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Power Balance in Aerodynamic Flows

Mark Drela
∗

MIT Department of Aeronautics and Astronautics, Cambridge, MA 02139

A control volume analysis of the compressible viscous flow about an aircraft is per-

formed, including integrated propulsors and flow control systems. In contrast to most

past analyses which have focused on forces and momentum flow, in particular thrust and

drag, the present analysis focuses on mechanical power and kinetic energy flow. The

result is a clear identification and quantification of all the power sources, power sinks,

and their interactions which are present in any aerodynamic flow. The formulation does

not require any separate definitions of thrust and drag, and hence it is especially useful

for analysis and optimization of aerodynamic configurations which have tightly integrated

propulsion and boundary layer control systems.

Nomenclature

ρ, µ fluid density, viscosity
b, c wing span and chord
p, pt static pressure, total pressure
n̂ unit normal vector, out of control volume
t time
u, v, w perturbation velocities
u, w shear layer velocities (in shear layer section)
x, y, z cartesian axes
~V fluid velocity (= (V∞+u)x̂ + vŷ + wẑ)

V 2 fluid speed squared (= ~V · ~V )
Vn Side Cylinder normal velocity (= vny + wnz)
¯̄τ viscous stress tensor
~τ surface viscous stress vector (= ¯̄τ · n̂)
Cf skin friction coefficient
CD dissipation coefficient
H boundary layer shape parameter (= δ∗/θ)
H∗ kinetic energy shape parameter (= θ∗/θ)
θ , δ∗ momentum, displacement thicknesses
θ∗, δ∗∗ kinetic energy, density-flux thicknesses
δK wake kinetic energy excess thickness
Reθ mom. thickness Reynolds number (= ueθ/ν)
Rec chord Reynolds number (= V∞c/ν)
ṁ mass flow
Fx, Fz total streamwise, normal aerodynamic forces
Fu streamwise force from axial velocity u
Fv streamwise force from transverse velocities v, w
Fn streamwise force from lateral outflow velocity Vn

Dp profile drag
Di induced drag
Dw wave drag

Ėa axial kinetic energy deposition rate

Ėv transverse (vortex) kinetic energy deposition rate

Ėp pressure-work deposition rate

Ėw lateral wave-outflow energy deposition rate
PS shaft power
PV volumetric power
PK kinetic energy inflow rate

∗Terry J. Kohler Professor, AIAA Fellow
Copyright c© 2008 by Mark Drela. Published by the American

Institute of Aeronautics and Astronautics, Inc. with permission.

T thrust

Ė mechanical energy outflow rate
Φ dissipation rate
Γ airfoil circulation
dS surface element of control volume
dV volume element of control volume
W aircraft weight
γ climb angle

ḣ climb rate (= V∞ sin γ)
( )∞ freestream quantity
( )B quantity on body surface
( )O quantity on outer boundary
( )SC

O
quantity on Side Cylinder

( )TP

O
quantity on Trefftz Plane

( )e shear layer edge quantity

Introduction

Numerous previous workers have analyzed the flow
about an aerodynamic body via a Control Volume ap-
proach, in order to relate the body forces to the wake
and the flow farfield. The early work of Betz,1 Jones2

and Oswatisch3 focused on drag, while Maskell4 con-
sidered both lift and drag for incompressible flow, and
Kroo5 reviewed various techniques for induced drag
prediction and reduction. The recent efforts of Van-
Dam,6 Giles and Cummings,7 and Kusunose8 have
treated the general compressible case, also with en-
thalpy addition from engines. More recently, Méheut
and Bailly9 have done an overview and comparison of
most of the previous analyses and approaches for the
drag component, and introduce their own refinement.
Spalart10 performs an even more detailed analysis for
the incompressible case using inner and outer expan-
sions of the far wake, and identifies a higher-order
farfield term in the overall axial force which has been
previously neglected.

The goals of the previous developments have been
to allow accurate wind tunnel drag measurements from
wake surveys, with or without wind tunnel wall inter-
ference, and also to allow accurate drag computation
from CFD results despite the presence of imperfect

1 of 13

American Institute of Aeronautics and Astronautics Paper 09-3762

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
A

L
A

B
A

M
A

 o
n 

M
ay

 1
9,

 2
01

5 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

00
9-

37
62

 



freestream boundary conditions and numerical errors.
Additional benefits have been the clear identification
of drag-producing sources in the flow, and relation of
experiments and CFD results to other classical analy-
ses such as lifting-line theory.

All the previous work has focused almost exclusively
on momentum-equation analysis, giving relations for
the aerodynamic lift and drag forces. The implied
propulsive power was then simply defined to be drag ×
velocity. Thermodynamic and state relations were also
introduced, but only as a means to relate velocity and
pressure to enthalpy and entropy in the downstream
wake. In contrast, the present analysis will begin with
the mechanical-energy equation from the outset, giv-
ing relations between mechanical power and dissipa-
tion in the flowfield. The result is especially applicable
for evaluation of complex aerodynamic configurations,
especially ones with tightly-integrated propulsion and
boundary layer control systems.

It is worthwhile here to mention related work done
for turbomachinery applications. Denton and Cump-
sty11 and also Denton12 examined the dissipation and
associated entropy and loss generation mechanisms on
turbomachinery blading, wakes, and tip gaps. Greitzer
et al13 also did an overview and further analyses of var-
ious flow situations. In the context of the present work,
the previous turbomachinery work would be particu-
larly relevant for estimating the losses of flow control
systems and associated ducts and impellers.

Control Volume Definition

Figure 1 shows the Control Volume (CV) surround-
ing the flow around an aerodynamic body. The CV
boundary S is partitioned into an inner boundary SB

lying on the body surface, and an outer boundary SO

lying in the flowfield. Together with Gauss’s Theorem
we therefore have

∫∫∫

∇·( ) dV = ©

∫∫

( )·n̂ dS

= ©

∫∫

( )·n̂ dSB + ©

∫∫

( )·n̂ dSO (1)

where () is any field vector quantity. The outer bound-
ary SO portions will be assumed to be oriented so that

1a) The downstream Trefftz Plane portion STP

O
is ori-

ented perpendicular to ~V∞, and

1b) The Side Cylinder portion SSC

O
is parallel to ~V∞.

These restrictions will considerably simplify most of
the integral expressions to be derived.

The distance to the outer boundaries is completely
arbitrary. However, it will be highly advantageous to
place them so that

2a) All vortical fluid leaves via STP

O
, while any super-

sonic oblique waves which are present leave via
SSC

O
, and

2b) The distance to the Side Cylinder is at least sev-
eral times the wing span of the configuration.

Unlike 1a) and 1b), these 2a) and 2b) are not hard
requirements, but they do bring the great advantage
of isolating different physical flow processes in separate
terms in the equations.

m
.

fuel

n

n

d

SB

dSB

SO

V

V

n
dSO

x

z

y

dSO
TP

V
u

SB

m
.

fuel Trefftz Plane

Vn

dSO

V Vn
Side Cylinder

SC

Fig. 1 2D cutaway view of 3D Control Vol-
ume surrounding an aerodynamic body. The inner
boundary SB lies on the body, and may cover mov-
ing elements (top propulsor), or hide them inside
(bottom propulsor). Vortex-wake velocities v, w on
Trefftz Plane are not shown.

Periodic-Unsteady Treatment

The present work will address steady or periodic-
unsteady aerodynamic flows. The latter case must
be addressed, because mechanical propulsors, im-
pellers, or even flapping wings are treated as part
of the flowfield. Their periodic unsteadiness pro-
duces nonzero nonlinear-term contributions to the
time-averaged flow.

Consider the periodic unsteady velocity components
ũ, ṽ, which can be expanded about their mean values
ū, v̄ in the form

ũ(x, y, z, t) = ū(x, y, z) +

∞
∑

k=1

uk(x, y, z) sin
2πkt

tp
(2)

ṽ(x, y, z, t) = v̄(x, y, z) +

∞
∑

k=1

vk(x, y, z) sin
2πkt

tp
(3)

where tp is the period. Time-averaging the velocities
and their quadratic products then gives

u(x, y, z) ≡
1

tp

∫ tp

0

ũ dt = ū (4)

uv(x, y, z) ≡
1

tp

∫ tp

0

ũṽ dt = ūv̄ +
∞

∑

k=1

1
2
ukvk (5)

which mimics the Reynolds-averaging procedure for
turbulent flows. Similar expressions can be obtained
for cubic or higher products. Also, phase differences
can be introduced by adding cosine-expansion sums,
which will also result in additional coefficient-product
sums.
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In brief, product quantities such as “uv” imply the
presence of unsteady-coefficient product sums such as
∑

1
2
ukvk, etc, which will be omitted for brevity in the

expressions. These omitted sums are expected to be
important only for cases with large-scale unsteadiness,
such as flapping wings. For such cases, the missing
sums can then always be added to the various CV
quantity spatial integrands in order to obtain the exact
time-average form.

Mass and Momentum Analysis

Although this work will focus primarily on a me-
chanical energy analysis, a brief mass and force anal-
ysis is necessary to simplify the later results.

Mass relation

The time-averaged mass continuity equation for
fluid flow is as follows.

∇ ·
(

ρ~V
)

= 0 (6)

As described in the previous section, the unsteady-
coefficient product sum

∑

1
2
ρk

~Vk is implicitly present
inside the divergence, but has been omitted for clar-
ity. Forming the volume integral

∫∫∫

{equation (6)} dV
over the CV and invoking relation (1) then gives the
following integral mass equation.

ṁB = ṁO (7)

ṁB = −©

∫∫

ρ~V · n̂ dSB = ṁfuel ≃ 0 (8)

ṁO = ©

∫∫

ρ~V · n̂ dSO = ṁfuel ≃ 0 (9)

These will be used only to manipulate and simplify
other subsequent integral relations. As indicated, the
fuel mass flow will be considered negligible.

Momentum and force relations

The time-averaged momentum equation in diver-
gence form is as follows.

∇ ·
(

ρ~V ~V
)

= −∇p + ∇ · ¯̄τ (10)

Forming the volume integral
∫∫∫

{equation (10)} dV
over the CV and invoking relation (1) then gives the
integral momentum equation

~FB = ~FO
(11)

where the following definitions have been made.

Net force on body, including propulsors:

~FB = ©

∫∫

[

(p n̂ − ~τ ) + ~V ρ~V · n̂
]

dSB (12)

Outer-boundary force, momentum flow:

~FO = ©

∫∫

−
[

(p−p∞) n̂ +
(

~V−~V∞

)

ρ~V · n̂
]

dSO (13)

In the ~FB definition, the surface shear stress vector
~τ = ¯̄τ · n̂ has been introduced for convenience. In the
~FO definition, p has been replaced with p−p∞, which
is permissible because of the general relation

©

∫∫

n̂ dS = 0 (14)

for any closed surface. Also, ~V has been replaced with
~V −~V∞ which is permissible because of the mass rela-
tion (9).

The x-axis is now chosen to lie along the flight path.
Then for steady unbanked flight at some climb angle
γ, in a still atmosphere, we have

~FB = ~FO = Fx x̂ + 0 ŷ + Fz ẑ (15)

−Fx = W sin γ (16)

Fz = W cos γ (17)

where Fx is the net streamwise aerodynamic force, Fz

is the net normal aerodynamic force, and W is the
weight. Fx will now be related to the outer-boundary
integral in the ~FO definition.

Streamwise Force Decomposition

With the Trefftz Plane and Side Cylinder bound-
aries defined perpendicular and parallel to ~V∞, the
streamwise x-component of the outer force (13) re-
duces to the following.

Fx =

∫∫

−
[

(p−p∞) + ρu (V∞ + u)
]

dSTP

O

+

∫∫

−ρu Vn dSSC

O

(18)

To put the first integral above into a more convenient
form for later use with the kinetic energy analysis, we
make the exact substitution

V∞ u = 1
2

(

V 2−V 2
∞

)

− 1
2

(

u2+v2+w2
)

(19)

which gives a natural decomposition of the net stream-
wise force into three components:

Fx = Fu + Fv + Fn (20)

Fu =

∫∫

[

(p∞−p) + 1
2
ρ
(

V 2
∞
−V 2

)

− 1
2
ρu2

]

dSTP

O
(21)

Fv =

∫∫

1
2
ρ
(

v2+w2
)

dSTP

O
(22)

Fn =

∫∫

−ρu Vn dSSC

O
(23)

The Fu component is the net “profile drag – thrust”
force associated with the axial perturbation velocity u.
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For low speed flow and small u ≪ V∞, it is effectively
a total pressure defect

Fu ≃

∫∫

[

pt∞−pt

]

dSTP

O
− O

(

ρu2
)

(24)

whose integrand is negligible outside the viscous wakes
and propulsion plumes. In contrast, the bulk of the
Fv integrand in (22) comes from the trailing-vortex
potential crossflow over the entire Trefftz Plane, and
hence is closely related to the induced drag Di which
will be discussed later. The remaining Fn term is zero
for a sufficiently distant Side Cylinder in subsonic flow,
and equal to the farfield wave drag Dw in supersonic
flow which will also be discussed later.

In most force analyses of aircraft, Fu is typically
separated into profile drag and thrust.

Fu = Dp − T (25)

However, this decomposition is often ambiguous for
aircraft whose propulsion system is closely integrated
with the airframe, and for aircraft which employ pow-
ered lift or boundary layer control systems. It will be
seen that in the present power-based analysis, decom-
position (25) is entirely unnecessary.

Most of the previous workers mentioned in the In-
troduction have further manipulated the Fu expression
into equivalent forms in terms of entropy and total
enthalpy. The Fv or Di expression has also been
manipulated into an equivalent form in terms of the
crossflow streamfunction and the streamwise vorticity.
Here these alternative forms will not be used, since
they are not particularly useful in the subsequent me-
chanical energy analysis.

Mechanical Energy Analysis
Mechanical energy relation

Forming the dot product {equation (10)} · ~V gives
the mechanical (kinetic) energy equation in divergence
form.

∇ ·
(

ρ~V 1
2
V 2

)

= −∇p · ~V + (∇ · ¯̄τ ) · ~V (26)

Using the general vector identities

∇ ·
(

p~V
)

= ∇p · ~V + p∇·~V (27)

∇ ·
(

¯̄τ · ~V
)

= (∇ · ¯̄τ) · ~V + (¯̄τ · ∇) · ~V (28)

the right side of equation (26) is expanded as follows.

∇·
(

ρ~V 1
2
V 2

)

= −∇·
(

p~V
)

+ p∇·~V

+ ∇·
(

¯̄τ · ~V
)

− (¯̄τ · ∇) · ~V (29)

We now form the integral
∫∫∫

{equation (29)} dV over
the entire CV, and apply relation (1) to give the fol-
lowing integral mechanical power balance equation

PS + PV + PK = Ė + Φ (30)

where the five terms are defined below. The substitu-
tions p → p−p∞ and V 2 → V 2−V 2

∞
have been made

as in the momentum equation analysis.
The three terms on the left side of (30) represent the

total mechanical power supply, production, or inflow,
ultimately from fuel, batteries, or other sources. The
two terms on the right represent power consumption
or outflow, via various physical processes. The balance
holds instantaneously in steady flow, or as a period-
average in unsteady periodic flow. A major goal of the
present paper is the determination of the total power
required for flight, via the prediction and estimation of
the righthand side terms in equation (30) or its equiv-
alents to be derived later.

Net propulsor shaft power:

PS = ©

∫∫

[−(p − p∞) n̂ + ~τ ] · ~V dSB (31)

This is the integrated (force)·(velocity) on all moving
body surfaces, and hence is the net total propulsor
shaft power or wing-flapping power for all the compo-
nents on the aircraft which are covered by the body
control volume surface SB. If individual turbomachin-
ery component blading is defined to be covered by SB ,
such as for the upper propulsor in Figure 1, then PS

will include positive contributions from a compressor,
and negative contributions from a turbine. If the air-
craft has powered lift or other boundary layer control
systems whose impeller blades are covered by SB , then
PS will also include the shaft power of the impellers.

Net pressure-volume “P dV” power:

PV =

∫∫∫

(p − p∞)∇ · ~V dV (32)

This is a volumetric (or “P dV”) mechanical power,
provided by the fluid expanding against atmospheric
pressure. Its integrand will have strong net contribu-
tions at locations wherever heat is added at a pressure
far from ambient, for example if a turbomachinery
combustor is chosen to be inside the CV, or if ex-
ternal combustion is present as in some hypersonic
vehicles. In supersonic wave regions the PV integrand
may be nonzero, but will cancel when integrated over
all points whose streamlines reversibly return to the
freestream state before exiting the CV. Obtaining this
cancellation is the main motivation behind defining the
CV such that the wave system exits through the Side
Cylinder, and ahead of the Trefftz Plane.

Net propulsor mechanical energy flow rate into the CV:

PK = ©

∫∫

−
[

(p−p∞) + 1
2
ρ
(

V 2−V 2
∞

)

]

~V · n̂ dSB (33)

This is the net pressure-work and kinetic energy flow
rate across SB and into the CV. This accounts for
power sources whose moving blading is not covered by
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SB, or whose combustors are outside the CV, such as
the bottom propulsor in Figure 1. Note that n̂ points
into the propulsor, so that the nozzle has ~V ·n̂ < 0, and
PK > 0 for a propulsor with net thrust, as expected.

Mechanical energy flow rate out of the CV:

Ė =

∫∫

[

(p−p∞) + 1
2
ρ
(

V 2−V 2
∞

)

]

(V∞+u) dSTP

O

+

∫∫

[

(p−p∞) + 1
2
ρ
(

V 2−V 2
∞

)

]

Vn dSSC

O

(34)

This is the net pressure-work rate and kinetic energy
flow rate out of the CV, through the Trefftz Plane and
Side Cylinder boundaries.

Viscous dissipation rate:

Φ =

∫∫∫

(¯̄τ ·∇) ·~V dV (35)

This measures the rate at which kinetic energy of the
flow is converted into heat inside the CV. The dissi-
pation mechanism is the viscous stresses ¯̄τ working
against fluid deformation, the latter related to the
velocity gradients∇~V . In practice, most of the dissipa-
tion occurs in the thin boundary layers on the aircraft
surface, including the propulsion elements, and also in
shock waves. If powered lift or boundary layer control
systems are present, then the air in the suction or blow-
ing plumbing can be considered as part of the flowfield,
and the dissipation inside the plumbing would con-
tribute to the overall Φ. Additional dissipation also
occurs in the downstream wakes and jets, as shown in
Figure 2, and discussed later.

Φsurface
Φwake

Φvortex

Φvortex
ΦjetΦprop

     Surface 
boundary layer
   dissipation

      Free 
shear layer
dissipation

     Free 
   vortex
dissipation

Fig. 2 Dissipation in various flow regions inside
the CV. Not shown is additional dissipation which
may occur inside any flow control system ducting.
Also not shown is dissipation in shock waves.

Energy outflow rate decomposition

The total energy rate Ė definition (34) captures the
outflow of all mechanical energy regardless of type or
origin, making the power balance equation (30) some-
what difficult to apply and interpret. To clarify the
situation, we now use the Fx definition (18), the weight
relation (16), and the velocity relation (19), and ex-
actly decompose Ė into five separate components,

Ė = Wḣ + Ėa + Ėv + Ėp + Ėw (36)

each of which has a relatively clear physical origin.
The result is the following alternative and equivalent
form of the integral power balance equation,

PS + PV + PK = Wḣ + Ėa + Ėv + Ėp + Ėw + Φ

(37)
where the five Ė components are defined below.

Potential energy rate:

Wḣ = −FxV∞ = WV∞ sin γ (38)

This is simply the power consumption needed to in-
crease the aircraft’s potential energy, and becomes a
power source during descent. The decomposition (37)
therefore isolates this reversible Ė component, leaving
the remaining four components to capture all the irre-
versible outflow losses.

Wake streamwise kinetic energy deposition rate:

Ėa =

∫∫

1
2
ρ u2 (V∞ + u) dSTP

O
(39)

This is the rate of streamwise kinetic energy being de-
posited in the flow out of the CV, through the Trefftz
Plane. Note that this is always positive, both in the
case of a propulsive jet where the axial perturbation
velocity u is positive, and also for a wake where u is
negative (assuming no reverse flow in the Trefftz Plane,
or V∞+u > 0).

Wake transverse kinetic energy deposition rate:

Ėv =

∫∫

1
2
ρ

(

v2 + w2
)

(V∞ + u) dSTP

O
(40)

This is the rate of transverse kinetic energy being de-
posited in the flow out of the CV. For u≪V∞, v, w, this
is in fact the same as V∞ times the induced drag Di,
for the case of a relatively nearby Trefftz Plane where
the vortex wake has not yet dissipated significantly.

Wake pressure-defect work rate:

Ėp =

∫∫

(p − p∞) u dSTP

O
(41)

This is the rate of pressure work done on the fluid
crossing the Trefftz Plane at some pressure p different
from the ambient p∞.

Wave pressure-work and kinetic energy outflow rate:

Ėw =

∫∫

[

p−p∞ + 1
2
ρ
(

u2+v2+w2
)

]

Vn dSSC

O
(42)

This is the pressure work rate and kinetic energy de-
position rate of the fluid crossing the Side Cylinder.
Normally this will be significant only in supersonic
flows, in which the Ėw integrand on SSC

O
is dominated
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by the oblique wave system, whose integrated contri-
bution to Ėw is equal to the wave-drag power.

For subsonic 3D flows, the Ėw integrand for a lift-
ing wing rapidly decays as 1/r4 and hence becomes
negligible for a sufficiently distant Side Cylinder. For
a relatively nearby Side Cylinder the Ėw integral is
nonzero for a subsonic wing, but in this case it merely
accounts for the transverse kinetic energy not fully
captured in Ėv because of the small Trefftz Plane
which accompanies a nearby Side Cylinder.

Energy-Outflow Estimation and

Characterization

The power balance relation (37), together with the
Ė component definitions above, is exact as written and
does not require identification of rotational and irro-
tational regions over the Trefftz Plane. However, it is
useful to briefly identify such regions in order to com-
pare relation (37) to previous force-based analyses.

Potential-flow regions in low speed flow

Outside of the viscous wakes and propulsion plumes,
the pressure defect in low speed flow is given by the
Bernoulli relation.

p − p∞ = − 1
2
ρ

(

V 2 − V 2
∞

)

= −ρV∞u − 1
2
ρ

(

u2+v2+w2
)

(43)

The sum of the three Trefftz Plane Ė components then
reduces exactly to the standard induced drag expres-
sion times V∞.

Ėa+Ėv+Ėp =

∫∫

1
2
ρ

(

v2+w2−u2
)

V∞ dSTP

O
(44)

= Di V∞ (pot. flow only) (45)

This sheds further light on the somewhat perplexing
−u2 term in the Di integrand, which seems to run
counter to kinetic energy arguments. The negative
sign originates from the pressure-work term Ėp, which
is negative and twice as large as the true axial ki-
netic energy loss term Ėa. The same pressure-work
mechanism was recently identified by Spalart10 via his
entirely different force-based analysis.

Wave system

For any small-disturbance Mach wave, the following
relations can be obtained from oblique-shock theory.

p − p∞ = −ρuV∞ − 1
2
ρu2M2

∞
(46)

u2M2
∞

= u2 + v2 + w2 (47)

The Ėw component then becomes

Ėw =

∫∫

−ρuVn V∞ dSSC

O
(48)

= Dw V∞ (49)

and as expected, the energy loss rate from the outgoing
wave system is simply the power needed to overcome
the farfield wave drag.

Inviscid flow examples – 2D airfoil and 3D wing

For the simple case of an inviscid low-speed 2D air-
foil, the perturbation velocities at distances greater
than the chord rapidly asymptote to those of a point
vortex having the airfoil’s circulation Γ. The energy
rate integrals can then be readily evaluated for an in-
finite Trefftz Plane at some location x > O(c),

Ėa =
ρV∞Γ2

8π

b

x
(50)

Ėv =
ρV∞Γ2

8π

b

x
(51)

Ėp = −
ρV∞Γ2

4π

b

x
(52)

Ėa + Ėv + Ėp = 0 (2D airfoil) (53)

where b is the arbitrary span of the integration. Al-
though the individual Ė components are quite large
near the airfoil due to their 1/x behavior, they sum
up exactly to zero. This can also be seen from the
original total Ė definition (34), in which the integrand
is zero for this constant total pressure case. This in-
viscid case also has Φ = 0, so the net required power
as given by (37) is zero as well, as expected.

Figure 3 compares the variation of the three Trefftz
Plane Ė components (50)–(52) for the 2D airfoil, with
the corresponding components for a lifting inviscid 3D
wing, the latter integrated numerically for a rigid wake
with spanwise elliptical loading.

x

x

.
Ep

.
Ep

E
.
v

E
.
v

.
Ea

.
Ea

b0.1b b0.2

E
.

E
.

+E
.

+a v p= 0

VDiE
.

E
.

+E
.

+a v p= 3D wing

2D airfoil

b0.3 0.4

Fig. 3 Energy loss rate components versus po-
sition of Trefftz Plane, for inviscid 2D airfoil and
inviscid 3D wing. For 2D airfoil, the total loss rate
is zero. For 3D wing, the total loss rate is constant
and equal to DiV∞. The individual Ėa, Ėv, Ėp terms
asymptote very rapidly in the 3D case.

In the 3D wing case the total energy loss rate is also
constant, but equal to DiV∞ rather than zero. In 3D
the individual Ė components also decay much faster
than in the 2D case, with each component very nearly
reaching its final value within a fraction of the span b.

Ėa + Ėv + Ėp = DiV∞ ∼ ρV∞Γ2 (3D wing) (54)
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In the subsequent discussions, these 2D and
3D potential-nearfield “transients” in the individual
Ėa, Ėv, Ėp components will be excluded, because they

cancel in the overall Ė sum.

Viscous flow power balance versus Trefftz Plane
location

It’s important to note that equation (37) holds for
any position of the Side Cylinder and Trefftz Plane
boundaries, provided Φ is defined as only the dissipa-
tion inside the CV. Figure 4 shows how the individual
terms in equation (37) vary as the Trefftz Plane is pro-
gressively moved downstream.

VDi

Φ
Φ

Φ

x

u −u ∼ 0−u ∼ 0

−∼ 0

Φsurface

Φvortex

Φwake+ Φjet

.
~ u2E

E
.

~ 2+v2 wE
.

−P
.

Wh

v, wv, w

a

v v

v, w

Fig. 4 Variation in power balance terms in equa-
tion (37), versus position of Trefftz Plane. Trans-
verse velocities of trailing vortices diffuse much
later than the axial velocities of propulsors and
wakes. Total dissipated power sum is unchanged.
The potential-nearfield contributions to Ėa, Ėv are
excluded, Ėp is not shown, and Ėw is assumed to
be zero.

The Ėa term defined by (39), intially equal to some
fraction of the net axial-force power FuV∞, decays rel-
atively quickly as the axial velocity perturbation u
decays by mixing and diffusion, with the lost energy
appearing as the Φwake + Φjet part of the overall dissi-
pation Φ. After a much greater distance downstream
the transverse velocities v, w of the trailing vortices
also eventually diffuse, and the transverse kinetic en-
ergy integral Ėv, initially equal to DiV∞, decays ac-
cordingly. Again, the dissipation Φ is correspondingly
increased by the Φvortex part, so that the total power
remains unchanged.

Dissipation Estimation and

Characterization

Dissipation in Trailing Vortices

As indicated by Figures 2 and 4, all power sources
PP ,PV ,PK in excess of the potential energy rate Wḣ
are eventually balanced by the dissipation Φ if the Tr-
efftz Plane is extended sufficiently far downstream. In
practice it is advantageous to place the Trefftz Plane
close enough so that the Ėv ≃ DiV∞ contribution from
the dissipation of trailing vortices can be kept separate
in the power balance in (37). The reason is that Di

can be reliably estimated by other relations, such as
the classical result for a planar elliptically-loaded wing

without thrust vectoring, for which Fz = L.

Di =
L2

1
2
ρV 2

∞
π b2

(55)

Hence, with such alternative Ėv calculation methods
being available, Ėv or Φvortex do not need to be calcu-
lated directly from their definitions.

Dissipation in Propulsor Jets

The jet dissipation Φjet of the isolated propulsor
indicated in Figure 2 represents the Froude propul-
sive (in)efficiency, and hence can be calculated from
the disk loading and actuator-disk theory, or from
propeller theory, or simply from known propulsor per-
formance.

Φjet = PS (1 − ηfroude) (56)

As with Φvortex, such alternative models eliminate the
need to calculate Φjet directly. If (56) is used, then it’s
simplest to lump it into the left side of equation (37)
by replacing PS with ηfroudePS.

Dissipation on Propulsor Blading

The Φprop in Figure 2 represents the dissipation in
the propulsor’s blading boundary layers, and is other-
wise known as “profile losses”. This can be computed
directly via integration over the blade surface using
the dissipation coefficient (discussed later), or by ra-
dial blade-element integration using the blade profile
drag coefficients, or simply by a known overall profile
efficiency if that’s available.

Φprop = PS (1 − ηprofile) (57)

Dissipation and Power Loss in Shock Waves

The presence of shock waves will make the various
terms in the power balance relation (37) have addi-
tional contributions. Figure 5 shows the various shocks
which might be present on a transonic or supersonic
aircraft. The losses of the nearby strong shocks are
best added via the dissipation term Φ, whereas the
losses of the distant waves are best added via the Ėw

term.

Nearby strong-shock losses:

The dissipation of a shock is given by

Φshock ≃

∫∫

∆pt
~V · n̂shock dSshock (58)

where the integration is over the shock surface, with
unit normal n̂shock. The total pressure drop ∆pt de-
pends on the normal Mach number M⊥ via standard
normal-shock relations.

Outer wave system losses:

The integrand in (58) scales as ∆pt ∼ (M⊥ − 1)3,
which becomes very small as the waves propagate away
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Φshock Φshock

V

shockn

dSO

dSshock

u, v, w

V

.
E

SC

w p p−

Fig. 5 Dissipation in strong shocks near aircraft,
and wave pressure-work and kinetic energy outflow
through the Side Cylinder.

from the aircraft, where M⊥ → 1. The dissipation
therefore requires a great distance to run to comple-
tion, and hence is better represented by the Ėw term
in the power balance (37), as discussed previously, and
estimated by (48). This Ėw can be determined by var-
ious wave drag Dw estimation methods, such as those
of Jones14 for linearized supersonic flow.

Dissipation in Shear Layers and Wakes

Since the components of Φ and Ė associated with
induced drag, propulsion losses, and shock waves can
be expressed or estimated as discussed above, we then
only need to consider the remaining dissipation compo-
nents Φsurface and Φwake, due to the surface boundary
layers and trailing wakes.

For the remainder of the paper we define x, y, z to
be the traditional locally-Cartesian shear layer coor-
dinates, where x, z lie on the surface and y is normal
to the surface and across the shear layer, as shown in
Figure 6. Also, u, w will denote the total x,z velocity
components.

x, u
z, w

y
ue

w

u

Fig. 6 Boundary layer profile on surface, with
locally-cartesian x, y, z axes. The x-axis is defined
to lie along edge velocity ue.

The integrand in the Φ definition (35), which in full
contains nine terms, reduces to only two dominant
terms in a 3D shear layer, or just one term in a 2D

shear layer.

Φ ≃

∫∫∫
(

τxy
∂u

∂y
+ τzy

∂w

∂y

)

dx dy dz (3D) (59)

Φ ≃

∫∫∫

τxy
∂u

∂y
dx dy dz (2D) (60)

A 2D shear layer is defined as one with a planar ve-
locity profile, or w =0. For brevity in the subsequent
discussion, the 2D form will be assumed. The w term
can always be added if needed to give the 3D form.

The shear stress consists of the laminar plus turbu-
lent Reynolds stress.

τxy = µ
∂u

∂y
− ρu′v′ (61)

Φ =

∫∫∫

[

µ

(

∂u

∂y

)2

− ρu′v′
∂u

∂y

]

dx dy dz (62)

Since −ρu′v′ in conventional shear layers has the same
sign as ∂u/∂y, the dissipation integrand is strictly pos-
itive, as expected.

Dissipation Coefficient:

For a shear layer, it is convenient to express Φsurface,
Φprop, or Φwake in terms of a dissipation coefficient
CD(x, z) defined for each point on the shear layer.

Φ =

∫∫

ρeu
3
e CD dx dz (63)

This is directly analogous to defining friction drag in
terms of a skin friction coefficient,

Df =

∫∫

1
2
ρeu

2
e Cf dx dz (64)

except that CD is nonzero on a wake.
Using CD rather than Cf has a number of advan-

tages:

• CD and Φ capture all drag-producing loss mech-
anisms. In contrast, Cf and Df still leave out the
pressure-drag contribution.

• CD and Φ are scalars, so the orientation of the
dx dz surface element in the (63) integral is imma-
terial. In contrast, (64) represents a force vector
integral, and as written is strictly correct only
for flat-plate surfaces aligned with the freestream
flow.

• CD is strictly positive, so there are no force-
cancellation problems which often occur with
nearfield force integration.

Boundary Layer and Wake Thicknesses

Various shear layer properties can be given in terms
of the following integral thicknesses and defects.

Mass defect: ρeue δ∗ =

∫ ye

0

(ρeue−ρu) dy (65)
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Momentum defect: ρeu
2
e θ =

∫ ye

0

(ue−u)ρu dy (66)

K.E. defect: ρeu
3
e θ∗ =

∫ ye

0

(

u2
e−u2

)

ρu dy (67)

Density defect: ρeue δ∗∗ =

∫ ye

0

(ρe−ρ)u dy (68)

Wake K.E. excess: ρeu
3
e δK =

∫ ye

0

(ue−u)
2
ρu dy (69)

We also note the following useful identity.

δK = 2θ − θ∗ (70)

Both θ and θ∗ obey the von Karman integral mo-
mentum equation and the corresponding integral K.E.
equation.

d(ρeu
2
eθ)

dx
= ρeu

2
e

1

2
Cf − ρeueδ

∗ due

dx
(71)

d(1
2
ρeu

3
eθ

∗)

dx
= ρeu

3
e CD − ρeu

2
eδ

∗∗ due

dx
(72)

The density flux thickness δ∗∗ term in (72) repre-
sents “ramjet thrust” effects, and is significant only
in very high speed or non-adiabatic boundary layers
with strong pressure gradients. If this term is negli-
gible, as with most external aerodynamic flows, from
(72) we see that in 2D flow of unit span, ρeu

3
eθ

∗ at any
location measures all the upstream dissipation.

1
2
ρeu

3
eθ

∗(x) =

∫ x

0

ρeu
3
eCD dx = Φ(x) (73)

The various thicknesses can also be used to specify the
various integral quantities at the Trefftz Plane,

Fu =

∫ zmax

zmin

ρeu
2
eθ dz (74)

Ėa =

∫ zmax

zmin

1
2
ρeu

3
eδK dz (75)

where the z integration would be over the spanwise
extent of the wake.

Power Balance in Simple Cases

We now examine the various terms in equation (37)
for simple cases, in order to relate these to more fa-
miliar drag-related quantities.

2D Airfoil

In this case we assume that the airfoil is propelled
at a steady speed by an isolated ideal propulsor which
does not interact with the airfoil’s immediate flowfield.
The propulsor provides only the thrust T necessary to
oppose the drag D ( = profile drag in this 2D case). If
the ideal propulsor works against the same freestream
velocity as the airfoil, it will expend power Pisolated =
TV∞ to sustain the thrust. Since there is no induced
drag in this 2D flow, equation (37) reads

TV∞ = Pisolated = Ėa + Φ (76)

We now choose the Trefftz Plane to be sufficiently far
downstream so that Ėa effectively disappears, and we
also replace T with D.

DV∞ = Pisolated = Φtotal (77)

Hence, the total dissipation in the flowfield in this case
is simply equal to the drag power DV∞, which is also
the power expended by the isolated propulsor.

−u ∼ 0

Φsurface
Φ totalΦsurface

T

D u 0<

Wake−ingesting  propulsor
Isolated  propulsor

ΦwakeE
.

TEa

Fig. 7 Comparison of dissipation in isolated and
wake-ingesting propulsors for 2D airfoil.

2D Airfoil with wake ingestion

This case is the same as above, except that the ideal
propulsor is now placed at the airfoil trailing edge, and
generates a “perfect” filled-in wake with u = 0 every-
where. This is consistent with equation (21), which
indicates a zero net axial force Fu =0 if u=0. We note
that in this case Ėa =0 everywhere, so that the same Φ
is obtained for any Trefftz Plane location, and in par-
ticular all contributions to Φ occur only on the airfoil
surface. Equation (37) then gives the wake-ingesting
propulsor power as

Pingest = Φsurface (78)

where Φsurface denotes the dissipation occurring in the
airfoil surface boundary layers. Note that there is no
need to consider or even define “thrust” or “drag”,
which are not even well-defined for this case. Never-
theless, the propulsive power remains well defined.

It is of particular interest to compare the non-
ingesting power from (77) with the ingesting power
from (78).

Pisolated − Pingest = Φtotal − Φsurface (79)

Referring to Figures 4 or 7, it is evident that this power
difference is simply Φwake, which is the additional Φ
contribution of the non-ingested airfoil wake, which is
also equal to the kinetic energy flux off the trailing
edge.

Pisolated − Pingest = ĖaTE
(80)

Hence, the benefit of wake ingestion is that it elimi-
nates the downstream dissipation in the wake, equal to
Ėa at that location, which would otherwise occur. For
maximum benefit the ingestion must be done at the
point of maximum Ėa, which is at or near the trailing
edge for most airfoils.
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Flat plate with boundary layer and wake

We now compute the drag on a laminar flat plate of
unit span and chord c in three ways, summarized next.
In this case the edge velocity ue =V∞ is constant, and
the surface Cf and CD coefficients are known in terms
of the x-based Reynolds number.

1
2
Cf = 0.332 (uex/ν)

−1/2
(81)

CD = 0.261 (uex/ν)
−1/2

(82)

1) Skin friction integration.

D =

∫ c

0

ρeu
2
e

1
2
Cf dx (83)

= 0.664 ρ∞V 2
∞

c Re−1/2
c (84)

2) Dissipation integration on surface and wake (Trefftz
Plane far downstream).

DV∞ =

∫ c

0

ρeu
3
e CD dx +

∫

∞

c

ρeu
3
e CD dx (85)

= 0.522 ρ∞V 3
∞

c Re−1/2
c + Φwake (86)

3) Dissipation integration on surface, plus wake kinetic
energy flux (Trefftz Plane at trailing edge).

DV∞ =

∫ c

0

ρeu
3
e CD dx +

(

1
2
ρeu

3
e δK

)

x=c
(87)

= 0.522 ρ∞V 3
∞

c Re−1/2
c + ĖaTE

(88)

Relations (86) and (88) are clearly the same, since
Φwake = (Ėa)TE as diagrammed by Figure 7. They
must also be consistent with (84). Setting the two
drag results (84) and (88) equal, we get a numerical
value for (Ėa)TE, or equivalently for Φwake

0.522 ρ∞V 3
∞

c Re−1/2
c + Ėa = 0.664 ρ∞V 3

∞
c Re−1/2

c (89)

Ėa = 0.142 ρ∞V 3
∞

c Re−1/2
c (90)

For the general airfoil case, it may be more convenient
to compute or estimate Ėa using the identity (70),

Ėa = 1
2
ρeu

3
eδK = ρeu

3
eθ − 1

2
ρeu

3
eθ

∗

= 1
2
ρeu

3
eθ

∗

(

2

H∗
− 1

)

(91)

and an assumed value of H∗, which takes on the fol-
lowing typical narrow range of values.

H∗ ≃







1.50 , lam. or turb. separated flow
1.60 , laminar attached flow
1.75 , turbulent attached flow

(92)

The trailing edge Ėa value (90) indicates that
for a laminar flat plate, a quite substantial fraction
0.142/0.664 = 21% of the energy losses occur in the
wake. This can be seen in Figure 8, which shows the ki-
netic energy defect ρeu

3
eθ

∗ distribution along the plate,
which measures the accumulated dissipation via (73).
The implication is that an ideal wake-ingesting propul-
sor for a laminar flat plate could have up to 21% less
power consumption than a non-ingesting propulsor.

Fig. 8 Kinetic energy defect ρeu
3
eθ

∗ distribution on
a laminar flat plate. This shows the accumulating
dissipation on the surface, and in the wake which
starts at x=1.

2D Airfoil

In the case of an airfoil, the skin friction integration
(84) must now be extended to include the pressure
drag, and must now be carried into the wake.

D =

∫ c

0

ρeu
2
e

1
2
Cf dx +

∫

∞

0

−ρeueδ
∗ due

dx
dx (93)

In contrast, the dissipation integrals (86) or (88) still
have exactly the same form.

DV∞ =

∫ c

0

ρeu
3
e CD dx +

∫

∞

c

ρeu
3
e CD dx (94)

Figure 9 shows the ρeu
3
eθ

∗ distributions for the top and
bottom surface and wake of a transonic airfoil at high
Reynolds number. In this case the wake dissipation
is about 13% of the total, which is still large enough
to make wake recovery an attractive possibility. The
airfoil also has laminar flow up to x=0.7 on the bottom
surface, which is responsible for the very low ρeu

3
eθ

∗

growth up to that point.

Dissipation and Skin Friction Coefficients in Shear
Layers

Dependence on Shape Parameter, Reynolds Number

The boundary layer shape parameter H = δ∗/θ di-
rectly indicates the state of the boundary layer, and
in particular how close the boundary layer is to sepa-
ration. Figure 10 shows CD and Cf/2 dependence on
H for laminar boundary layers. These scale as 1/Reθ,
so the ReθCD and ReθCf/2 values are independent of
Reθ. Note that the laminar CD is very nearly inde-
pendent of H , meaning that laminar boundary layer
losses are almost entirely dependent on the Reynolds
number, and nearly independent of pressure gradient.

Figure 11 shows the CD and Cf/2 dependence on
H for turbulent boundary layers. The CD now has a
clear minimum, close to the H value corresponding to
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Fig. 9 Transonic airfoil ρeu
3
eθ

∗ distributions on top
and bottom surfaces and wake halves, and for wake
total (dashed line).

a constant-pressure flow, and increases for both accel-
erating and decelerating flow. The rapid increase with
H essentially represents pressure drag, which in the
profile-drag expression (93) is captured by the second
term. It should also be noted that the dependence of
CD on Reθ for turbulent flow is much weaker than the
CD ∼ 1/Reθ dependence for laminar flow.

The approximate spreading half-angle of 7◦ observed
for a free shear layer15 implies a dissipation coefficient
of approximately

CD ≃ 0.02 (free shear layer). (95)

This corresponds to an asymptotic value of CD for
H ≫ 1 in Figure 11.
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Fig. 10 ReθCD and ReθCf/2 versus H for laminar
boundary layers.

Dependence On Flow Velocity

The dissipation expression (63) shows that for any
given CD value, the physical boundary layer losses
scale as u3

e. This implies that “overspeeds”, or re-
gions of high local ue are very costly. Conversely, in
regions of low velocity, such as in slat coves which have

 0
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C
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, 
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H

Re   = C  /2

C

f

D

θ 5000
1000

200

Fig. 11 CD and Cf/2 versus H for turbulent bound-
ary layers, for Reθ = 200, 1000, 5000.

a fully separated recirculating flow, the losses are quite
modest because of the small u3

e factor.

Dissipation-Based Drag Build-Up

The u3
e factor in (63) has significant implications for

excrescence and interference drag. Traditional excres-
cence drag estimates, as discussed by Hoerner16 for
example, scale the individual drag contributions with
u2

e, in accordance with a local dynamic-pressure argu-
ment. Any discrepancy it typically attributed to some
uncertain additional “interference drag”. However,
(63) clearly shows that a u3

e scaling is more appropri-
ate. Furthermore, if no additional dissipation-causing
flow structures (e.g. flow separation) are created, there
should be no additional uncertain interference drag.

To illustrate the difference between force-based and
dissipation-based drag build-up, consider a configura-
tion consisting of a large and a small body, shown in
Figure 12. Their relative sizes are such that when the
bodies far apart, the drags are 100 and 1, for a total
drag of D = 101.

D
Φ

V

Φ   = 100

Φ   = 12

1

k=            = 101

D

V

V = 1

= 1

V = 1 = 1D

D = 100

2

1

D=          = 101k

Fig. 12 Drag build-up for two isolated bodies by
force summation (top box), and dissipation sum-
mation (bottom box).

When the small body is placed near the large body
where the local velocity is V2 = 2, as shown in Figure
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13, the force-based drag build-up gives

D =
∑

Dk = 100 + 4 = 104 (96)

while the dissipation-based build-up gives

D =
1

V∞

∑

Φk = 100 + 8 = 108 (97)

which is a rather different result.

=            = 108

Φ   = 1001

2 D

V

Φ
V

V = 1

= 1

V = 2 Φ   = 8 k

V

V = 1

= 1

V = 2 DD

D = 100

2

1

Dk= 4 =          = 104

Fig. 13 Drag build-up for two closely interacting
bodies by force summation (top), and dissipation
summation (bottom). The small body is in the
large body’s nearfield, and sees a doubled local ve-
locity.

Viscous CFD calculations indicate that the
dissipation-based build-up (97) is far more accurate
than the force-based build-up (96). The reason is that
(96) neglects the additional pressure drag on the large
body, due to the potential source flow created by the
viscous displacement on the small body. Traditionally
this might be labeled “interference drag” of some pos-
sibly uncertain origin, but the mechanism and effect
is captured quite well by the dissipation-based drag
build up (97).

Evaluation of Alternative Propulsion Systems

The efficiency benefit of wake ingestion is almost
universally exploited in marine propulsion, and has
also been considered for aeronautical applications.
The previous analyses, such as that of Smith,17 have
typically computed the propulsor power reduction
with the assumption that the ingested airframe bound-
ary layer is given. However, computing or estimating
the benefit of integrated/ingesting propulsion systems
is far more complex, since the airframe flow is itself
modified. An attractive feature of the present energy-
based analysis is that comparison of such alternative
propulsion systems is considerably simplified, and the
competing effects are clearly identified.

Figure 14 shows a traditional isolated propulsor and
an alternative integrated propulsor driving a wing.
The situation is a more complex version of the one in
Figure 7, for two reasons: 1) the integrated propulsor

∆     < 0E
.

∆Φ < 0

∆Φ > 0

Pros

Cons

(Isolated propusion)
Before

After
(Integrated propusion)

P P+∆

P

a

Fig. 14 Changes resulting from switch from iso-
lated to distributed propulsion, while keeping the
same net streamwise momentum defect and force.
Power change ∆P is the net result of negative (pro)
and positive (con) ∆Φ and ∆Ė changes.

now changes the airframe losses, and 2) there is now
an excess thrust for both cases, typically needed to
balance the induced drag and profile drag from other
parts of the aircraft. The upper right drawing in Fig-
ure 14 shows the “pros”, or the loss mechanisms which
were eliminated or reduced in switching to the inte-
grated system. These gains consist of removal of the
two shear layers and their dissipation, and reduction
of the excess wake kinetic energy by filling in of the
large upper-surface boundary layer momentum defect.
The lower right drawing shows the “cons”, or the loss
mechanisms which were added in the switch. Quanti-
tative evaluation or estimation of all the pro and con
changes shown in Figure 14 would then give the net
resulting change in the flight power.

∆P =
∑

∆Ė +
∑

∆Φ (98)

The sums on the righthand side can in principle be
carried out to any level of detail deemed appropriate.
In addition to the first-level changes shown in Figure
14, one could also account for changes in dissipation
Φprof on the fan blading (e.g. fan profile efficiency),
change in the total weight or span loading and re-
sulting change in induced power Ėv, changes in shock
losses Φshock if any, modification to the upper-cowl
boundary layer dissipation, etc.

Conclusions

A control volume analysis of the flow about an air-
craft has been performed, focusing on mechanical en-
ergy. The result is a concise relation between all the
power sources and sinks in a flowfield, which has a
number of useful applications:

• The quantities which directly influence flight
power requirements are clearly identified.

• It is fully consistent with previous analyses based
on momentum.
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• There is no need to define the rather ambiguous
”thrust” or ”drag” in configurations with tightly
integrated propulsion systems.

• The wake energy loss is clearly decomposed into
independent contributions due to axial and trans-
verse wake velocities, without the need to sepa-
rately identify rotational and irrotational regions
of the Trefftz-Plane. This eliminates the ambigu-
ity between thrust, profile drag, and induced drag
in configurations where the viscous wakes and the
vortex wakes are not distinct.

• For traditional drag build-up analyses, using the
power approach appears to be more reliable in
that it accounts for interference effects which are
not captured by the force approach.

The author would like to thank one of the reviewers
for the suggestions to examine the issue of unsteady
flows, and the energy-term cancellations in the 2D in-
viscid airfoil case.
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