Stepping Motor Control

Charles O’Neill
19 November 2004

Description
This project’s objective is to describe and control a DC stepping motor. Qualitative stepper motor
theory is presented. An example driver using the PIC16F876 programmed in C is included.

Stepping motors are a class of multipole-multiphase DC motors with precision
tracking capabilities. The stepping motor rotates in finite steps by energizing
sequential motor phases; any further rotation requires energizing the next phase. @
The rotor typically contains the permanent magnet; the stator contains the coils.

The figure shows a 4 phase motor rotating from phase 1 to phase 2. Clockwise
rotation require energizing —in sequence— the phases: 1, 2, 3, 4, and so on.
Counterclockwise rotation requires the reverse order: 4, 3, 2, 1. Energizing each
phase requires a voltage step to the appropriate coil(s) provided by a driver.

By necessity, multiple step sequences are required for one revolution. Common
stepping motor resolutions are 200 and 400 steps —1.8° and 0.9° respectively. Most
motors have about 4 phases, for a total of 5 wires when including the common or
ground wire.

Advanced techniques are available for artificially increasing the step resolution: half-stepping, and
micro-stepping. Half stepping recognizes that two adjacent phases can be energized simultaneously
to move the rotor between steps. Micro-stepping adjusts each coil’s field to provide a theoretically
infinite resolution. The drawback is that a significantly more advanced driver is required.

Example
Using a stepping motor requires three parts: the actual motor, a driver, and a controller. The

following figure shows a schematic for a stepping motor controlled by a PIC16F876.

Stepping motors and drivers are readily available from suppliers. However, 5.25 disk drives
provide a source of DC stepping motors in the disk track mechanism

The driver converts low power inputs to high power outputs for each motor phase. A simple driver
can be constructed from NPN transistors capable of more than about 500mA continuous. Diodes
are needed to prevent back EMF or motor-generated current from burning out the transistors. An
LED array is used to visualize the driver output.

The controller is written in C for a PIC micro controller. Output ports are CO through C3. Half
stepping is implemented, so that the outputs are:

int positions[8]={0x01, 0x03, 0x02, 0x06, 0x04, 0x0C, 0x08, 0x09};
Coils : 1 142 2 2+3 3 3+4 4 441

The controller sequentially steps through the positions array to control the proper port output as:
output_c(positions [motor_pole_position %8]);

A delay between step requests is needed to allow the motor to actually achieve that step. Increasing
the delay slows the maximum motor rotation rate, but increases the available torque.

Energized

Phase

é)
P
\\%
\V
\V

q

%
\V
\

Bo

PIC 16F876

5V

470Q

Button _Ll'

%
%

Stepping Motor

Results
The following C code shows an example stepping motor driver. This program rotates the motor
counter clockwise forever. Within the main function is the following fragment:

void main () {
while (1){
motor_steps_desired=-—1;
motor_steps_desired= update_dial (motor_steps_desired);
delay_ms (1);

The update function corrects the motor by one step per call in the error direction.

signed intl16 update_dial (signed intl6 steps){
/x Initialize %/
int positions[8]={0x01, 0x03, 0x02, 0x06, 0x04, 0x0C, 0x08, 0x09};
motor_pole_position%=8§;

/% Rotate Clockwise */

if (steps>0){
output_c (positions[——motor_pole_position %8]);
return(——steps);

/+x Rotate Counter Clockwise x/

} else if(steps<0){
output_c(positions[++motor_pole_position %8]);
return(++steps);

/x No Rotation */

} else {
output_c(positions [motor_pole_position %8]);
return(steps);

