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Numerical Single-Degree-of-Freedom Analysis and Control of an 80
Degree Delta Wing with an Analytical Roll Moment Model

Charles R. O’Neill∗
Oklahoma State University, Stillwater, Oklahoma 74078

This project surveys nonlinear analysis and control methods for a specific two-degree-of-freedom
analytical delta wing model. Linearization, phase plane analysis and existence theorems are used to
describe the overall system behavior without solving the differential equations. A describing function
is developed for the nonlinear system and favorably compares to the actual limit cycle amplitudes
and frequencies. Linear pole placement and Ricatti control methods and nonlinear sliding mode and
Lyapunov control laws are developed for stabilization and tracking.

Nomenclature
L Roll Moment
CL Roll Moment Coefficient (L/Q)
Q Moment Non-Dimensionalization

θ Pitch Angle
p Roll Rate
q Pitch Rate
r Yaw Rate

α Angle of Attack
β Sideslip Angle

b Wing Span
c Chord Length
Iv̂ Body Axis Moment Of Inertia

Introduction
Delta wing at high pitch angles exhibit nonlinear roll be-

havior. The nonlinear behavior comes from nonlinear aero-
dynamics resulting from axial vortical flow. The typical
symptom found by an aircraft designer is wing rock, an un-
desirable limit cycle in roll.
This project numerically analyzes a two degree of freedom

delta wing model. Aircraft equations of motion are reviewed
to compare the selected model with actual physics and aero-
dynamics. The objective is to select an analytical governing
equation for the rolling motion and analyze the model with
tools available in the phase plane. A control section will
evaluate linear and nonlinear control schemes for roll stabi-
lization and tracking.

Aircraft Equations of Motion
The governing aircraft equations of motion are Newton’s

Second Law in a body fixed reference frame.1 Adding the
body fixed reference frame frees the analysis from time-
varying body properties at the expense of nonlinear equa-
tions of motion. Conversion between the body fixed and in-
ertia reference frame is through Euler angles —three order-
dependent successive rotations. For this paper, only the roll
degree of freedom is considered. The general aircraft equa-
tion of motion in the roll axis is:1

Ixṗ− Ixz ṙ + (Iz − Iy)qr − Ixypq = L

The yaw and pitch rates are fixed at zero. Substituting the
Euler roll angle, Φ̇ = p , yields a single second order differ-
ential equation for roll angle.

IxΦ̈ = L (1)

The aerodynamics enter the motion through the moment
L. L is a complicated function of the body fixed orienta-
tion with respect to the freestream velocity vector. For a
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general derivation, the Euler Angles are converted into the
body fixed reference frame. The body fixed velocity vector
orientation with respect to the Euler orientation angles is:

α = atan(tan θ0 cosφ)

β = asin(sin θ0 sinφ)

β̇ = φ̇(sin θ0 sinφ)/
√
1− sin2 θ cos2 φ

Knowing the freestream velocity vector allows for computing
the roll moment L while preserving the body fixed reference
frame.

Delta Wing Aerodynamics
Delta wing aerodynamics at high angles of attack are pri-

marily dominated by axial vortices emanating off the leading
edge. Experiments2 and theoretical reviews3 explain some of
the aerodynamic mechanisms responsible for the nonlinear
behavior.

General Aerodynamic Model

A general aerodynamic model is complicated. Concep-
tually, the aerodynamic roll moment depends on the
freestream velocity vector in the body fixed frame. The con-
ceptual roll moment is probably of the form:

L/Q = CL = f(α, β)

Any physically consistent model will need these terms. From
the previous section, it is seen that the relationship between
the freestream orientation and the Euler angles is com-
plicated. Incompressible aerodynamic theory predicts that
aerodynamic forces result from motion terms up to accel-
eration, so the Euler angle relationships up to acceleration
will be required.

Selected Aerodynamic Model

The difficulties of state space modeling becomes finding
an appropriate roll moment function. Because the focus of
this project is to survey many nonlinear analysis techniques,
an analytical roll moment function is desired. The specific
roll moment model used for this paper is from Nayfeh,
Elzebda and Mook.4 The aerodynamic model was developed
by fitting unsteady aerodynamic data to a function of the
form:

CL = a1φ+ a2φ̇+ a3φ
3 + a4φ

2φ̇+ a5φφ̇
2 (2)

Nayfeh, Elzebda and Mook.4 claim “virtually perfect agree-
ment” between the model and the actual aerodynamic data.
No limitations on motion inputs were reported. From their
paper, the model appears tuned to motion inside the limit
cycles. The model is defined with tabulated coefficients for
four angles of attack. These coefficients are tabulated in Ta-
ble 1.
In hindsight, the limitations and over-simplification of

this model is evident. In particular, this model is not har-
monic with roll angle as physics demands. However, finding
an analytic model with pleasant properties is difficult. This
particular model was selected as the best among several al-
ternative models —one alternative was especially tempting.5
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Table 1 Model Coefficients for Eq. (2)

θ a1 a2 a3 a4 a5
15.0 -0.01026 -0.02117 -0.14181 0.99735 -0.83478
21.5 -0.04207 0.01456 0.04714 -0.18583 0.24234
22.5 -0.04681 0.01966 0.05671 -0.22691 0.59065
25.0 -0.05686 0.03254 0.07334 -0.35970 1.46810

State Space Model
Combining the aircraft equations of motion with the aero-

dynamic roll moment model produces a governing equation
for the delta wing’s rolling motion Eq. (3).

φ̈/Q = a1φ+ a2φ̇+ a3φ
3 + a4φ

2φ̇+ a5φφ̇
2 (3)

The state space representation is:

ẋ1 = x2 (4)

ẋ2 = Q
(
a1x1 + a2x2 + a3x

3
1 + a4x

2
1x2 + a5x1x

2
2

)
The roll moment non-dimensionalization parameter Q is

taken as 0.354 as given by Nayfeh, Elzebda and Mook.4 In-
cidentally, time is scaled by t∗ = U0/L0t. For this particular
model the non-dimensionalization constant is approximately
140. So 140 seconds of non-dimensional time is approxi-
mately 1 actual second.

Equilibrium Points and Nullclines
Analysis of equilibrium points and nullclines provide in-

sights into the solutions of differential equations without
requiring trajectory solutions.

Equilibrium points

Equilibrium points are where the system response is un-
changing. This occurs when the state vector is zero. Solving
the first state equation for a zero state vector yields:

ẋ1 = 0 = x2

So, all equilibrium points lie on the x axis (x2 = 0). Substi-
tuting into the second state equation yields:

ẋ2 = 0 = +a1x1 + a3x
3
1 + f(x2)

Solving shows either x1 = 0 or x1 = ±
√

−a1/a3. For this
particular delta wing model, three equilibrium points are
possible. The equilibrium points are:

x1 = {0,±
√

−a1/a3}
x2 = 0

At 25 degrees, the equilibrium points are at x2 = 0 with
x1 = 0 and x1 ≈ ±0.88. Only the origin is an equilibrium
point at 15 degrees pitch angle.

Nullclines

Nullclines are the set of locations where the solution tra-
jectories directions are either horizontal or vertical. A null-
cline is the set of all points where one state equation is zero.
The vertical nullcline occurs when ẋ1 = 0. For this par-

ticular model, the vertical nullcline exists when:

x2 = 0

The horizontal nullcline occurs when ẋ2 = 0. Solving the
second state space equation in Eq. (5) for x2 yields:

x2 = −a2−a4 x1
2

2a5 x1
±

√
a2

2+2 a2 a4 x12+a4
2x14−4 a5 x12a1−4 a5 x14a3

2a5 x1

The vertical and horizontal nullclines are plotted in the
phase plane in Figs. 1 and2 for four pitch angles. The null-
clines for θ = {21.5 − 25◦} are given in Fig. 1. Equilibrium

points exist at nullcline crossings. A positive slope for the
horizontal nullcline indicates an unstable equilibrium point.
The type —saddle or node— can be deduced from the rel-
ative locations of equilibrium points and the phase plane
vector field. All three equilibrium points for the three an-
gles of attack are unstable.
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Fig. 1 Nullclines for θ = {21.5, 22.5 and 25◦}

The nullclines for θ = 15◦ are given in Fig. 2. This angle
of attack only has one equilibrium point —the origin— and
that equilibrium point is stable.
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Fig. 2 Nullclines for θ = 15◦

Nullcline analysis has characterized the phase plane with-
out solving any differential equations. Nullclines show both
trajectory behavior and equilibrium points.

Linearization
This section linearizes the equations of motion. The non-

linear state space representation is given in Eq. (5). The
objective is to express the system as a linear system. The
following linear system form is used:

ẋ = Ax+Bu

The A matrix is determined by computing the Jacobian —
∂fi/∂xj at x0— for each state variable. For the delta wing
model, the Jacobian is:

J =
[

0 1
Q(a1 + 3a3x2

1 + 2a4x1x2 + a5x2
2) Q(a2 + a4x2

1 + 2a5x1x2)

]
The equivalent linear system at the origin is the most de-
sirable. The equilibrium points at x1 ≈ ±0.88 correspond
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to saddle points. The behavior around the saddle points is
usually not particularly critical. Substituting in the origin’s
state vector yields the following plant matrix:

A =
[

0 1
Qa1 Qa2

]
The eigenvalues are:

λ1,2 = Qa2/2± 1/2
√
Q2a2

2 + 4Qa1

The eigenvalues are given for each pitch angle θ in Table 2.
The system is stable for the 15 degree pitch angle but unsta-

Table 2 Linear System Eigenvalues at Four Pitch Angles

Eigenvalues
θ Real Imag

15.0 -0.0037 0.0601
21.5 0.0025 0.1220
22.5 0.0035 0.1286
25.0 0.0058 0.1417

ble for 21.5, 22.5 and 25 degrees. The oscillation frequency
decreases with decreasing pitch angles.

Limit Cycle Existence
The objective of this section is to evaluate the possible

locations and trajectories of possible limit cycles. The anal-
ysis methods will establish where limit cycles can and can
not exist.

Poincaré Theorem

The Poincaré theorem establishes the possible limit cycle
trajectories based on equilibrium points. Poincaré’s theorem
from Khalil6 is:

Inside any period orbit γ, there must be at least
one equilibrium point. . . . if N is the number of
nodes and foci and S is the number of saddles, it
must be that N-S=1.

The equilibrium points for all four pitch angles con-
tain a node or focus at the origin. For pitch angles
of {21.5, 22.5 and 25◦}, saddle points exist at x1 =

±
√

−a1/a3. The only N contribution comes from the ori-
gin’s equilibrium point. All limit cycles must enclose the ori-
gin but not the saddles. Figure 3 shows the phase plane with
a conceptual possible limit cycle trajectory γ. For harmonic
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Fig. 3 Poincaré Theorem: Nodes and Saddles

and mostly circular limit cycles, the amplitude must be less
than than the x location of the saddle points. Effectively,

any possible limit cycle is restricted to |x1| <
√

−a1/a3.

Bendixson Theorem

The Bendixson Theorem tests for the existence of limit
cycles within a region of the phase plane. The Bendixson
Theorem from Khalil6 is:

If, on a simply connected region D of the plane, the
expression ∂f1/∂x1 + ∂f2/∂x2 is not identically
zero and does not change sign, then the system
has no periodic orbits lying entirely in D.

The Bendixson theorem is applied to the delta wing govern-
ing equation Eq. (5) to rule out phase plane regions where
limit cycles are not possible. Computing the partials and
substituting into the Bendixson test yields:

B = 0 + a2 + a4x
2
1 + 2a5x1x2

The objective is to determine phase plane locations where
the sign of B changes. Setting B equal to zero and solving
for x2 gives the following:

x2 =
−a2 − a4x

2
1

2a5x1

Figure 4 shows the B = 0 graphs for two angles of attack
(15 and 25 degrees). The curves represent the B = 0 loca-
tions; any limit cycle must cross the curves. The 15 degree
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Fig. 4 Bendixson Existence

angle of attack curve is more restrictive than the 25 degree
curve. Interestingly, extrapolating the Bendixson theorem
indicates that the a2 term dictates the lack of a limit cycle
for smaller amplitudes. Assuming that the system doesn’t
have an amplitude jump —the bifurcation is smooth— in-
dicates that the stable limit cycle bifurcation occurs when
the a2 term is zero.

Poincaré-Bendixson Theorem

The Poincaré-Bendixson theorem provides definite limit
cycle existence information. The Poincaré-Bendixson Theo-
rem from Khalil6 is:

. . . let M be a closed bounded subset of the plane.
If M contains no stable equilibrium points and if
every trajectory starting in M stays in M for all
future time, then M contains a periodic orbit.

The process of applying this theorem consists of finding a
region of attraction. At a pitch angle θ of 25◦, an unstable
equilibrium point exists at the origin. Figure 5 shows trajec-
tories that remain inside a region M for all time. Thus, the
trajectories inside M are either limit cycles or going toward
a limit cycle. A limit cycle exists for θ = 25◦.
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Fig. 5 Phase Plane Region of Attraction θ = 25◦

Phase Plane
The objective of this section is to evaluate the system

dynamics and properties in the phase plane. The phase plane
is established as a plot of the state vector. Roll angle, x1, is
plotted on the x axis; the roll rate, x2, is plotted on the y
axis.

Pitch Angle of 25 degrees

The system a pitch angle of 25 degrees contains an unsta-
ble origin but a stable limit cycle. The vector field is given
in Fig. 6. A circular structure appears around the origin.
The non-harmonic form with respect to roll angle appears
as a diverging vector field for large magnitudes of roll angle.
For small roll angles magnitudes between the saddle points,
the model appears similar to the vector field of the har-
monic pendulum. Clearly, the model breaks down for large
roll angle magnitudes.
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Fig. 6 Vector Field θ = 25◦

Typical trajectories are plotted in Fig. 7. Immediately
a limit cycle is spotted with a displacement amplitude of
approximately 0.6. Trajectories beginning inside the limit
cycle amplitude spiral out to the limit cycle as seen in Fig. 8.
At 25 degrees, the limit cycle angular frequency from Fig. 8
is 0.11 rad/s. The roll angle amplitude is 0.629.

Pitch Angle of 15 degrees

At a pitch angle of 15 degrees, the behavior has signifi-
cantly changed. The origin is stable, but the limit cycle is
unstable. A stable trajectory showing the stable origin is
plotted in Fig. 9. The unstable behavior outside the limit
cycle is shown in Fig. 10. The behavior outside the limit
cycle does not match physical intuition. Again, the model
appears tuned for small roll angle predictions.
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Fig. 7 Phase Plot with Trajectories θ = 25◦
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Fig. 9 Stable Trajectory Inside Limit Cycle at θ = 15◦

Generalization of Model Parameters
For analysis between the given pitch angles, the coeffi-

cients need to be functions of the pitch angle θ. Curves are
fit to the model coefficients. The coefficient expressions are
given below:

a1 = −0.0472θ + 0.060

a2 = −0.0000337θ2 + 0.0067θ − 0.1143

a3 = 0.00018θ3 − 0.013θ2 + 0.326θ − 2.70

a4 = − 0.0022θ3 + 0.15θ2 − 3.41θ + 25.9

a5 = 0.0177θ2 − 0.48θ + 2.32
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Fig. 10 Unstable Trajectory Outside Limit Cycle at
θ = 15◦

The curve fits are reasonable within the pitch angles given
as data. Extrapolated values are likely to be useless. The
coefficients’ jump between 15 and 21.5 degrees The a3 and
a4 coefficients were particularly affected by this jump.

Describing Functions
Using the typical describing function approach, the mo-

tion is assumed to be sinusoidal. The nonlinear terms in Eq.
(3) are expanded and higher frequency terms are dropped.

φ = a sin ωt

φ2φ̇ = 1/4a3ω cosωt = 1/4a2φ̇

φφ̇2 = 1/4a3ω2 sinωt = −1/4aφ̈
φ3 = 3/4a3 sinωt = 3/4a3φ

Substituting into Eq. (3) , switching to the frequency do-
main and simplifying yields:

s2 +Q
(−a2 − a4a/4)

(1 +Qa5/4)
s+Q

(
−a1 − 3/4a3a3

)
(1 +Qa5/4)

= 0

This form resembles the traditional second order form
s2 + 2ωnζs + ω

2 = 0. The limit cycle amplitude is approx-
imated when the s term is zero. The limit cycle frequency
is determined from the ω2 term. Solving for the amplitude
and frequency yields:

a = 2
√

−a2/a4

ω =

√
− a1 − 6a3 (−a2/a4)

3/2

(1/Q+ a5/4

Substituting for the θ = 25◦ case yields:

a = 0.60

ω = 0.12

The describing function analysis matches the magnitude and
frequency within approximately 15 percent.
Now, using the generalized model coefficients, the behav-

ior at varied angles of attack is predicted. The limit cycle
amplitude estimate is:

a(θ) = 2

√
−0.0000337θ2 − 0.0067θ + 0.1143

−0.0022θ3 + 0.15θ2 − 3.41θ − 25.9

The describing function approach indicates that the ampli-
tude depends only on the coefficients a2 and a4. Figure 11

shows the limit cycle amplitude versus angle of attack using
the above describing function.
Both a2 and a4 change sign between 15 and 21.5 degrees.

The sign change causes a discontinuity in the amplitude
prediction. From the earlier phase plane analysis, it was
seen that the 15 degree system has an unstable limit cy-
cle. The discontinuity in the describing function estimate for
amplitude appears to reflect the switch between stable and
unstable behavior. Deduction suggests that the discontinu-
ity is exactly at the origin’s bifurcation point. Of course, the
limiting behavior of the discontinuity is driven by whether
a2 or a4 switches sign first. Reviewing Nayfeh, Elzebda and
Mook.4 indicates that the wing rock bifurcation point is ap-
proximately “19–20” degrees.
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Fig. 11 Limit Cycle Amplitudes using Describing Func-
tion Analysis

The describing function approach is simple and provides
good estimates primarily because the wing rock trajectories
for the limit cycle are almost perfectly circular. The describ-
ing function analysis when combined with the traditional
phase plane analysis gave interesting insights.

Controls Guidelines
The fundamental constraint for controls is stability. The

goal is to make the system uniformly asymptotically stable
in the large. The wing rock limit cycle should be removed
with no exceptions. A control law that minimizes or elim-
inates overshoot is desired. Excessive overshoot causes pi-
loting problems. Other constraints concern the wing’s roll
performance.
For control, the input is a roll moment. Control provided

by ideal moment generator. No dynamics will be associated
with the input to keep the system 2nd order. The governing
equation for controls with an input u is:

Φ̈ = QL+ u

The input roll moment will have an amplitude limitation
near u = 0.1 to simulate the limited motion of aircraft con-
trol surfaces.

Pole Placement
Pole placement is a linear control method. The objective

is to stabilize the motion at the origin. The linear system
corresponding to the origin is:

ẋ =
[

0 1
Qa1 Qa2

]
x+Bu

A control scheme of the following form is input into the
control u.

u =
[

0 0
K1 K2

]
x
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Combining the linear system with the control scheme yields:

ẋ =
[

0 1
Qa1 +K1 Qa2 +K2

]
x

The eigenvalues of this combined linear system are:

λ1,2 =
Qa2 +K2

2
±

√
Q2a2

2 + 2K2Qa2 +K2
2 + 4Qa1 + 4K1

2

Placing the poles at -0.1 and -1.0 and solving yields gains of
K1 = −0.08 and K2 = −1.11. The control scheme is:

u = −0.08x1 − 1.11x2

A schematic for the system and control scheme is given
below. The phase plane with the control input is given be-
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Fig. 12 Pole Placement Matlab Schematic

low. Notice that the domain of attraction is extended to
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Fig. 13 Pole Placement Phase Plane Plot

almost x1 = ±2. The trajectories appears to move along an
inverted-sine-wave-like surface.
The displacement response is given in Fig. 14. Notice that

the linear control scheme drives the displacement to zero for
small initial displacements, but fails for large initial displace-
ments.
Unfortunately, the linear control scheme drives the motion

to the origin —an equilibrium point. For reasonable gains,
the control law provides sufficient damping using x2 to elim-
inate the limit cycle. As expected, control laws feeding back
only displacement can eliminate the limit cycle.
Next, pole placement for a tracking problem. The track-

ing motion consists of a step input starting at t=20 with
a displacement of 0.1. The control scheme does not track
well. The displacement converges before reaching the desired
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Fig. 14 Pole Placement Displacement Plot
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Fig. 15 Pole Placement Step Input Tracking

tracking motion. As expected, the control input converges
to a non-zero value. Intuition suggests that the error will
never converge to zero for these linear control laws. Adding
an integral control on tracking error is a possible solution.
This is a spectacular —but expected— failure!

Ricatti
The Ricatti LQR control law synthesis method creates a

robust linear system control law. The required inputs are
the linear system’s plant matrix and two weighting ma-
trices for the state and control vectors. Matlab solved the
corresponding Ricatti equation. The state vector weighting
matrix Q was selected with diagonal terms corresponding to
the limit cycle amplitude. The control weighting matrix R
corresponds to the maximum control power available. Using
Matlab, the LQR control law is:

u = −0.559x1 − 1.22x2

The first evaluation testcase is the Ricatti control law
with an initial displacement condition. Figure 16 shows the
Ricatti control law’s performance. The control law stabilizes
the system with a smooth control input.
Next, the Ricatti control law is tested with noise in

Fig. 17. The noise introduces a small input induced oscil-
lation about the origin. Otherwise, the control law’s perfor-
mance is good.
The Ricatti control law is tested for tracking performance.

A step input is shown in Fig. 18. The control law tracks
excellently even with noise. This excellent performance is
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Fig. 16 Ricatti Control
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Fig. 17 Ricatti Control with Noise

surprising given both the nonlinear system and the input
noise. The Ricatti control law converges to the tracking sig-
nal when the pole placement does not. This is disturbing.
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Fig. 18 Ricatti Step Tracking

Finally, the Ricatti control law is tested for tracking per-
formance with a linear frequency swept chirp. The system
response is given in Fig. 19. For this tracking problem, the
Ricatti control law increasingly becomes in error as the chirp
frequency increases.
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Fig. 19 Ricatti Chirp Tracking

Sliding Mode
Sliding mode control is used for stability and tracking con-

trol of the delta wing model. The state space representation
is repeated below with unknown noise w added. A scalar b
is pre-multiplies the control input.

ẋ1 = x2

ẋ2 = QCL + bu+ w

For later robustness, nominal models are used.

Control Law Derivation

Tracking is established with a tracking vector, x̃ as the
difference between the state vector, x, and the desired mo-
tion, xd.

x̃ = x− xd

Select a sliding surface S.

S = ˙̃x+ λx̃ = (ẋ− ẋd) + λ(x− xd)

Ensure the resulting system is Lyapunov stable by intro-
ducing a sign(S) function. For the Lyapunov function V =

1/2S2, V̇ is negative —and the system is stable— with the
following:

V̇ = SṠ = −η|S|
This reduces to

Ṡ = ẍ− ẍd + λ(ẋ− ẋd) = −Ksign(S)

Rearranging the terms yields:

QCL + b̂u− ẍd + λ(ẋ− ẋd) +Ksign(S)

Solving for the control u yields the following:

u = −1

b̂
(QCL − ẍd + λẋ− λẋd +Ksign(S))

The wing rock angular frequency is approximately 0.1
radian per second. This is a period of 50. A sliding time
constant of 10 was chosen. λ = 1/10 = 0.1. The reaching
time constant of 5 gives η = 0.06.
The robustness is assured through the selection of a large

enough gain K. The primary difficulty is establishing the
magnitudes of CL. The difficulty concerns the maximum
values of the state vectors. Evaluating the absolute magni-
tude |CL| at x1=1.5 and x2 = 0.2 yields CL ≈ 0.2. Also,
a harmonic trajectory was created at the maximum ex-
pected values of the state vectors. This simulation approach
gave a maximum CL ≈ 0.2. The noise input is bounded by
|w| ≤ 0.02. The control input is assumed to be bounded by
bmax = 1.1 and bmin = 0.8 so that β = 1.17. For robustness,
the gain K is:

K ≥ β(|w|+ η) + (β − 1)|CL| ≈ 0.11
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Sliding Mode Results

The sliding mode control was implemented in Matlab. The
schematic is shown in Fig. 20.
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Fig. 20 Sliding Mode Control: Matlab Schematic

The initial simple testcase is used to establish the stability
performance of the control law. Figure 21 shows the system
response to an initial displacement of 1 unit. This initial con-
dition is outside the limit cycle’s domain of attraction. The
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Fig. 21 Sliding Mode: Stability Performance

sliding mode control works as expected. The initial reaching
phase occurs within about 1 non-dimensional second. The
sliding phase requires approximately 25 seconds to reach 90
percent of the steady state displacement. The phase plane
plot in Fig. 21 shows both the reaching and sliding portions
of the stabilization.
The next testcase evaluates the stability performance with

the presence of noise. Random noise with maximum ampli-
tude of 0.02 is input directly into the CL moment. Figure 22
shows the system response to an initial displacement of 1
unit with noise. Again, the sliding mode control provides
excellent stabilization.
The next testcase evaluates the tracking ability of the

control law. Two tracking signals are tested. First, a step
tracking signal is shown in Fig. 23. The step intrinsically
contains infinite derivatives, so the control law attempts to
provide as much control power as possible. Otherwise, the
tracking performance is good. Again, the motion follows the
sliding surface as seen in the phase plane plot. Tracking with
noise is shown in Fig. 24. Again, the control system tracks
to the desired signal.
Second, a frequency swept chirp is shown in Fig. 25. The

desired track and the actual system response lie almost to-
gether. The actual system is slightly out of phase with the
desired signal, but otherwise the tracking is excellent. In-
terestingly, the chirp displacement is 1.0. This is almost
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Fig. 22 Sliding Mode: Stability Performance with Noise
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Fig. 23 Sliding Mode: Step Tracking Performance
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Fig. 24 Sliding Mode: Step Tracking Performance with
Noise

twice the limit cycle’s amplitude. Chirp tracking with noise
is shown in Fig. 26. Again, the sliding mode control tracks
the desired signal nicely.
For comparison, Fig. 27 shows the controls-off system with

noise starting from the origin. The noise magnitude was de-
creased to 0.005, otherwise the system exits the limit cycle
region and diverges. When the noise level remains at 0.02,
the system goes unstable within 2 actual seconds. The slid-
ing mode control allows the system to track a desired signal
well outside the open-loop stability region with 4 times more
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Fig. 25 Sliding Mode: Chirp Tracking Performance
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Fig. 26 Sliding Mode: Chirp Tracking Performance with
Noise
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Fig. 27 Open Loop with Noise

noise than allowed for passive stability.

Control Lyapunov Function
The objective is to design a control law that automatically

satisfies a candidate Lyapunov function. The state space
representation of the equations of motion are:

ẋ1 = x2

ẋ2 = Q
(
a1x1 + a2x2 + a3x

3
1 + a4x

2
1x2 + a5x1x

2
2

)
+Qu

Concentrate on ẋ2 and evaluate the individual terms for
their contribution to stability. Assume that the angle of
attack is over 15 degrees which gives consistent coefficient
signs for ai.

|a1| < 0, |a2| > 0, |a3| > 0, |a4| < 0, |a5| > 0

Evaluate individual terms to establish if the term is stable
or unstable. The objective is to keep the stable terms and
cancel only the unstable terms. x1 and x

3
1 terms correspond

to restoring forces and are stabilizing if negative. x2 terms
correspond to damping forces and are stabilizing if negative.
The x2

1x2 term is tricky. However, x2
1 is always positive, so

the term acts as a nonlinear damping. Again, a negative
term is stabilizing. For the same reasons, x1x

2
2 is stabilizing

with a negative term.

ẋ2/Q = a1x1︸︷︷︸
good

+ a2x2︸︷︷︸
bad

+ a3x
3
1︸︷︷︸

bad

+ a4x
2
1x2︸ ︷︷ ︸

good

+ a5x1x
2
2︸ ︷︷ ︸

bad

+u

The objective is to synthesize a control law that cancels
the bad terms. Further inspection shows that the resulting
system —including the new control law— has no explicit
linear damping term from x2. Adding this damping term
yields the following control law:

u = −
(
a2x2 + a3x

3
1 + a5x1x

2
2

)
− ζx2

The combined system with the control law is:

ẋ1 = x2

ẋ2 = Q
(
a1x1 + a4x

2
1x2 − ζx2

)
From inspection with a simple Lyapunov Function (V =
1/2x2

1 + 1/2x2
2), the new system is UASIL. The critical as-

sumption for stability concerns the control power available.
The control law depends on the cube of roll angle. Large
unwanted roll angles will require large control inputs.
The CLF control law is implemented in Matlab as given

in Fig. 28. The overall control law is simple and easy to
implement.
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Fig. 28 CLF Schematic

The first test contains a clean input —no noise— with an
initial condition followed by step input. The initial condition
tests the stabilization performance. The step input tests the
tracking performance. Figure 29 gives the system response.
The control law stabilizes the system to the origin but does
not converge to the tracking signal. The problem occurs for
the same reason the linear control scheme failed to converge
to a tracking signal.
The second test is a noisy roll moment with an initial

condition followed by a tracking step. The noise has a max-
imum magnitude of 0.02. Again, the control law converges
the system to the origin but does not provide good tracking.

Including a simple integral control should assist with con-
vergence to the tracking inputs. However, larger tracking
inputs cause unstable oscillations from the overshooting in-
tegral control. The actual tracking response for this control
law remains poor even with adding integral control.

Conclusions
Delta wing aerodynamics are complicated. The objective

of this project was to analyze and control a simple analytical
roll model.
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Fig. 29 CLF Tracking
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Fig. 30 CLF Tracking with Noise

The first difficulty is finding a good system model for the
aerodynamics. Comparison between a physically consistent
roll moment model and the selected model indicates possible
restrictions on the selected model’s operating range.
The traditional phase plane analysis techniques and exis-

tence methods indicated the overall system properties with-
out solving the second order differential equation for roll.
The phase plane plots showed the entire system behavior in
a particular region.
The describing function approach for finding limit cycle

amplitudes and frequencies gave accurate predictions. The
limit cycles were almost perfectly circular, so the describing
function approach works well for this particular problem.
Linear control laws allowed for good stabilization but not

good tracking. The linear control laws give smooth control
inputs unlike the nonlinear control laws. Nonlinear control
laws gave good stabilization and tracking performance. In
particular, the sliding model control allowed for robust per-
formance.
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