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Abstract 
A finite difference one-dimensional wave equation solver was developed to solve forced and free 
vibrations of an antenna wire. Four testcases are presented to determine the vibration properties 
and to visualize the resulting mode shapes. Conclusions are made concerning the applicability of 
the numerical method. 

Introduction 
The objective is to computationally solve the transverse vibration of a low-frequency antenna 
wire. The fundamental governing equation will be the one-dimensional wave equation for 
strings.  

First, wave equation theory will be reviewed. Then, the computer program will be discussed. 
Next, results will be presented. Finally, conclusion will be made.  

Theory 

Wave Equation 
The wave equation describes many physical systems. These systems include acoustic wave 
propagation, string vibrations, axial rod vibrations, drumhead vibrations and others. The general 
wave equation is hyperbolic partial differential equations of at least two variables. A 
representative form is given below.  
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For taut string vibrations, the governing one-dimensional wave equation [2] is derived from a 
force balance along a segment of the string. The governing equation is given below. 
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The dimensional frequency term, 1/c2, is determined by the string’s tension and unit mass. 

ρ/Tc =  



Exact Solution 
From theory, it can be shown [2] that any function satisfies the governing equation provided that 
the function consists of a traveling wave. Thus, any function of the following form holds! 
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For harmonic solutions, the traveling wave solution is commonly transformed to a standing wave 
solution. The following expression shows a standing wave solution. 
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Because the system is linear, an arbitrary number of solutions also hold. The following Fourier 
series allows an arbitrary function to be expressed as a sum of harmonics.  
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Finite Difference Form 
A finite difference form of the governing equation was created by applying the proper 3 point 2nd 
derivatives in the time and space directions [1]. The finite difference form is given below. Notice 
that +

Py  is the y at the advanced time and −
Py  is the y at the old time.  
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When rearranged, the equation is non-dimensionalized by the problem parameters x∆ , c and t∆ . 
The rearranged form is given below.  
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When 222 tcx ∆∆  is set to unity, the expression reduces to a simple time-step-limited form. This 
limiting case will be the general hyperbolic update equation. The equation is given below. 
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The update equation only requires the neighboring values at the current time and one old time 
value.  

For the initial step, an old time value is not known. Thus, the starting expression below is used to 
generate the first time advance when the solution starts from rest [1]. 
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Solution Method 
A computer program was written in Visual Basic to solve the hyperbolic wave equation for one 
dimension. The program is listed in the Appendix. The general program steps are given below. 

1. Problem Initialization The program initializes the variables. 



2. Read Starting Values Initial Values are read-in. 
3. Advance First Iteration The program advances with the special starting equation. 
4. Time Loop The time advance loop is entered 
5. Update Equation The general update equation sweeps over the interior points 
6. Advance Solution The solution values are updated for the next time step. 
7. Write Out The current solution values are output to the spreadsheet. 

Results 
This project investigates the vibration and forced response of a long-wire antenna at the author’s 
home. The antenna is 14 gauge copper coated steel wire that is 150 feet long. The wire is strung 
between a sturdy pole and a flexible tower. The antenna wire is tensioned to 50 pounds. The wire 
weighs 0.012 pounds per linear foot.  This project will investigate the wave speed and wave 
shape of the antenna wire.  

Wave Speed 
The first objective is to find the wave speed. From theory, the wave speed is ρ/T  or 
approximately 260 feet per second. With a total traveling length of 300 feet, a wave will take 
slightly over 1 second to complete a trip.  

From previous experimentation, it was estimated that a wave required approximately 1 second to 
return to the sender. The wave speed approximately matches experimental values. 

The computations predict a wave traveling 150 feet in 0.5769 seconds. This is 260 feet per 
second. 

Wave Shape 
Finally, the several wave distributions were determined. Shapes were found for the fundamental 
frequency, the first harmonic, a transient case and a pulse function. 

Fundamental Frequency 
Next, the string’s fundamental frequency is determined. Determining the frequency from 
experiment is trivial. The frequency is the inverse of period or approximately 1 Hz. 

From the harmonic solution given above, the frequency is, 
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For the computational test, the program started with one half of a sine wave. Figure 1 shows the 
computed displacement contours.  

 
Figure 1. Fundamental 

Clearly, the solution is the fundamental frequency. Each cycle requires 1.15 seconds. This is a 
frequency of 0.867 Hz. The computer code is working properly.  

First Harmonic 
This test determines the wave shapes for the first harmonic (twice fundamental frequency). 
Figure 2 shows the wave pattern for the first harmonic. 

 
Figure 2. First Harmonic 

Notice that increasing the temporal frequency increases the spatial frequency. The solution starts 
and continues with all of the starting transients damped out. This test approximates the antenna 
wire vibrating with stationary end points.  



Transient First Harmonic 
This test determines the wave response to the starting transients. A sinusoidal forcing function on 
the bottom creates a wave pattern response. The forcing function frequency is exactly that of the 
string’s first harmonic. Figure 3 shows the transient startup case. Time advances from left to 
right. 

 
Figure 3. Transient 

This test approximates the antenna vibration caused by the oscillating tower. The forcing 
function appears as a traveling wave until the top reflection causes standing waves to be visible. 
Notice that the standing waves are complete by one reflection time. The traveling waves are still 
present, however they combine to form standing waves.  

Pulse Wave 
Because the governing equation allows any traveling wave as a solution, the forcing function can 
incorporate any waveform or frequency. Figure 4 shows the response to two pulse waves. 

 
Figure 4. Pulse Wave 

Notice that the reflected wave has an inverted amplitude. This is due to the no-movement 
boundary condition at the top.  Partial destructive waves can occur where the wave fronts meet. 
This case approximates the human generated waves in the antenna system.  

This test shows how the computer model corresponds to reality. In reality, a single pulse will 
become diffused and less distinct as the wave progresses along the wire. After a few cycles, a 



single pulse will start degenerating into several harmonics. This is probably due to two 
processes: boundary conditions and wire stiffness. The first process occurs because the boundary 
conditions are not completely fixed on both ends. There is some damping associated with the 
pulse reflecting off the end points. The second process occurs because the wire has stiffness, 
which makes the wire act as a beam. 

Conclusions 
A finite difference 1D string vibration solver was successfully implemented. A Visual Basic 
program was used in Excel for the computations. Four testcases were used to show the wave 
properties and the wave shapes of forced and free vibration. 

The results show that the finite difference wave equation solver works surprisingly well. The 
frequencies and wave shapes match those of an exact solution. A transient testcase visually 
presented the transformation of a two traveling waves into a single standing wave. A pulse 
function shows that arbitrary traveling waves satisfy the wave equation. These computations 
only consider perfect boundary conditions, which do not occur in reality. 

The wave equation solver performed surprising well. Frequencies and wave shapes for steady 
state and transient vibrations were easily programmed and solved. The resulting solutions were 
theoretically correct.  
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Appendix: Computer Code 
Option Explicit 
 
Sub main() 
' Project 3 
' MAE 5093 
' Charles O'Neill #8 
' 7 June 2002 
 
'Initilization 
Dim Y(100) As Double, YNEW(100) As Double, YOLD(100) As Double 
Dim i As Integer, imax As Integer, imm1 As Integer 
Dim iter As Integer, itermax As Integer 
Dim t As Double, delx As Double, delt As Double, c As Double 
 
' 
c = 260 
imax = 15 
imm1 = imax - 1 
itermax = 200 
delx = 10 
delt = delx / c 
 
'Read in Starting Values 
  For i = 1 To imax 
    YOLD(i) = ActiveSheet.Cells(6, 5 + (i - 1)) 
  Next i 
 
'Advance First Time (Special Advance) ------------------- 
  For i = 2 To imm1 
    Y(i) = 0.5 * (YOLD(i + 1) + YOLD(i - 1)) 
  Next i 
' Write Out Values 
  ActiveSheet.Cells(7, 4) = delt 
  For i = 1 To imax 
    ActiveSheet.Cells(7, 5 + (i - 1)) = Y(i) 
  Next i 
 
 
'Advance Time -------------------------------------------- 
For iter = 2 To itermax 
   
' Sweep Field 
  For i = 2 To imm1 
'   Update Equation 
    YNEW(i) = Y(i + 1) + Y(i - 1) - YOLD(i) 
  Next i 
   
' Advance Solution Values 
  For i = 2 To imm1 
    YOLD(i) = Y(i) 
    Y(i) = YNEW(i) 
  Next i 
   
' Write Out Values 
  ActiveSheet.Cells(6 + iter, 4) = delt * iter 
  For i = 1 To imax 
    ActiveSheet.Cells(6 + iter, 5 + (i - 1)) = Y(i) 
  Next i 
 
Next iter 
End Sub 
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