ve=y−ye ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Estimate the au to co r r e l a t i o n func t i on o f v ( t )
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% R s h i f t e d by N −> R(N)= R( tau=0)
Rv e=xcor r ( ve ) ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Compute H GPAC from acorr o f v ( t )
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
NCMAX=20;
NDMAX=20;
H phi=hgpac (Rv e ,NC MAX, ND MAX, N) ;
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%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Plo t the r e s u l t s
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
subplot (1 ,2 ,1 )
t i t l e ( ’GPAC R {ue} ’ ) ;
p lo tph i ( G phi ,NB MAX,NF MAX)
axis t i gh t

subplot (1 ,2 ,2 )
t i t l e ( ’GPAC R u ’ ) ;
p lo tph i ( H phi ,NC MAX,NDMAX)
axis t i gh t

speccompare.m

%
%
%

N=s ize (u , 1 ) ;
n=0:N−1;

% Parameters
%A=[ ] ’ ;
%B=[ ] ’ ;

A=F
B=B

TIMEMAX=1;

% Window
i f (0) % 3 term Blackman−Harri s

a0 =0.42323; a1 =0.49755; a2 =0.07922;
w=a0−a1∗cos (2∗pi∗n/N)+a2∗cos (2∗pi∗2∗n/N) ;

e l s e i f (1) % Hanning
w=sin ( pi∗n/N) . ˆ 2 ;

e l s e i f (0) % Triang le Window
w=1.0−abs (n−N/2) /(N/2) ;

else % rec t angu l a r
w=ones (1 ,N) ;

end

yw=y .∗w’ ;
uw=u .∗w’ ;

% FFT
Y=f f t (yw) ;
U=f f t (uw) ;
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S= (conj (Y) .∗Y) . / ( conj (U) .∗U) ;

% Frequency Method
G=f i l t (B,A, 1 ) ;

% P l o t t i n g
semilogx (n/N∗2∗pi , 1 0∗ log10 (S) , ’ r ’ ) ; hold on
xlabel ( ’ Frequency ( rad/ s ) ’ ) ;
ylabel ( ’ Transfer Function |G( eˆ{ jw }) | ’ ) ;
bodemag(G) ; hold on
axis ( [0 .001 10 −60 −30]) ;

23


