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Description
This project’s objective is to describe and control a DC stepping motor. Qualitative stepper motor
theory is presented. An example driver using the PIC16F876 programmed in C is included.

Stepping motors are a class of multipole-multiphase DC motors with precision
tracking capabilities. The stepping motor rotates in finite steps by energizing
sequential motor phases; any further rotation requires energizing the next phase. @
The rotor typically contains the permanent magnet; the stator contains the coils.

The figure shows a 4 phase motor rotating from phase 1 to phase 2. Clockwise
rotation require energizing —in sequence— the phases: 1, 2, 3, 4, and so on.
Counterclockwise rotation requires the reverse order: 4, 3, 2, 1. Energizing each
phase requires a voltage step to the appropriate coil(s) provided by a driver.

By necessity, multiple step sequences are required for one revolution. Common
stepping motor resolutions are 200 and 400 steps —1.8° and 0.9° respectively. Most
motors have about 4 phases, for a total of 5 wires when including the common or
ground wire.

Advanced techniques are available for artificially increasing the step resolution: half-stepping, and
micro-stepping. Half stepping recognizes that two adjacent phases can be energized simultaneously
to move the rotor between steps. Micro-stepping adjusts each coil’s field to provide a theoretically
infinite resolution. The drawback is that a significantly more advanced driver is required.

Example
Using a stepping motor requires three parts: the actual motor, a driver, and a controller. The

following figure shows a schematic for a stepping motor controlled by a PIC16F876.

Stepping motors and drivers are readily available from suppliers. However, 5.25 disk drives
provide a source of DC stepping motors in the disk track mechanism

The driver converts low power inputs to high power outputs for each motor phase. A simple driver
can be constructed from NPN transistors capable of more than about 500mA continuous. Diodes
are needed to prevent back EMF or motor-generated current from burning out the transistors. An
LED array is used to visualize the driver output.

The controller is written in C for a PIC micro controller. Output ports are CO through C3. Half
stepping is implemented, so that the outputs are:

int positions[8]={0x01, 0x03, 0x02, 0x06, 0x04, 0x0C, 0x08, 0x09};
Coils : 1 142 2 2+3 3 3+4 4 441

The controller sequentially steps through the positions array to control the proper port output as:
output_c(positions [motor_pole_position %8]);

A delay between step requests is needed to allow the motor to actually achieve that step. Increasing
the delay slows the maximum motor rotation rate, but increases the available torque.
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Results
The following C code shows an example stepping motor driver. This program rotates the motor
counter clockwise forever. Within the main function is the following fragment:

void main () {
while (1){
motor_steps_desired=-—1;
motor_steps_desired= update_dial (motor_steps_desired);
delay_ms (1);

The update function corrects the motor by one step per call in the error direction.

signed intl16 update_dial (signed intl6 steps){
/x Initialize %/
int positions[8]={0x01, 0x03, 0x02, 0x06, 0x04, 0x0C, 0x08, 0x09};
motor_pole_position%=8§;

/% Rotate Clockwise */

if (steps>0){
output_c (positions[——motor_pole_position %8]);
return(——steps );

/+x Rotate Counter Clockwise x/

} else if(steps<0){
output_c(positions[++motor_pole_position %8]);
return(++steps );

/x No Rotation */

} else {
output_c(positions [ motor_pole_position %8]);
return(steps );



