
Stepping Motor Control
Charles O’Neill
19 November 2004

Description
This project’s objective is to describe and control a DC stepping motor. Qualitative stepper motor

theory is presented. An example driver using the PIC16F876 programmed in C is included.

1

3

24

Energized
Phase

Stepping motors are a class of multipole-multiphase DC motors with precision
tracking capabilities. The stepping motor rotates in finite steps by energizing
sequential motor phases; any further rotation requires energizing the next phase.
The rotor typically contains the permanent magnet; the stator contains the coils.

The figure shows a 4 phase motor rotating from phase 1 to phase 2. Clockwise
rotation require energizing —in sequence— the phases: 1, 2, 3, 4, and so on.
Counterclockwise rotation requires the reverse order: 4, 3, 2, 1. Energizing each
phase requires a voltage step to the appropriate coil(s) provided by a driver.

By necessity, multiple step sequences are required for one revolution. Common
stepping motor resolutions are 200 and 400 steps —1.8◦ and 0.9◦ respectively. Most
motors have about 4 phases, for a total of 5 wires when including the common or
ground wire.

Advanced techniques are available for artificially increasing the step resolution: half-stepping, and
micro-stepping. Half stepping recognizes that two adjacent phases can be energized simultaneously
to move the rotor between steps. Micro-stepping adjusts each coil’s field to provide a theoretically
infinite resolution. The drawback is that a significantly more advanced driver is required.

Example
Using a stepping motor requires three parts: the actual motor, a driver, and a controller. The

following figure shows a schematic for a stepping motor controlled by a PIC16F876.
Stepping motors and drivers are readily available from suppliers. However, 5.25 disk drives

provide a source of DC stepping motors in the disk track mechanism
The driver converts low power inputs to high power outputs for each motor phase. A simple driver

can be constructed from NPN transistors capable of more than about 500mA continuous. Diodes
are needed to prevent back EMF or motor-generated current from burning out the transistors. An
LED array is used to visualize the driver output.

The controller is written in C for a PIC micro controller. Output ports are C0 through C3. Half
stepping is implemented, so that the outputs are:

int po s i t i o n s [8 ]={0x01 , 0 x03 , 0 x02 , 0 x06 , 0 x04 , 0 x0C , 0 x08 , 0 x09 } ;
Co i l s : 1 1+2 2 2+3 3 3+4 4 4+1

The controller sequentially steps through the positions array to control the proper port output as:

output c ( p o s i t i o n s [ mo to r po l e po s i t i o n %8 ] ) ;

A delay between step requests is needed to allow the motor to actually achieve that step. Increasing
the delay slows the maximum motor rotation rate, but increases the available torque.

1



C0

1 28

PI
C

  1
6F

87
6

A B

C

I/O

B0

5V

470Ω

Button

B

1KΩ

1KΩ

1KΩ

1KΩ

12V

NPN

LED Array

C1

C2

C3

C

E

Stepping Motor

70Ω

70Ω

70Ω

70Ω

Driver

1KΩ

Results
The following C code shows an example stepping motor driver. This program rotates the motor

counter clockwise forever. Within the main function is the following fragment:

void main ( ){
while (1 ){

moto r s t ep s d e s i r e d=−1;
mo to r s t ep s d e s i r e d= upda te d ia l ( mo to r s t ep s d e s i r e d ) ;
delay ms ( 1 ) ;

}
The update function corrects the motor by one step per call in the error direction.

signed i n t16 upda te d ia l ( signed i n t16 s t eps ){
/∗ I n i t i a l i z e ∗/
int po s i t i o n s [8 ]={0x01 , 0 x03 , 0 x02 , 0 x06 , 0 x04 , 0 x0C , 0 x08 , 0 x09 } ;
mo to r po l e po s i t i o n%=8;

/∗ Rotate Clockwise ∗/
i f ( s teps >0){

output c ( p o s i t i o n s [−−moto r po l e po s i t i o n %8 ] ) ;
return(−−s t ep s ) ;
/∗ Rotate Counter Clockwise ∗/

} else i f ( s teps <0){
output c ( p o s i t i o n s [++moto r po l e po s i t i o n %8 ] ) ;
return(++steps ) ;

/∗ No Rotat ion ∗/
} else {

output c ( p o s i t i o n s [ mo to r po l e po s i t i o n %8 ] ) ;
return ( s t eps ) ;

}
}

2


