
VOL. 12, NO. 6

37th Wright Brothers Lecture*

J. AIRCRAFT JUNE 1975

High-Lift Aerodynamics

A. M. O. Smith
McDonnell Douglas Corporation, Long Beach, Calif.

Nomenclature

chord
section profile drag coefficient
local skin-friction coefficient T w/(l/2) puj
section lift coefficient
lift coefficient
conventional pressure coefficient (p— p « )/ (1/2)

pressure coefficient when local flow is sonic
canonical pressure coefficient (p —p 0 )/(\/2)pu$
suction quantity coefficient Q/u Ox

CM = blowing momentum coefficient (2uft/u^ c),in-
compressible flow

C ̂  = blowing momentum coefficient referred to momen-
tum thickness of the boundary layer at blowing
location, uft/ujB, incompressible flow
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CL
Cn

c.

f = chord fraction, see Eq. (5.1)
H = shape factor of the boundary layer, d*/0
£ = plate length
L = lift
m = exponent in Cp=xm flows, also lift magnification

factor (5.1)
M = Mach number
p = pressure
q = dynamic pressure
Q = flow rate
R = Reynolds number (= u Ox/v in Stratford flows)
R6 = Reynolds number based on momentum thickness

uee/v
S = Stratford's separation constant (4.10); also pe-

ripheral distance around a body or wing area
/ = blowing slot gap, also thickness ratio of a body
u = velocity in x-direction
u0 = initial velocity at start of deceleration in canonical

and Stratford flows
v = velocity normal to the wall
V = a general velocity
x = length in flow direction, or around surface of a body

measured from stagnation point if used in con-
nection with boundary-layer flow
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Greek
a = angle of attack
6 = flap deflection
6* = displacement thickness of the boundary layer
8 = momentum thickness of the boundary layer
v = kinematic viscosity
p = mass density
T = shear stress
\l/ = stream function
Subscripts
e = edge conditions
J = Jet
£ = lower
o = reference conditions, as in Stratford flows
u - upper
w = at the wall
°° = reference condition at infinity

1, Introduction and Purpose
V^i/HEN I first began work for the Douglas Aircraft
T T Company in 1938, Donald W. Douglas, Jr., was in

school. Several times, in connection with his studies, he came
to me for help with aerodynamic homework problems, so that
we got to know each other. Years later he gave me a 25-year
service pin and asked me what I was doing. For once I was
quick-witted and answered "still trying to understand
aerodynamics."

That is the primary purpose of my lecture—the un-
derstanding of one aspect of aerodynamics. It is not a "how
to do it" lecture, but rather one concerned with "whys" and
principles. Since I am in research, I am not directly involved
with the down-to-earth design problems of aerodynamic hard-
ware, but instead am in a position of giving help to others.
That reminds me of the definition of a mathematician I once
heard. A mathematician is one who can tell you all about how
to solve a problem but cannot actually do it himself.

It was my privilege as a graduate student at Caltech to listen
to the brilliant beginnings of this series, by B. Melville Jones
in 1937. It is a great honor, a privilege, and a difficult
challenge to follow him and his many illustrious successors.
In his introduction he said "...I am instructed that the Wright
Brothers' Lecture should deal with subjects upon which the
lecturer is engaged at the time, rather than with a general sur-
vey of some wide branch of aeronautical knowledge." To a
great extent, that is my plan; the central interest will be sub-
jects with which I have been closely associated.

Because I have been in the aeronautical field for some time
now, I find it interesting to look back at the state of
aeronautical knowlege when I was in school in the 1930's. I
think you will see, as I proceed, that while the problems are
far from being completely solved, our capabilities have ad-
vanced tremendously. My first problem of substance was my
M.S. thesis project. It was to perform tests on a powered
Boundary-Layer-Control Model in the GALCIT Ten-Foot
Wind Tunnel. Figure 1 is a drawing of the model.

The project was inspired by German work of the time. In
the design of the wing, the philosophy—so far as I knew—was
as simple as this: 1) select conventional airfoils of the time for
the wing, 2) put a slot (square edged) somewhere in the upper
surface of the wing (70% chord seemed as good as anything),
and 3) suck air and see what happened. There was insufficient
knowledge of boundary-layer flow to do anything much more
sophisticated. At the end of the tests, the writer had a vague
uneasiness that there should be some more scientific approach
to the problem of design. That is the way it was in a leading
school that was under the leadership of the eminent von
Karman and Clark B. Millikan.

At that time, Pohlhausen's approximate method of
calculating general laminar flows was a great new develop-
ment. Only the most rudimentary method was available for
estimating turbulent flows in general pressure gradients, for

MODEL CHARACTERISTICS
<: = M.A.C.= II.02 IN.
SPAN=8.00 FT.
ASPECT RATIO = 8.69
5=7.37 FT2

Fig. 1 GALCIT boundary-layer-control wind-tunnel model.

example, over an airfoil surface. The only convenient
methods for analyzing inviscid flow about an airfoil were
those of thin-airfoil theory and the flow about certain simple
conformally mappable sections. Although Theodor sen's
method had been developed, it was too tedious for practical
use. To calculate the pressure distribution about an arbitrary
airfoil amounted almost to a "stunt." Furthermore, all these
examples were for single airfoils. Essentially nothing could be
done for slotted airfoils. Hence it is no wonder that, in effect,
people just drew up a shape by eye and tested it. Performance
of airfoils was correlated in terms of certain obvious
geometric parameters: camber, position of maximum camber,
thickness, etc.

Transition as an explicit phenomenon in the development of
a boundary layer was only vaguely recognized. For instance,
at the GALCIT tunnel, surely as progressive as any, tests were
often made on models of commercial and military airplanes to
learn the effect of Reynolds number on drag. Drag coef-
ficients were measured at a series of tunnel speeds. Results
were plotted on a log scale and then generally extrapolated by
a straight-line extension to full scale. The curve usually had a
downward slope with Reynolds number, but not always. Even
when the slope was positive, the line would be extended the
same way; the effect was dismissed as a "poor Reynolds num-
ber extrapolation." Now we know that the model must have
been in the rapidly varying transition region, which must
surely be left long before full-scale Reynolds numbers are
reached. Fixing transition was essentially unheard of. B.
Melville Jones, of course, greatly increased our awareness of
the transition phenomenon.

2. Some History

Because, unlike the birth of Venus, new ideas do not burst
forth fully matured or fully recognized, or even in one place,
authoritative establishment of history is difficult. We know
better than to attempt it here. Nevertheless, some review of
highlights seems desirable.

In a search of the older literature, one of the strongest im-
pressions gained is that in a sense there is "nothing new under
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the sun." Nearly all of the basic principles for influencing a
flow to develop high lift have been known from the very early
days of the airplane. The defects in knowledge were two:
first, although what to do may have been known, the reasons
for doing it were only dimly understood; second, quantitative
analysis of a flow could rarely be accomplished.

Prandtll had already conceived and demonstrated the prin-
ciples of suction boundary-layer control in 1904, and by 1913,
according to Weyl,2 the notion of blowing to control the
boundary layer had been advanced. One concept the author
believes to be new is that of the jet flap, which seems to have
been conceived and developed in the 1950's. Hagerdorn and
Ruden3 tested forms of the jet flap in 1938, but they did not
understand what they were finding.

The ancestry of flaps can be traced back to the early days of
flying. British R&M No. 110, dated 19144 contains one sec-
tion entitled, "Experiments on an Aerofoil Having a Hinged
Rear Portion." Figure 2 shows the shape tested. A large num-
ber of flap settings were examined. According to Weyl,2

variable camber had been used even earlier. The LeBlon
monoplane had a variable-camber wing formed by an ad-
justable part of the trailing edge. It was exhibited at the
London Olympia Show in March, 1910.

The idea of slats and the knowledge of the effectiveness of
slots are nearly as old. In an important lecture given before
the British Royal Aeronautical Society on February 17, 1921,
Handley Page5 described ten years of work on the develop-
ment of airfoils that had slots. His work dealt not only with a
single slot or slat but also with multiple slots. Figure 3,6

shows one of his models, which by current standards would be
considered a relatively modern configuration. Page 425 of
Ref. 7 shows a good photograph of a 1920 airplane fitted out
with slats.

Later in this paper, the author attempts to prove that an air-
foil having n +1 elements can develop more lift than one
having n elements. Handley Page investigated this problem,
up through 8 elements.5 Figure 4 shows one of his extreme
airfoils, a very highly modified RAF 19 section, positioned at
the angle for maximum lift.

Figure 5 shows lift coefficient vs angle of attack for the ex-
perimental airfoil as it was modified from one to eight
elements. It generally shows that the greater the number of
elements the greater the lift; and it seems to confirm the
author's deduction, which was made three years ago, quite in
ignorance of these tests. The seven-element airfoil reached a
lift coefficient of 3.92. Tests were made at a chord Reynolds
number of about 250,000 on a wing of 6~in. chord and 36-in.
span.

Handley Page appears to have followed an empirical ap-
proach in his efforts. Concurrently Lachmann7 at Gottingen
was studying the problem theoretically. Lachmann used con-
formal-transformation methods and represented a slat by vor-

S§Xs> ~~j+ Angle

Fig. 2 RAF 9 airfoil with a 0.385c plain flap tested in 1912-1913.

Fig. 3 A wing tested by Handley Page as part of his effort at
developing slots and slats.

Fig. 4 Handley Page's eight-element air-
foil modified from an RAF 19 section.
The model is at 42° angle of attack, the
angle for maximum lift. Pressure
distributions are theoretical. They were
made at a = 36° to correspond to local
angle of attack of the AR = 6 wind tunnel
model. Theoretical c( of ensemble is 4.33.
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Fig. 5 Ci vs ct data for the RAF 19 broken up into different num-
bers of elements, as indicated by number of slots.

Fig. 6 Variable camber Albatross Biplane9 model, showing ap-
proximate range of flap angles tested.

tices in front of a circular cylinder. His work established the
gross features and interaction effects for a slat and the main
airfoil. Later, Lachmann and Handley Page joined forces.
Further basic understanding and appreciation of the
beneficial effects of a slat was gained by Le Page,8 who
systematically investigated the forces on two airfoils placed in
tandem, t

Another work that merits mention is entitled " Model Ex-
periments with Variable Camber Wings," by Harris and
Bradfield,9 which was published in 1920. The report includes
both test data and studies of the significance of the results on
airplane performance. Figure 6 shows the biplane cellule that
was studied.

tLouis Stivers and R.T. Jones of NASA Ames inform me that
Chaplygin had done work similar to Lachmann's in 1911 and 1921.
See The Selected Works on Wing Theory of Sergei A. Chaplygin.
English translation available through Garbell Research Foundation.

Speaking of biplanes, history seems to be repeating itself.
In the early days, because they were biplanes, they had thin
wings/These suffered from leading-edge stall, for which nose
droop or slats were a cure. Then we advanced to monoplanes
and thicker wings, and the leading-edge problem almost
disappeared. Later, when jets and higher speed entered the
picture, wings again became thin, and the leading-edge
problem returned.

Original flap development was motivated by three desired
benefits: 1) slower flying speeds, hence shorter takeoff and
landing runs; 2) reduction of angle of attack near minimum
flying speed; 3) increase of drag, or control of drag, in order
to steepen glide angle in approach and reduce floating ten-
dencies. Currently, because of large aircraft noise problems,
the emphasis under the third item has changed. We are trying
to reduce flap drag in order to reduce thrust requirements and
hence the noise.

The split flap was conceived and partly developed in the
period 1915-1920 as a means of satisfying these desires.
Klemin, Schrenk, and Etienne Royer2 are important con-
tributors to its development. Orville Wright and J. M. H.
Jacobs obtained a basic patent on the subject in 1924, after
they filed it in 1921. Their discussion in the patent gives
evidence that they had a good qualitative understanding of the
basic flow processes. A reproduction of one of the drawings
from the patent is shown in Fig. 7.

We end this historical survey of mechanical high-lift devices
by mentioning the Fowler Flap invented by Harlan D.
Fowler 10 in 1927. Because it had extension and a slot, it can
be considered to be the first modern high-lift mechanical flap.
In early NACA wind-tunnel tests, H it developed a maximum
lift coefficient of 3.17.

Aug. 12, 1924. 1,504,663
O. WRIGHT ET AL

AIRPLANE

Filed May 31, 1921 3 Sheets-Sheet 1

Fig. 7 Sheet 1 of the U.S. Patent 1,504,663, by Orville Wright and
J. M. H. Jacobs, illustrating their concept of a split flap.
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Powered lift augmentation, as by suction and blowing,
received considerable attention in the 1920's but never quite
proved to be efficient enough to justify its use in an actual air-
plane. Betz2 and Ackeret7 in Germany were leaders in this
line of development.

For those interested in further research into the early his-
tory of high-lift work, we mention several references. First is
that by Alston,12 which was a general lecture to the Royal
Aeronautical Society in 1934 entitled, "Wing Flaps and Other
Devices as Aids in Landing." It surveys the state of
knowledge in 1934, but does not particularly deal with earlier
history. Those who are especially interested in the history of
high-lift devices and the origin of concepts and applications
should see the paper by Weyl,2 which is a very broad sur-
vey—it has 116 references—of the entire subject, with in-
teresting sidelights on the development. As an example of
such a sidelight, Weyl notes that in connection with the
development of split flaps a French scientist, Lafay, in 1912
observed "that an unsymmetrical roughening of a cylinder
which was exposed to an airflow resulted in an aerodynamic
force which was directed towards the smooth side across the
flow (lift force)."

The most comprehensive reference examined by the author
is a report by A. D. Young,13 "The Aerodynamic Charac-
teristics of Flaps." It deals with the aerodynamic charac-
teristics—lift, drag, moment, etc.—of all types of flaps. Its
extensive bibliography covers all aspects, including general
reviews, history, theory, and investigations of the various
types of devices. In all, 138 references are given. The paper is
certainly not obsolete, although it was published in 1953.

A paper that amounts to an updating of Alston's 12 is one
by Duddy,14 which was also presented to the Royal
Aeronautical Society. It compares and evaluates various types
of flaps, and analyzes their benefits in terms of landing and
takeoff performance. Effects of sweep are included.

A useful historical summary of the gradual improvement of
gross lift coefficients is shown in Fig. 8, which is due to
Cleveland.15 From about 1935 to 1965—a period of 30
years—we have advanced from coefficients of roughly 2 to
roughly 3 on important service-type airplanes. By 1995 will we
have advanced to 4?

3. Some Lift Limits
3.1 Limits in Potential Flow

Just as ideal-cycle limits are useful in thermodynamics, so
are the theoretical limits of lift useful in aerodynamics.
Knowledge of those limits helps give us a perspective as to
where we are now and what may be attainable if we are willing
to seek without compromise the maximum possible lift.

First consider the limits of c( in inviscid flow, where
separation will not occur. Consider the classical circulatory
flow about a circle shown in Fig. 9. Two different levels of cir-
culation are shown; that in Fig. 9b is of the greatest interest,
for there the circulation is so strong that front and rear
stagnation points coincide. Greater circulation moves the
stagnation point off the body. Although that is entirely
possible—a Flettner Rotor generates such flows—it is not a
realistic analog for an airfoil, which in general has two
stagnation points, both on its surface. If the reference chord is
taken as the diameter of the circle, it is easily shown that flow
b of Fig. 9 represents a lift coefficient,

C( = 47T (3.1)

where the reference length is the diameter.
Now let us consider mean lines. We shall consider only cir-

cular arcs, because they are easily obtained from Joukowski's
transformation for flow about a circle. In view of the ever
present specter of separation, it is an undue refinement to con-
sider either the effects of thickness or the effects of other
kinds of mean lines. Three possible circular-arc mean lines, A,

B, and C are shown in Fig. 10. A fourth or limiting case is just
a straight line. According to Joukowski airfoil theory, for any
of those circular-arc mean lines, regardless of degree of cam-
ber,

In that equation, c is the length between the ends of the arcs,
a. is the angle of attack, and /3 is a measure of the camber as
shown in Fig. 10. For arcs A and B, c is indeed the chord as
conventionally defined. But for arc C, the chord c is not now
the longest dimension; the diameter is. In fact, it is evident
from the figure that as 0^90°, c-+0. Hence, if we define the
lift coefficient in terms of the longest dimension, we have
[from Eq. (3.2)],

(3.3)
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Fig. 8 Growth of maximum lift coefficients for mechanical lift
systems as a function of time, according to Ref. 15.

Fig. 9 Flow about a circle with two different degrees of circulation,
a) moderate circulation, b) circulation so strong that the two
stagnation points coincide.

Fig. 10 Three circular-arc mean lines, A, B, C, stemming from the
Joukowski transformation.
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and

(45°</3<90°) (3.4)

Consider Eq. (3.3) with 0 = 0. We have a flat-plate airfoil.
Its maximum lift coefficient is 2?r at a = 90°. A well-known
formula applying to symmetrical Joukowski airfoils that
accounts for thickness ratio t is

(3.5)

That formula gives a value that is a few percent greater for
common values of t.

Next, consider Eqs. (3.3) or (3.4) with /3^45°. That mean
line is a half circle. Maximum lift occurs at a. = 45°, so that

(0=45°) (3.6)

Finally consider Eq. (3.4). The maximum occurs when /3 =
90° and a = 0°, which gives

cf ^4ir (3.7)"max ^ '

The limiting mean line is a complete circle. For airfoils with
some thickness, there is a definite stagnation point at the nose
and another one at the tail. Hence, that limiting mean line
brings the two stagnation points together again, and we ef-
fectively recover the flow about a circular cylinder, as in Fig.
9b.

The last is an extreme mean line. The half-circle is not so ex-
treme. In fact, modern multielement flap systems at full flap
deflection begin to approximate the half-circle mean line
(e.g., Fig. 29). The quantity cf = 47r/(2)1/2 in Eq. (3.6) has a
value of nearly 9. Of course, the value of c( depends on the
length used as a reference. If arc length were used instead of
conventional chord, as above, the values would not appear to
be so high. In fact, for the straight line, half circle, and full
circle, the theoretical values would be 6.28, 5.65, and 4.0,
respectively.

The mean lines that have been considered approximate
flows about airfoils having sharp trailing edges. For them, the
Kutta condition sets the circulation to such strength that the
rear stagnation point is always at the trailing edge. Such a
flow might be called a natural flow. To round out our
discussion, we shall mention a case in which there is no sharp
trailing edge: the ellipse family. Assume the circulation to be
controlled in such a way that the rear stagnation point always
remains at the rear end of the jc-axis, that is, at the same point
as in symmetric nonlifting flow (see Fig. 11). Thwaites16

proposed airfoils that followed that principle. He used area
suction at the rear to eliminate separation. When our con-
dition for the circulation is met, the lift coefficient based on
the length of the x-axis becomes exactly

c(=2ir (1 + t) sin a (3.8)

If ce were based on the length of the^-axis, it would be

Observe that Eq. (3.8) is nearly the same as Eq. (3.5). The cir-
cular-cylinder case is represented by f = l , and again we
recover cf = 4?r. Equation (3.8) shows that ce greater than
4?r can be exceeded if t is greater than 1, that is, for ellipses
that are broadside to the flow. In those cases, we are not using
our greatest length as the reference length. We now should use
the thickness instead of the length and obtain Eq. (3.9). If Eq.
(3.9) is used, cfmax falls continuously as t increases. Since both
formulas give ctmgx = 4?r for a circle, we once more recover 4ir
as a limit. That is the limiting value for any single-element
airfoil. We know that in a uniform stream L =
pV « F, where F is the circulation. Of course, any airfoil can
be mapped from a circle. But the mapping does not change the
circulation. Hence, under the restrictions we have imposed,
the maximum possible lift for any kind of airfoil is 4ir.

Since lift is needed near the ground perhaps more than
anywhere else, an interesting subsidiary question is the poten-
tial flow limit at the ground. The author knows of no simple
definitive answer. However, the Douglas Neumann program
was applied to a circle that was brought nearer and nearer to
the ground, using the image system. The stagnation point was
maintained at the bottom as in Fig. 9b. For zero height off the
ground the lift coefficient extrapolates to about 4.49, which is
also the value found for the classical problem of a round
cylinder lying on a streambed. Ground, therefore, greatly
reduces the maximum possible lift. We realize full well that
ground effect often increases the lift of real wings.

3.2 Limits of Ml, CL

High values of CL cannot be maintained indefinitely as
speed is increased, for soon surface pressures less than ab-
solute zero would be indicated. Let us look into the problem
briefly, and search especially for the limits of lift rather than
of lift coefficient. The usual equation for lift is

L = V2PooV2
(x>CLS (3.10)

An alternate form, one that uses a different expression for
dynamic pressure, is

(3.11)

(3.12)

With 7 = 1 .4, we can rewrite it as

Lip oo = 0.7(MiCL)S

Since C L is known to be a function of M «, , the product
Mi C L is the quantity that is of real significance, and so we
seek to make statements about its value. Observe that for a
given value of Mi C L the lift is now proportional to the at-
mospheric pressure.

A gas cannot be in tension. Hence the limiting suction
pressure is a perfect vacuum over the entire upper surface.
The limiting pressure on the lower surface is stagnation
pressure.

By definition, with 7=1.4,

f-^ __ _____f f w

p~ l/2p „ VI 0.7p , Mi (3.13)

(3.9)

REAR
STAGNATION
POINT

Fig. 11 Lifting flow about an ellipse with circulation adjusted to
maintain the rear stagnation point at the end of the Jt-axis.

If the flow is assumed to be isentropic, Cp can be written in
the form

1 + 0.2MI
1 + 0.2M2 (3.14)

Before proceeding to the determination of lift limits, it is in-
teresting to pause and consider the limits of Cp values. In
high-lift testing, maximum lift is often found to occur when
the highest local velocities reach a Mach number of 1.0. The
Cp corresponding to that condition will be called C*. If a per-
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Fig. 12 A/i Cp values as a function of Mach number for four con-
ditions. 0.7 vacuum corresponds to M\, Cp = -1.

Table 1 Limiting values of Cp at low Mach numbers

Moo

C*(M = 1)
(^(perfect

vacuum)
Cp (0.7

vacuum)

0.10
-67

-143

-100

0.15
-29.3

-63.6

-44.5

0.20
-16.3

-35.8

-25

0.30
-7

-15.9

-11.1

0.40
-3.7

-8.9

-6.3

0.50
-2.1

-5.7

-4.0

feet vacuum were reached, we would obtain, according to Eq.
(3.13), a value of Mi Cp equal to --1.43. Mayer17 looked
for the highest possible negative Cp values in experiment by
examining hundreds of NACA test data points from all sorts
of tests. He found the remarkable empirical result that the
highest experimentally measured values correspond with
reasonable accuracy to Mi Cp=—l. That value corresponds
to 0.7 of a vacuum [see Eq. (3.13)]. Figure 12 shows the test
data he used to support the finding.

Since much of our interest is in high-lift testing, which is
done at low Mach numbers, we convert some of the results
from Fig. 12 into Cp form and present them in Table 1.

At low Mach numbers, quite high values of Cp are ob-
tainable before compressibility becomes very important, but
at higher Mach numbers the limiting Cp values are not very
high. Note, however, that Mayer's data in Fig. 12 do not
cover the lower Mach numbers; hence their validity there is
not truly established.

The author knows of no theoretical explanation for
Mayer's 0.7 vacuum correlation. It does not correspond to a
constant local Mach number. By the use of Eq. (3.14), it is
easily deduced that Mi Cp = -\ corresponds to Mlocal = 1.43
atM,, =Oandl .55atM 0 0 =0.5.

Now consider the airfoil problem. If we hold M constant at
one value on the upper surface and constant at another value
on the lower surface, Cp represents the CL for each surface.
The total CL is the difference. Hence from Eq. (3.14),

, . ,~ 1 r , 1 + 0.2MI , ,,
0.7

-( 1 + 0.2M*

1+0.2M/

) 5 5 ] (3.15)

where £ and /JL denote lower and upper surfaces. A perfect
vacuum on the upper surface corresponds to p /x = 0 or M^
= oo. In that case, the second term in Eq. (3.15) is zero. With
respect to atmospheric pressure, the load carried by the upper
surface when there is a perfect vacuum is [see Eq. (3.13)]

If the entire flow on the lower surface is a stagnation flow,
M?=0, and hence with a vacuum on the upper surface we
have

(3.17)

Equation (3.17) represents the absolute lifting limit. The
quantity increases with Mach number because lower-surface
pressures can increase with Mach number. Equation (3.17) is
optimistic, because isentropic compression is assumed,
whereas in reality there surely will be a shock when M> 1.
Table 2 shows values of Mi CL for several flow conditions,
including Mayer's MiCL = l limit. The maximum value
possible in subsonic flight is 2.71, and the contributions from
each surface are about equal. If Mayer's value Mi Cp = -1 is
accepted, the limit decreases to 2.28. At M « =0.5, the ab-
solute maximum value is only 1.70 and Mayer's value is 1.27.
Those are the limiting values, regardless of the kind of high-
lift devices that are used. At M «, =1.0 and below, the as-
sumption of isentropic recompression on the lower surface is
very good, as is well known. As Mach numbers become large,
pressures on the lower side become great, and large values of
Mi CL develop—values that exceed 11 at M ^ =2.0. Mayer
considers the case where under-surface pressures in supersonic
flight correspond to a normal shock. He gives considerable in-
formation on maximum-lift values in supersonic flight, in-
cluding correlations of theory and experiment. But since our
interest is principally in subsonic flight, we shall not discuss
his work further.

3.3 Demonstrated Lifting Limits

It is interesting that the question of aerodynamic lifting
limits in subsonic flight was posed to the author in 1946 by E.
H. Heinemann. The problem was fighter maneuvering—what
lift could a wing really develop? All the available flight and
wind-tunnel data were examined. The examination included
the large supply of German World War II data, which covered
tests of a great variety of airplane and missile-type wings. The
results were reported in Ref. 18. The study, which was strictly
one of observation, concluded that the maximum possible lift
was about 1/2 atm. That number corresponds to a value for
Mi CL of about 0.7.

Since that time, the design of swept wings has advanced
considerably. Now, the highest value of Mi CL seen by the
author is 1.20 on a swept wing using an aft-loaded airfoil sec-
tion with no auxiliary lift devices. The value corresponds to
C/, = 1.26 at M * =0.975. It was not really a maximum-
lift value but, rather, a stopping point in a wind-tunnel test
that was determined by strength of the sting support. Hence
the value can surely be exceeded. It should be pointed out that
this is not a buffet limit, which is usually considerably lower.
If one went all out to maximize M£ CL, without regard to
low-lift performance, much better could surely be done.
Leading-edge and trailing-edge devices undoubtedly would
raise the limit. Variable-camber wings are currently receiving
attention as another possible means of raising the limit.

Some further data related to limiting lift conditions are

Table 2 Maximum-lift limits assuming isentropic compression, and
uniform chordwise loading

L = 1/0.7= 1.43, a constant (3.16)

M^

0.5
0.5
0.5
1.0
1.0
1.0
2.0
2.0

Mupper J

00

1.55
1.5
00

1.86
1.5
oo

4.97

00 Lupper

1.43
1.00
0.97
1.43
1.00
0.69
1.43
1.00

M,lvl lower

0
0
0
0
0
0
0
0

MicLlower

0.27
0.27
0.27
1.28
1.28
1.28
9.75
9.75

MiCLtotal

1.70
1.27
1.24
2.71
2.28
1.97

11.18
10.75
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-15

Fig. 13 Experimentally measured leading-edge minimum pressure
coefficient at cimax for a variety of two-dimensional high-lift con-
figurations. Test Mach number = 0.20.

shown in Fig. 13, which is taken from Ref. 19. In tests of a
considerable variety of two-dimensional models, it was ob-
served that the lowest Cp on the model, at c(max was nearly a
constant equal to C*p. There is considerable scatter in the data
of Fig. 13 because the tests were not planned to investigate Cp
at C(max, but there is considerable evidence of a critical con-
dition. If compressible Cp values can be calculated for an air-
foil, an easy way of estimating c(max is suggested by the
figure—just find the c( at which Cp becomes sonic. All the
tests were on airfoil sections where rear separation was not
critical.

4. The Load-Carrying Capacity of Natural
Boundary Layers

4.1 Introduction
This and the next section constitute the body of the paper.

In combination, they expound the basic aerodynamics of
mechanical high-lift systems. Until the 1960's, our analytical
capability was insufficient to make quantitative calculations.
Now, since the tools are here, it is time to put the whole story
together, as best we know it. That is not to say that nearly all
problems have been solved, but to a certain extent the
remaining problems amount to just irritating details.

We go into considerable detail, and often rather elementary
exposition, in the interests of making this part of the paper
complete. The approach is motivated by the many miscon-
ceptions the author-has encountered. For instance, with
respect to slotted flaps, it has been suggested that if one just
knew how to shape the airfoil, higher lift could be obtained
with a one-piece airfoil, because the leakage from bottom to
top allowed by the slots amounts to a kind of short circuit.
Properly designed multielement airfoils are better, as will be
shown. Another common statement is that a slot provides a
kind of blowing boundary-layer control by the jet of *'fresh"
air that flows through it. How can it do that? It has no more
total head than the ambient stream. Admittedly, that jet of
"fresh" air has more energy than the boundary layer, but it
only has freestream total head. At best, it may be a question
of semantics. Later we shall see that the principal effect of a
slot or slat is to reduce negative pressures, rather than to
blow.

Sections 4 and 5 are a revision and, we hope, an im-
provement of Ref. 20, a paper given at an AGARD meeting.
There are many papers and reports on the subject of high-lift
devices, but their emphasis usually tends to be "how to."
Ours is "why." One useful document is Ref. 21, which con-
tains a large collection of lectures on the subject of high-lift
devices. Another is Thain's,22 which is an extensive review of
the experimentally observed effects of Reynolds number on
high lift. It too is more concerned with overall results than
with explanation of the fundamental flow processes. Let it be
noted that our discussion in these sections is confined to two-
dimensional flow.

In view of Bernoulli's law, if a surface is to lift, the velocity
over the upper surface must be speeded up. But we know that

for any trailing edge, even the cusped type, the flow deceler-
ates to below freestream values. Hence, to get more lift, we
need higher velocities over the airfoil, but that in turn means
greater deceleration towards the rear. The process of
deceleration is critical, for if it is too severe, separation
develops. The science of developing high lift, therefore, has
two components: 1) analysis of the boundary layer, prediction
of separation, and determination of the kinds of flows that
are most favorable with respect to separation; and 2) analysis
of the inviscid flow about a given shape with the purpose of
finding shapes that put the least stress on the boundary layer.
The two parts amount to a kind of applied-load and
allowable-load problem. An analysis cannot be valid unless its
elements are sound, so let us first look at the problem of
predicting the onset of separation.

4.2 Accuracy of Predicting Separation Points

Because this question is so vital to many aerodynamic
design problems, the accuracy of four leading methods was
studied recently in Ref. 23, for the case of turbulent flows,
which is the one of interest. The flows considered involved
simple rear separation. Laminar bubble or laminar leading-
edge separations were not considered. The main reasons are
that proper design can eliminate them and that at high
Reynolds numbers transition has occurred by the time adverse
gradients appear. Fortunately, the problem we consider here
is technically the more important, because the problem of
separation after a laminar bubble and reattachment cannot be
analyzed nearly as well. That is a problem for the future.
There is no difficulty with simple laminar separation. It can
be calculated to three- or four-place accuracy if the pressure
input data have sufficient accuracy.

Four leading methods were examined: those of 1)
Goldschmied, 2) Stratford, 3) Head, and 4) Cebeci-Smith.
One case representative of the fairly large number examined
in Ref. 23 is shown in Fig. 14. The separation point was
carefully measured. The predicted separation points are
marked on the pressure-distribution curves, which were sup-
plied by the experiments. Goldschmied's method was erratic.
The other three were in reasonable agreement, both in what is
shown here and in the complete study,23 Stratford's method
tended to predict separation slightly early. The Cebeci-Smith
method appeared best, with the Head method a strong
second.

Hence, the Cebeci-Smith method has been chosen as the
basic method, although much use is made of Stratford's

2.0

1.6

1.2

0.8

0.4

/?^=3.3xl06 a =10.5°

PREDICTION OF SEPARATION BY
EXPERIMENT
CS METHOD
HEAD
GOLDSCHMIED
STRATFORD

Fig. 14 Comparison with experiment of predicted separation points
for Newman's airfoil.
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method and ideas in this paper, mainly because of their great
convenience. Figure 15 summarizes the prediction accuracy of
the Cebeci-Smith method. The data consist of the results from
Ref. 23 together with other, unpublished studies. One should
not conclude from Fig. 15 that the general accuracy of tur-
bulent-boundary-layer calculation is as good as it appears to
be. Near separation, the accuracy of many of the boundary-
layer quantities, such as the momentum thickness 6 and the
velocity profile, become poor. Nevertheless, accuracy of
predicting the location of separation remains good. The
Cebeci-Smith method predicts separation to be at the point
where cf, the local skin-friction coefficient equals zero.

In view of those results, the method of predicting
separation appears to be accurate enough, in an engineering
sense, to be used in determining relations, limits, and the like.
It should be noted that the Cebeci-Smith method can handle
with great accuracy the effects of Reynolds number or Mach
number up to 5 or more. Also, it is the only one of the four
methods that can analyze the case of axisymmetric boundary-
layer flow.

4.3 Canonical Pressure Distributions

In almost all design work, pressure distributions are presen-
ted in terms of Cp = (p-p » )/(l/2p«i). In that kind of
presentation, high negative values of Cp invariably look bad,
and one is unable to tell by inspection much about the margin
of safety of the boundary layer against separation. Yet we
know from basic scaling considerations that if two pressure
distributions can be made congruent by proper scaling in the
x- and Cp-directions, then the two flows are identical except
for the Reynolds number effect, which is weak. Then, if
separation occurs, it will be at the same scaled point for both
flows. A particular 2-in. airfoil model at 100 mph will have
very high values of velocity gradients, but a similar 200-in.
model at 1 mph will have extremely low values. Yet the flows
are exactly similar because their Reynolds numbers are the
same. It is the dimensionless shape that counts. Hence it is
particularly useful to scale out the magnitude of the velocity
and also to scale out the chord. Where separation is im-
portant, the best scaling factor is the velocity just before
deceleration begins. Because all pressure distributions are put
in a standard form, it is natural to call the_m canonical
pressure distributions and use a new variable Cp. A typical
one is illustrated in Fig. 16, which shows the idea and basic
relations. The exact details of the normalization may well
depend on the problem and the nature of the pressure
distribution. The canonical pressure distribution, together
with a Reynolds number, completely describes the flow. A
meaningful Reynolds number is Re at the beginning of
pressure rise. The left-hand part in Fig. 16 might represent the
nose of an airfoil. Distance x is measured along the surface,
but the origin of x is a matter of convenience. Often it is con-
venient to locate it at the beginning of pressure rise, as in the
figure. Separation may occur at some point as noted. Because
of the very simple relation between pressure coefficient and
velocity ratio, the term pressure distribution is used in-
discriminately for plots of either pressure coefficient or
velocity ratio, provided that the flow is at low speed.

In the canonical system C^^O represents the start of
pressure rise and Cp = +1 the maximum possible,_that is,
ue = Q. Normally there are no negative values of Cp. Fur-
thermore, if two pressure distributions can be made congruent
by proper scaling, a flow having a deceleration of (ue/u x )2

from 20 to 10 is no more and no less likely to eparate than
one decelerating from 1.5 to 0.75 or even from 0.10 to 0.05.
The canonical plot is the one that is meaningful in separation
analysis. With magnitude effects scaled out, much more can
be told by a simple inspection than by a conventional plot. We
dwell on the canonical pressure distribution at some length,
because most working aerodynamicists do not realize its
value. Figures 17 and 18 show conventional and canonical
pressure plots for a typical high-lift airfoil. The basic charac-

100.0
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RMS ERROR FOR
67 POINTS*7.18%

O.I 1.0 10.0 100.0

—— X I06 (CALCULATED)

Fig. 15 Accuracy of predicting turbulent separation points by the
Cebeci-Smith method.

o x ———
Fig. 16 A canonical pressure distribution, Cp (x).

10 20 30 40 50 60 ,jrO 8Q/ 90 j 100 JiO__-^_ _ _ _ _ _ _
PERCENT TlNBROKEN CHORD "

Fig. 17 A conventional theoretical Cp plot of a four-element airfoil.
The right-hand scale is the canonical form, referred to peak velocity at
the nose of the flap. a= 15°, 6/ = 25% ds = 25°, CF = 4.08.

1.0 0 0.5 1.0 0 05 1.0 0 0.5 1.0°0

Fig. 18 Airfoil Cp of Fig. 17 plotted in canonical form.
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ter of the four pressure distributions is much more apparent in
Fig. 18. Figure 17 includes a canonical scale at the right, for
the complete ensemble.

4.4 Relation between the Canonical Pressure Distribution and
the Conventional

The relations between canonical and conventional pressure
distributions are very simple, but because there has been con-
fusion on the subject, they will be discussed at some length
here. The canonical pressure distribution is easily related to
the conventional form, where the reference velocity and
pressure are u «, and/? „ . Because the square of the velocity is
never negative, it is simpler to deal with velocity than with
pressure coefficient. The fundamental relation is quite simple.
It is

( u e / u ( K ) 2 ( x ) = ( u e / u 0 ) 2 ( x ) - ( u 0 / u O D )2 (4.1)

The last factor is just a constant. In many design problems, it
is desirable to start with a canonical pressure distribution,
then (u 0/u „ ) is not necessarily known and must be found.
Construction of a canonical pressure distribution from a con-
ventional one by means of Eq. (4. 1) is trivial, because u 0/u_x
is known. The method of converting velocities into Cp or Cp
form is obvious from the given relations.

A problem of some importance is that of applying a
canonical pressure distribution to the design of an airfoil by
inverse methods. Somewhere along the pressure distribution
the flow may separate. Then in the adaptation to the airfoil,
the separation point should not be forward of the trailing
edge. From Eq. (4.1) we can get the following equation:

= \ —— }2 \ —— VI J sep I J

Solving for (u0/u^)2 substituting into Eq.(4.1), we get

r ]2

From general airfoil theory, we know that (u e/u „ ) 2 at the
trailing edge is about 0.8, corresponding to Cp = 0.2. Then,
for instance, if the canonical pressure distribution separates at
(ue/u0)2 = QA, the factor is 0.8-^0.4 = 2.0. Of course Eq.
(4.3) is valid, no matter where separation occurs, but an air-
foil is not likely to be deliberately designed to have separation.
If we assume separation is always to be at the trailing edge for
any airfoil designed for maximum lift, we can specialize Eq.
(4.3) to the form

["-*-un
(4.4)

Observe that if by some artifice we could greatly increase (u e
lu oo )-f E., we could greatly increase (ue/u „ ) 2 (x) and hence
the lift, all for the very same canonical pressure distribution.
More will be said about that later. Equation (4.4) is easily con-
verted to Cp form. Writing

Cp = l-(ue/u o. )*, C^E =1- (ue/u .

and Cp = l-(ue/u0)2

we have

Cp(x) = l-
l-Cr

l-Cr

(4.5)

(4.6)

4.5 Location of Separation in Two Families of Canonical
Distributions

To exhibit the limits on the ability of a boundary layer to
flow into regions of higher pressure, we present two plots,
covering families of flows at two different Reynolds numbers,
Figs. 19 and 20. The flows consist of a length of constant-
velocity flow followed by a pressure rise described by the
equation

(4.7)

The unit Reynolds number is 106 per ft in Fig. 19 and 107 per
ft in Fig. 20. Pressure rise is set to start at ;c = 0, but forward
of that point are various lengths of flat-plate flow. It seemed
more convenient to construct the plots in terms of feet and
u « I v rather than in terms of Reynolds number, although
conversion into Reynolds number is easy. The total region of
pressure rise is seen to be 1 ft. Four lengths of flat-plate run
were studied: 1/64 ft, 1/16 ft, 1/4 ft, and 1 ft. The initial
flows then developed boundary layers of various thickness at
the beginning of pressure rise, as indicated by values of R e in
the figures. The flat-plate flow is assumed to be entirely tur-
bulent. If it were mixed laminar and turbulent, values of R 9 at
x = 0 would be less and different.

Calculations of the flat-plate and Cp -xm parts of the flow
were then made by the Cebeci-Smith method until separation
was reached. Lines cutting across the Cp=xm curves mark
separation points for the four lengths of flat-plate runs. The
straight-line or concave pressure rises permit the greatest
recovery before separation occurs. Also, the curves show that
the amount of recovery is sensitive to the length of flat-plate
run before the beginning of recovery. The separation loci,
while indeed functions of the length of flat-plate run, are

-0.0625 -0.015625
(276)^ (108)

POINT SPACING FOR FLAT PLATE RUN => I FT
I I i I I I I I I I I I M I I I I I I l l l l l l l l l
I I I I I I I

Fig. 19 Separation loci for a family of canonical pressure
distributions. Point spacing used in the boundary-layer calculations
for the 1-ft rooftop run is noted. Values in parentheses under
origins of flow are values of R e at x = 0.

Fig. 20 Separation loci for_a family of canonical pressure
distributions. Loftin's criterion Cp = 0.88 is noted.
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more fundamentally functions of the boundary-layer
thickness at the beginning of pressure rise. Hence, the
separation loci could just as well be identified by the noted
values of Rd at the beginning of pressure rise. Then Figs. 19
and 20 become applicable for any combination of rising
pressure and transition. For any arbitrary forward flow, one
would then calculate R d at x = 0 and interpolate between the
loci as a function of R e. In brief, we are saying that any flow
that develops one of the set of values of R e and that has the
same aft flow will have the same separation point as that of a
forward flow developed by an equivalent run of flat plate.
The equivalence is not rigorous, because a separation point is
a function not only of initial R e but also of the shape of the
profile as described by H. But R e is the dominant parameter,
and, considering the accuracy of turbulent boundary-layer
calculations, it is the only one that need be considered here.
With u0/v specified 6 converts to Re as the interpolation
parameter.

These comments point out the fact that extensive laminar
flow in the forward part helps to delay separation con-
siderably, because it reduces Re. Furthermore, boundary-
layer suction forward of the pressure rise would delay
separation. Another fact that is surprising is that if the
pressure rise is not too great, it may be extremely steep; in
fact, dCpldx may be nearly infinite. (Owing to the use of
finite steps, the slope of Cp is never quite infinite in the
Cebeci-Smith method. If it were, a constant in the partial dif-
ferential equation would be infinite and the method would
fail.) In the next section, we see that the infinite rate of
pressure rise is confirmed by Stratford's equations, which he
derived by an analytic approach.

Loftin and von Doenhoff24 studied a large number of thin
airfoils and arrived at a separation criterion that in our terms
is Cp = 0.88. It is plotted in Fig. 20. A thin airfoil at angle of
attack has an effective forward flow about the same as that of
the x=l/64-ft distance, and the pressure-rise region is ap-
proximated by the m = 1/3 or m- 1/4 curve. Hence, we see
that Loftin's criterion is rather closely predicted by the charts.
But we also see that it is far from universal.

The set of charts provides an "eyeball" method for
estimating separation points. We shall illustrate by con-
sidering Fig. 14. Try to relate that flow to one of the canonical
plots. If the pressure distribution of Fig. 14 is replotted in u2

/«i , or canonical form, the rear flow looks approximately
like the x1/3 flow and the front flow is effectively quite short.
Transition was measured at *=1.169 ft. Hence the logical
equivalent flat-plate length is 0.015625 ft. Which chart should
be used? Probably Fig. 20. To use the figures, convert the
chord of the airfoil to 1 ft. Because it is so small, there is no
need to be concerned about the 0.015625 forward part. In or-
der to hold Reynolds number at 3.3 x 106 with the reduced
chord, we need to increase u ^ Iv to 3.3 x 106/ft. But the
charts are in terms of ujv. Now from Fig. 14,
u0/u(x>=2.l. Hence, u00/v = 3.3 x 106 corresponds to
u0/v = l x 10 6. Then Fig. 20 seems to be the better of the two
to use. Of course, interpolation between the two is possible.
From Fig. 20 for m = 1/3, we find that separation occurs at
(ue/u0)2 = Q.\l or ue/u0 = OAl. In Fig. 14
(ue/u oo ) max = 2.1. Hence separation should occur at about
0.41 x 2.1=0.87, a ratio that is satisfactorily close to the
measured separation point. More care in the analysis
probably would increase the accuracy. For instance, a careful
calculation of R e at x = 0 by Truckenbrodt's method would be
better than a guess. Also, the exponent in the pressure-rise
region could be determined more accurately by the use of log
graph paper.

The canonical plots contain much useful information. For
instance, if load is being carried by an airfoil in cruise, the
pressure rise at the trailing edge is not great. If it corresponds
to Cp = 0.4, any m-curve will sustain the pressure rise, and
therefore suitable airfoils with all kinds of pressure
distributions can be made. But if one is striving for all the lift

he can get, the pressure-rise curve for ra = 1/4 or 1/3 is the
best, because that gives the greatest ratio and the highest mean
value of Cp along the upper surface.

Reference 20 gives two charts for a different family of
pressure distributions; they are arcs of circles. Results are not
significantly different from those of the Cp^xm family. Fur-
theremore, Ref. 20 contains an additional pair of charts for
the case where Cp -xm at M0 = 1. The separation loci are con-
siderably different, but more of the difference appears to be
eliminated if we consider the flow

l-(ue/u0)2=x™

The expression for Cp when the flow is compressible is

w+yMj

(4.8)

(4.9)
If ue/u0 = 0, C^ = 1.28 at M0 = l; and if Cp = 1.0,
( w e / w 0 ) 2 = 0.18. Hence, at Cp = 1.0, the flow is still far from
stagnation. Therefore, the better canonical compressible flow
to consider is the flow in terms of (ue/u0)2. Some points
calculated thus for flow at M0- 1.0 are shown in Fig. 8 of
Ref. 20. The answer to the question of whether com-
pressibility aggravates separation depends on the reference.
Certainly, compressibility aggravates pressure gradients on a
given bodyL which implies earlier separation. When con-
sidered in C p form, compressibility is favorable. Hence the
most fundamental approach appears to be to consider the
problem in terms of ue/u2, which is a measure of the kinetic
energy of the flow that remains. In that form, at least to M0
= 1.0, the effects of compressibility are minor when con-
sidered from the basic canonical standpoint.

In closing this section, we remark that because of_the
analytic nature of our canonical pressure distributions Cp =
x m, it is very easy to apply Stratford's criterion. That has been
done. If Stratford's predictions had been added to the plots of
Figs. 19 and 20, the differences in separation loci would ap-
pear considerable. Still they are so small that use of the charts
and the findings is not negated. Addition of Stratford-type
loci would only cause confusion. Therefore, we show only one
type of calculation, the Cebeci-Smith, which in general is
believed to be the most accurate. Furthermore, it should be
noted that Figs. 19 and 20 differ from their earlier forms in
Ref. 20. The main reason is that here we used the analytic
nature of the Cp=xm flows to compute certain necessary
derivatives.. In the earlier work, finite-difference formulas
were used. Disagreements such as those just indicate the state
of the art of turbulent-flow calculation.

4.6 Limiting Canonical Distributions

The Cp =xm families are very useful for almost all practical
flow problems, but of course the shapes of the Cp(x) curves
are arbitrary; the shapes are selected as a matter of analytical
convenience. Just as in many other problems, there is one
shape that is "best," Stratford's solution. We do not mean to
imply that the solution is exact, but as is indicated by Fig. 14,
it has acceptable accuracy. Stratford has derived a formula,
Ref. 25, for predicting the point of separation in an arbitrary
decelerating flow:

Cp[x(dCp/dx)] 1/2

(10 -6
___ o (4.10)

where if d2p/dx2>0, then S = 0.39; or if d2p/dx2<Q, then
5=0.35. Also, Cp<4/7, The flows examined consist first of
a flat-plate flow, just as with Cp—xm flows. Hence, x is
distance measured from the leading edge of the plate, and
R = u0x/v.U the flows begin the pressure rise at a point x0
such that Cp = (x-x0)m, left-hand side of Eq. (4.10) starts
from a zero value, provided that m>l/3. The left-hand
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Fig. 21 Stratford limiting flows at two values of unit Reynolds num-
ber.

side then grows. When it reaches the limiting value of S,
separation is said to occur. The study of Ref. 23 showed the
constants to be slightly different, but here, for our purposes,
we accept Stratford's values. See Ref. 25 for further details.

If S is held at its limiting value of 0.39 for d2p/dx2>0, Eq.
(4.10) amounts to an ordinary differential equation for
Cp(x). It is evident from Eq. (4.10) that the equation de-
scribes a flow that is ready everywhere to separate. Stratford
presents the following solutions:

Cp -0.645(0. 435 R 0
1/5[(x/x 0)1/5 -

forC / ,<(/ i-2)/(n + l)

and

C =1-
n-2
n + 1 (4. lib)

In that two-part solution, x 0 is the start of pressure rise, R 0
= «0jt0/j>, x is the distance measured from the very start of
the flow, which begins as flat-plate, turbulent flow. The num-
ber n is a constant that Stratford finds to be about 6. The
quantities a and b are arbitrary constants used in matching
values and slopes in the two equations at the joining point, Cp
= (n — 2)/ (n + 1). Of course, Eq. (4.11 a) describes the begin-
ning of the flow, and Eq. (4.1 Ib) the final part. The flow is an
equilibrium flow that always has the same margin, if any,
against separation.

Two families of such flows have been computed; they are
shown in Fig. 21. They correspond to the same set of con-
ditions that were used in the Cp=xm flows. As has already
been mentioned, they represent true limiting flows—the
slightest increase in adverse gradient anywhere should cause
separation. The curves assume the length of flat-plate runs in-
dicated, but just as for the Cp=xm families, what is of more
fundamental significance is the boundary-layer thickness at
the beginning of pressure rise. Hence, a table of initial values
of R 9 is included. With the aid of those R e values, the curves
could be applied to arbitrary forward pressure distributions
having mixed laminar/turbulent flow.

Within the accuracy of the theory, which tests have proved
to be correct and somewhat conservative, those curves show
the fastest possible pressure rise that can be obtained from a
natural boundary layer. Also, when compared with Cebeci-
Smith predictions, the theory appears conservative. Figure 21,
together with Eq. (4.11), exhibits the following features:

1) The initial slope dCp/dx is infinite, so that small
pressure rises can be made in distances from very short to
zero.

2) It is easy to show that Cp ~ x1/3 in the early stages.
3) The dominant variable is x/x0 [see Eq. (4.11)]. Hence,

when x0 is small (i.e., the boundary layer is thin), pressure

recoveries may be very rapid. When the initial run is long and
the boundary layer is thick, the allowable average pressure
gradient is much less. Or conversely, thick boundary layers
are much more likely to separate than thin.

4) The unit Reynolds number effect is rather small [see
Fig. 21 and Eq. (4.1 la)].

5) Theoretically, 100% of the dynamic pressure can be
recovered, but the distance required is infinite.

6) Aside from error in the theory, the curves of Fig. 21 are
the shortest possible pressure recoveries— they are the "end of
the line." Nothing better can be done except by boundary-
layer control.

7) The Stratford pressure distribution is the path of least
resistance connecting two pressure points A and B, as will
now be shown.

If we accept quadrature formulas such as Spence's or
Truckenbrodt's, then Stratford's flow is found to be the
minimum-drag flow. Consider the flow situation sketched in
Fig. 22. We wish to go from some point A to another point B.
Various paths may be possible, as sketched. The Stratford
path is the path of lowest drag. We shall show this by means
of Truckenbrodt's formula.26 For purposes of demon-
stration, we can write it as follows:

= [eA+K\*B
J*4

\333dx] (4.12)

The path that developes the minimum value of the momentum
defect 6B at B will be the path of minimum drag. It is obvious
by inspection that the Stratford path is the answer. For it, the
Truckenbrodt-type integral is minimum. As has already been
shown, any curve below Stratford's would suffer from
separation. According to this method of analysis, the best
path is Stratford's, even if it means a sudden jump upward in
velocity as sketched at B. Exactly how this flow can be applied
to airfoil design is uncertain, in general, because of all the in-
teracting effects. But at least we should be able to say that
when a Stratford flow is applied in a sound fashion, low drag
can be expected.

The first part of Eq. (4. 11 a) of the pressure rise is quite
rapid, but the final part, Eq. (4. lib), is quite slow. It is
enlightening to compare with a lossless two-dimensional dif-
fusor as sketched in Fig. 23, which provides a simple physical
picture. In canonical form, (with, V as velocity) the pressure
coefficient referred to conditions at x = 0 is

C=1-(V2/V2) (4.13)

Fig. 22 Possible pressure distributions connecting points A and B.

STRATFORD

Fig. 23 Two-dimensional diffuser.
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The width of the diffuser is w = b + 2x tan a. When that ex-
pression is combined with the equation of continuity and sub-
stituted into Eq. (4.13), we have

= /~" [l+(2x/b)tana]2 (4.14)

a formula whose structure is generally like that of Eq. (4.1 Ib)
in the sense that an infinite distance for full recovery is in-
dicated. But the exponent of the denominator is 2 for the dif-
fuser, as compared to 1/2 for Stratford's flow.

A Stratford flow has a continuous margin of safety over its
entire length with respect to separation, whether at the begin-
ning of pressure rise or far, far downstream. The margin of
safety can be adjusted by changing the constant S in Eq.
(4.10).

Both Eqs. (4.lib) and (4.14) show that an infinite distance
is required to bring a flow in the boundary layer to complete
rest. Now if a round-nosed object is placed in a stream, it
generates a stagnation point. Then, if a round-nosed object
like a cylinder is placed on end on the floor of a wind tunnel,
the situation is such that a boundary layer is brought to rest in
a finite distance, with separation sure to occur. (It is believed
that the three-dimensionality of the flow does not negate that
conclusion.) Airplanes of ten have similar intersec-
tions—wing-fuselage, for example. The inevitability of
separation in such cases does not seem to be fully appreciated.
The inevitable separation is one of the justifications for
filleting.
4.7 Limiting Suction Lift

By means of the relations in Sec. 4.4, the Stratford
canonical distributions of Fig. 21 can be transformed into

Fig. 24 Suction side pressure distributions using Stratford pressure
recovery to €^=0.20 at trailing-edge. Laminar rooftop, Rc=5 x
106. Values beside each curve indicate the lift that is developed. In
the M2 oo c? form M^ is that value which just makes the peak velocity
sonic according to the von Karman-Tsien formula.

idealized airfoil-upper-surface pressure distributions. A key
parameter in the conversion is the effective velocity at the
trailing edge, that is, the effective edge velocity to which the
forward flow must decelerate when a boundary layer exists.
Without the boundary layer, airfoils that ended with a finite
trailing-edge angle would always have zero final velocity. The
effective velocity we are talking about is really a correlating
velocity. Edge velocities at the 97- or 98-% chord point are
good values. Because the flow over an airfoil may be ac-
celerated, retarded, heated, sucked, blown, reenergized, and
finally discharged "overboard," the author tends to think of
the boundary-layer air as going through a sort of physical
process and then being "dumped" overboard. Hence, he likes
to refer to the effective leaving velocity by a homely
name—dumping velocity.

Observation of various pressure distributions shows that a
typical effective trailing-edge velocity or "dumping velocity"
is (ue/u00)2 = O.S. If we use this value, we can form two
main families of limiting upper-surface pressure distributions,
one for full laminar flow along the rooftop and one for full
turbulent flow. Some results are presented in Figs. 24 and 25
for a chord Reynolds number of 5 x 106. Figure 25 amounts
to a direct scaling of the standard Stratford flow, because the
rooftop is assumed to be entirely turbulent. In Fig. 24, the
rooftops are considerably longer, because with laminar flow a
longer distance is required to develop the same value of R e as
that developed by a run of fully turbulent flow.

All the flows of Figs. 24 and 25 have the property of
producing the same final velocity without any separation but
with the most rapid possible pressure rise from various roof-
top Cp-levels. If the rooftop Cp is very high, the pressure rise
must start early. If low, it can start late. If areas within the
curves are calculated, it is found that a maximum exists and
that the initial negative Cp for this condition is not very high.
Values of the upper-surface lift coefficients are noted on the

Fig. 25 Suction side pressure distributions using Stratford pressure
recovery to Cp=0.20 at trailing edge. Turbulent rooftop. Rc=5
xlO6.
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LAMINAR
ROOFTOP
Rc = 5xl06

=2.31
=0.0055

cdu =0.0053
cdt =0.0002

Fig. 26 An optimized high-lift Liebeck airfoil that uses a Stratford
pressure recovery. Values noted are theoretical. S is peripheral distan-
ce measured from the trailing edge. Pat. Pend.

--I.OH
0.2 0.8 1.00.4 0.6

5
Fig. 27 The Liebeck airfoil that produces maximum lift with fully at-
tached flow, design Rc = 5 x 106. Pat. Pend.

figures. For laminar and for turbulent approach flow, the
maximum suction-surface lift coefficients are 2.03 and 1.00,
respectively. Higher Reynolds numbers would increase these
values. It is interesting to note the very strong theoretical ef-
fect of laminar flow on lift. Usually, we think that the main
benefit of laminar flow is reduction of drag.

We have been discussing lift coefficient analysis. A second
and perhaps more important subject is the maximum force or
M^Cf that we talked about in Sec. 3. The problem cannot
now be solved as accurately as for incompressible flow by
means of Stratford's analysis. A compressible Stratford-type
solution is necessary as a minimum. Nevertheless, nothing
prevents us from determining critical Mach numbers for each
of the pressure distributions by Karman and Tsien's rule and
assuming that the pressure distributions are still valid. If so,
we get the values of M2^c( in parentheses in Figs. 24 and 25.
Again there is a maximum value. For laminar flow it is 0.33.
The maximum occurs at much lower lift coefficients.

In the two figures, thejy-ordinate was scaled to produce (ue
lu « )2=0.8 at the trailing edge. Suppose that we could by
some means raise the number to 1.2. Then by Eq. (4.4) all
values would be increased 50% and a 50% gain in lift would
result. Therefore, a high dumping velocity is very important.

4.8 Examples

Within the accuracy of the theory, we have just shown in an
idealized form the maximum suction lift that can be
developed with fully attached flow when the flow is that in a
natural boundary layer. R. H. Liebeck27 was greatly respon-
sible for the basic studies. He has recently applied them to ac-
tual airfoil design, where lower-surface pressure, upper-
surface pressure, and shape must all be considered.
Furthermore, he formulated the problem exactly, working
in terms of surface distance and circulation instead of pres-
sures projected on a plane, as in Figs. 24 and 25. The formu-
lation leads to an inverse airfoil design problem that can be
solved with great accuracy by James' method28 or other good
inverse methods.

One such solution is given in Fig. 26. To be sure of
developing laminar flow on the upper surface, the forward
part was given a favorable gradient instead of just a constant
velocity flow, as in Figs. 24 and 25. Theoretical values of c(
and cd are shown on the figure. The section LID is 420. Tests,
Ref. 27, of two airfoils of the type shown in Fig. 26 show
almost perfect agreement between theory and experiment at

-3.0

-2.0-

-i.o

TRANSITION

STRUT

Fig. 28 The thickest struts having fully attached flow.

the design point. One of the most remarkable features of the
airfoil is the extremely low theoretical drag of the lower sur-
face. As can be seen from the pressure distribution, the
velocity on the lower surface is not only low but is accelerating
continuously from nose to trailing edge. Hence, it is likely to
be laminar all the way. The upper-surface drag is relatively
low too, partly because of the minimum-drag property of
Stratford flows (Sec. 4.6, property 7).

Liebeck's work was begun in an attempt to answer the
question, "What is the maximum lift that can be developed by
a single-element airfoil with fully attached flow, and what is
the shape required to develop it?". At Rr = 5 x 106, for all
practical purposes, Fig. 27 gives the answer. The airfoil has
substantially zero thickness, because at design conditions
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thickness is harmful, as a little thought will indicate. This
limiting airfoil develops a section LID of 600! Conventional
airfoils rarely exceed 180.

Although they are not related to the high-lift problem, we
shall close this section with some" interesting examples of what
can be accomplished by various kinds of boundary-layer
flows. By showing some limiting shapes, Fig. 28 demonstrates
the ability of various types of boundary-layer flows to
withstand adverse pressure gradients. All three shapes are
cusped in order to eliminate the rear stagnation point that
theoretically accompanies a finite-angle trailing edge. All
boundary-layer calculations were made for the naked shapes.
A slight relief would be provided if the effects of boundary
layer were taken into account. Hence, the bodies shown here
have a slight degree of conservatism. The first cases represent
the thickest symmetrical Joukowski strut that can have com-
plete laminar flow without any laminar separation. It is only
4.6% thick. The Reynolds numbers must be low; otherwise
the flow would become turbulent. The intermediate case is a
Joukowski strut having mostly turbulent flow with transition
as shown in the figure. The chord Reynolds number is 107.
Finally, if we pull out all stops and so shape the forward
gradients as to be favorable to laminar flow and then use the
Stratford pressure recovery in the rear, we obtain the thickest
shape, which is more than 53% thick. The theoretical Michel
transition point is marked on the figure. With the strong
favorable pressure gradients, there should be no trouble in ob-
taining the required laminar flow, even at the rather high
Reynolds number of 107. Like the high-lift shapes, it too was
designed by the James method. Because of the extensive
laminar flow, the theoretical value of cd is only 0.0077, in
spite of the great thickness.

4.9 Off-the-Surface Pressure Recovery
Until now, our concern has been with fluid flowing into

regions of higher pressure while it is in contact with a surface,
that is, a decelerating boundary-layer flow. But there can be
another kind of flow, the flow of wakes that may be out of
contact with any wall, into regions of higher pressure. Such a
flow occurs, to a degree, on any multielement airfoil. A slat
develops its own boundary layer, which flows off its trailing
edge, forming a wake of low-energy air that now flows
alongside the rest of the airfoil and on downstream. Consider
the geometry of Fig. 17, for instance, or the streamline pat-
tern of Fig. 29. Each forward element produces wake com-
ponents over its downstream partners.

The theory of that kind of wake flow is not nearly so well
developed as the theory of boundary-layer flow. Therefore,
we shall be content to given only a brief discussion of its
features, chiefly for the purpose of calling attention to them.
There can be two kinds of wakes flowing into a region of
higher pressure. One is separated from the adjacent boundary
layer by a region of potential flow. That kind occurs when
gaps are large. The other kind is so close to the adjacent boun-
dary layer that the two flows finally merge and become one
thicker boundary layer. That kind occurs when gaps are
small. By some it is called confluent boundary-layer flow.

Because a wake is usually near the main airfoil surface, the
pressures impressed on it are little different from those on the
airfoil surface; for example, consider the streamline in Fig. 29

INCREASING PRESSURE -
STATION 0 X —- STATION 1

Fig. 30 Flow of a wake into a pressure rise.

that leaves the slat. If the pressure rise is great enough, we can
have flow reversal in the stream, entirely off the surface. The
phenomenon is easily demonstrated by resorting to Ber-
noulli's equation. Consider a flow as illustrated in Fig. 30. At
station 0, there is a flow in which static pressure is constant
across the stream, but there is a wake-like portion in which
velocities are deficient. The wake flows into a region of higher
pressure at station 1. What happens to the wake region?
Because we are considering regions very thin with respect to
any overall curvature of the flow, it is reasonable to assume
that the static pressure p l at station 1 is also constant across
the boundary layer. Because gradients du/dy will be small, the
shear stresses will be low and then it is a good approximation
to assume that each streamline maintains its total head be-
tween station 0 and station 1. Such an assumption has been
confirmed in numerous analyses, including Stratford's.
Hence, using U for potential regions and u for energy
deficient regions, we can write, for incompressible flow,

and

Solve for V\ and U? and obtain their ratio, thus:

(4.15)

(4.16)

(4.17)

Now introduce our canonical pressure coefficient C p — ( p —
p0)/ (1/2)pL^into (4.17). We obtain

(4.18)l-Cn

The equation shows that as Cp increases, u?/U? can reach
zero well before CD reaches +1, provided that u%/U%<\.
For example, if u2

0/U2
0=l/2, u]IU} = § when Cp = l/2.

That is, the velocity-defect ratio is magnified, and flow rever-
sal can occur in the main stream. Viscosity, of course, helps to
smooth out the wake velocity defect, which means that a Ber-
noulli approach is unduly conservative.

According to Eq. (4.18), if flow is into a region of higher
pressure, the velocity defect ratio always worsens. Opposing it
is the effect of viscosity, which tends to smooth out the defect.
Gartshore 29 has derived an approximate test as to whether the
wake grows or decays. It is

Fig. 29 Calculated streamline flow field for airfoil with leading edge
slat and double slotted flap, a = 0°, ct = 3.70.

0.007
l-Cn l-Cn

(4.19)
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where 6* is the displacement thickness of the wake at the point
being considered. If the left-hand side of Eq. (4.19) is less
than 0.007/6*, the wake decays; if greater, it grows.

To study the structure of Eq. (4.19)_, we shall apply the test
to a flow that is a variation of the Cp=xm flows shown in
Fig. 20. Referring to that figure, we shall assume that we have
flat-plate flows of various lenths, from 0.015625 to 1.0 ft,
that develop boundary layer on both sides, All end a_t x = 0.
They then dump their boundary layers into the Cp=xm

pressure region. Will the wake defect amplify or decay? First
we must know the initial displacement thickness of the wake.
Assume it to be equal to the final displacement thickness of
the boundary layer from both sides of the plate. A convenient
formula is Blasius 1/7-power formula

> \ side
0.0463'I
R"5

After substitution from (4.20) into (4.19), we obtain

0.075R1/5

1-Cn

(4.20)

(4.21)

where £ is the length of the flat plate and R(=u0t!/v. Figure
31 shows the results. The two sides of Eq. (4.21) are plotted
separately. When the left-hand side exceeds the right-hand
side, instability develops. The m = 1 curve is a special dividing
case. It begins with the value of 1.0. Any higher value of m
begins with the value 0; any lower value of m, the value « .
Hence, according to Gartshore's criterion, the wake is always
initially unstable for m < 1.0. The figure shows a strong effect
of wake thickness upon the stability. For our problem a
higher Reynolds number is favorable because it reduces <5*
and hence increases the value of the right-hand side of Eqs.
(4.19) or (4.21), but the effect is weak. According to Eq.
(4.21), for the Cp=xm flows the left-hand side ultimately ap-
proches infinity, and therefore any of the wake flows should
finally go unstable. Hence, with m < 1, theoretically we have a
situation where the wake flow is unstable to begin with, but
quickly becomes stable and finally becomes unstable again if
carried far enough. Whether that indeed is true is not known.

However, according to Gartshore's analysis, a boundary
layer is more prone to separation than the wake is to in-
stability. Consider the f=0.25-ft plate in Fig. 31. For any of
the ra-values, the final instability is at x^O.8 ft. However ac-
cording to Fig. 20, for most values of m, the boundary-layer
flow has separated earlier.

20 r

Fig. 31 Evaluation of Eq. (4.21) for the decelerating flows of Fig.

Gartshore cites experimental evidence that confirms his
deductions. It was obtained by examining flow over deflected
plain flaps. Without doubt, the effect can and has oc-
curred—separation off the surface. But since there has been
very little study of that kind of flow, the validity of relation
(4.21) is in question. Especially in question are some of the
derived consequences, such as the initial instability for some
fractional values of m. For example, when m - 1/3 and 1/2, a
boundary-layer flow would not separate, but the wake flow
would be unstable. The principal purpose in presenting exam-
ple applications is to get the concept into the open, and at least
exhibit in a qualitative way the effect and the interaction
between wake thickness and pressure gradient.

In practical applications, with their lack of infinite adverse
gradients through which a wake must flow, the wake-
instability problem should rarely be critical, which means that
wakes can endure pressure rises that boundary layers cannot
endure. What a multielement airfoil does then, in effect, is to
use two methods of pressure recovery: the conventional, that
is, on-the-surface pressure recovery, and off-the-surface
pressure recovery. On a slatted airfoil, for instance, the
history of the flow is this: Air flows over the slat, reaches a
peak velocity, then decelerates in contact with its surface,
leaves the surface and continues to decelerate until trailing-
edge pressures are reached, after which it gradually ac-
celerates back to freestream conditions. By the off-the-surface
deceleration, recovery from very high negative Cp values can
be made in much shorter distance than can be made when all
the deceleration is in contact with a surface.

On the right-hand side of Fig. 17 is a canonical pressure
scale based on the maximum velocity on the slat. According to
that scale, the final velocity-squared ratio at the trailing edge
is only 0.025. If all the deceleration had been in contact with
the surface, the flow would surely have separated, according
to Figs. 19 and 20.

Nothing so far has been said about the case when boundary
layers merge. Lockheed30'31 has studied the problem and, in
fact, has developed a general method for analyzing confluent
boundary layers. But because of the complicated nature of the
flow, bold simplifications had to be made. Like Gartshore's
analysis, the methods need development and further checks by
detailed experimental work. Improved methods for both the
merging and the nonmerging wake flows are problems for
future work.

It is our observation, as well as that of Foster et al.32, that
gaps between airfoil elements should be so large that wakes
and boundary layers do not merge for, if they do, early
separation will set in. In fact, Foster et al. in discussing the
subject makes the following statement:

4'...when the flap is in the optimum position from the
viewpoint of obtaining the highest maximum lift, the in-
teraction between the wing wake and the flap boundary layer
is comparatively mild, with the two layers retaining their
separate identity almost to the flap trailing edge."

Hence, we are somewhat fortunate. Optimum designs are
outside the region of merging boundary layers, and, fur-
thermore, flow retardation rates are rarely so great that the
wake becomes unstable. The boundary layer on an element
beneath the wake is nearly always in worse trouble. However,
the merging of boundary layers helps establish the optimum.
If the boundary layer were much thinner an optimum spacing
might be less. Hence, because of scale effects on the boundary
layer, the optimum spacing for an aircraft may be appreciably
less than indicated by a small scale wind-tunnel model. The
problem is worst for the slat because its wake has the longest
run.

5. Loads Applied to Boundary
Layers by Airfoils

5.1 Introduction

The problem of obtaining high lift is that of developing the
lift in the presence of boundary layers—getting all the lift that
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is possible without causing separation. Provided that bound-
ary-layer control is not used, our only means of obtaining
higher lift is to modify the geometry of the airfoil. Con-
siderations that guide the modification, then, are the subject
of this section. It is helpful to think in terms analogous to
those of structural design—applied and allowable loads. The
airfoil applies the loads, and the boundary layer determines
the allowable. Separation of a boundary layer may be likened
to reaching the yield point in materials testing. Initial
separation rarely coincides with the maximum lift that an air-
foil develops, for the lift usually continues to increase.
Likewise, the yield point in a metal is not the point of ultimate
load. That usually is the rupture point. Hence, the point of
maximum lift coefficient may be likened crudely to the rup-
ture point of a material. The analogy is quite rough, of
course, but it is mentioned because the interaction between
boundary layer and shaping of an airfoil is not very widely ap-
preciated. We close these introductory remarks by observing
that aerodynamic science has advanced to the point where we
can satisfactorily predict the point of initial separation (the
yield point) but not the condition of maximum lift (the rup-
ture point). The second problem is still beyond the state of the
art, but it is assuming high priority because of successful
solution of the simpler problems.

5.2 Single-Element Airfoils

The subject of single-element pressure distribution types
and consequent airfoil performance has been indirectly
covered by the material in Sec. 4. The canonical pressure
distributions show general limits to the pressure rises, and the
pair of charts can be used for visual checks prior to careful
examination of more nearly final designs by detailed bound-
ary-layer calculations. If separation is indicated for the
problem at hand, some change must be made in the shaping in
order to remedy the defect. In making the change, it must be
borne in mind that definite bounds on what can be ac-
complished have already been established. For a one-piece air-
foil, there are several possible means for improve-
ment—changed leading-edge radius, a flap, changed camber,
a nose flap, a variable-camber leading edge, and changes in
detail shape of a pressure distribution. A pressure rise may be
improved by changing from convex to concave in the direc-
tion of Stratford's type. Even changing the trailing-edge angle
from finite (e.g., 10°) to cusp may be useful because a cusped
trailing edge imposes less pressure rise at the trailing edge.
Furthermore, a cusp increases the slope of the lift curve, so
that a given CL is reached at a lower angle of
attack, which lowers nose pressure peaks.

Simple hinge systems as on a plain flap, even though sealed,
can have a significant adverse effect on the separation point
and hence on lift. Figure 32 shows the adverse effects of the

- DEFLECTED 25*

-VARIABLE CAMBER

Fig. 32 Comparison of two kinds of flaps on a NACA 63A010 air-
foil. For the plain flap a = 0° and inviscid ct = 1.78. The airfoil with
variable camber flap was set at a = 1.06° in order to obtain the same
Cg. Separation points are marked by arrows. Rc = 107. Transition is at
forward suction peak.
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Fig. 33 Pressure distribution for a typical aft-loaded airfoil.
Pressure distribution is corrected for boundary-layer effects. The
shaded area on the airfoil represents the displacement thickness.
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Fig. 34 Pressure distribution of Fig. 33 in canonical form.

break at a hinge line. The airfoil is an NACA 63A010 airfoil
hinged on the lower surface at the 75%-chord point. Also
shown for comparison is a variable-camber flap whose cen-
terline is a circular arc. Its final slope is 25°, so that both
trailing edges have the same final angle. Both flaps have
separation, but the variable-camber shape has attached flow
over 85% of the flap, while the simple flap has attached flow
over only 71 %. It is interesting that the simple hinged flap has
a concave pressure distribution and the cambered a convex. In
the canonical sense the plain flap pressure recovery is more ef-
ficient. The variable camber flap turns out to be better only
because of its drastic reduction in the suction peak.

Canonical pressure distributions are useful for preliminary
scanning. Figure 33 shows a conventional pressure
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distribution. Where is separation most imminent? Near the
front on top? Near the rear on top? Or on the bottom? Figure
34 is the canonical form of Fig. 33. Comparison with the
curves of Figs. 19 and 20 indicates that the nose is far from
separation. The rear upper surface is marginal, but only
behind about 97% chord. The lower surface retards to about
Cp = 0.5 in a rather short distance, and the retardation begins
late. Figures 19 and 20 indicate that a C^-value of about 0.6
could be reached in this distance. Hence there seems to be
some margin, but not much. Provided that other constaints
would allow it, the faintly S-shaped pressure distribution aft
of 50% chord on the bottom could have been improved by
replacing it with one that is concave all the way. In problems
and approaches like this, the need for inverse methods become
evident. First, we would like to have an inverse boundary-
layer method that for arbitrary initial conditions could tell us
what pressure distribution we could have that contains a cer-
tain margin against separation. Then, given the specified
pressure distribution, the method should find the airfoil shape
that produces it. Definite progress is being made along these
lines.
5.3 Multi-element Airfoils—General

There seems to be a great deal of ignorance and confusion
about the effect of gaps in properly designed multielement air-
foil systems. One misconception was mentioned in the in-
troduction to Sec. 4. The most common misconception is that
a slot supplies a blowing type of boundary-layer control. The
idea can be traced at least as far back as Prandtl,33 who said,
1 The air coming out of a slot blows into the boundary layer
on the top of the wing and imparts fresh momentum to the
particles in it, which have been slowed down by the action of
viscosity. Owing to this help the particles are able to reach the
sharp rear edge without breaking away." Abbott and von
Doenhoff34 merely make the safe comment, *'Slots to permit
the passage of high energy air from the lower surface to con-
trol the boundary layer on the upper surface are common
features of many high-lift devices." Here again, boundary-
layer control is implied. Perkins and Hage35 make the
harmless and noninformative statement: "The air flowing
through the slot in Fig. 2-49 [sic] is accelerated and moves
toward the rear of the airfoil section before slowing down and
separating from the surface." Lindfield, in Lachmann,7 has a
brief paper on the slot effect. Part of the article describes
studies by Lachmann, in 1923, who represented a lifting slat
by several vortices located near a circle. The circle was then
transformed into a Joukowski airfoil. Lachmann's theoretical
studies seem to have been largely forgotten and not really ap-
preciated. However, he considered only half the problem—the
effect of a slat on an airfoil. He did not consider the effect of
the airfoil on the slat. Lindfield's article is correct as far as it
goes, but it is not very factual. He points out the need for bet-
ter analytical methods before the slot effect can be well
analyzed. (Now 14 years later, most of the methods are
available.)

A remark about the action of slots comes from a recent
NASA report30: "It is well recognized that the usual function
of the slot is that of a boundary-layer control device per-
mitting highly adverse upper surface pressure gradients to be
sustained without incurring severe separation. This stabilizing
influence results from the injection of the high energy slot
flow into the upper surface boundary layer." A still more
recent NASA report36 states, "This leading-edge slat gives the
fluid which passes through the gap between the slat and the
main airfoil a high velocity. Consequently, a boundary layer
which grows on the upper surface of the main airfoil has more
momentum than it would have in the absence of the slat."

There are two things wrong with these statements. First of
all, the slat does not give the air in the slot high velocity. If
anything, it gives the air low velocity. Secondly, the air
through the slot cannot really be called high-energy air. All
the air outside the actual boundary layers has the same total
head. Properly designed and spaced slats are far enough apart

that each component develops its own boundary layer under
the influence of the main stream, and there is no merging
within the slot. Topologically, the process of boundary-layer
development is no different from that on a biplane. Subject to
their particular pressure distributions, the two boundary
layers on a biplane grow, trail off downstream, diffuse, and
finally merge. That is just the process for an airfoil system of
two or more elements so long as merging does not occur
within the slot.

The next paragraphs will elaborate on and confirm what we
have just said. There appear to be five primary effects of
gaps, and here we speak of properly designed aerodynamic
slots.

1) Slat effect—in the vicinity of the leading edge of a down-
stream element, the velocities due to circulation on a forward
element, for example, a slat, run counter to the velocities on
the downstream element and so reduce pressure peaks on the
downstream element.

2) Circulation effect—in turn, the downstream element
causes the trailing edge of the adjacent upstream element to be
in a region of high velocity that is inclined to the mean line at
the rear of the forward element. Such flow inclination induces
considerably greater circulation on the forward element.

3) Dumping effect—because the trailing edge of a forward
element is in a region of velocity appreciably higher than
freestream, the boundary layer /'dumps" at a high velocity.
The higher discharge velocity relieves the pressure rise im-
pressed on the boundary layer, thus alleviating separation
problems or permitting increased lift.

4) Off-the-surface pressure recovery—the boundary layer
from forward elements is dumped at velocities appreciably
higher than freestream. The final deceleration to freestream
velocity is done in an efficient manner. The deceleration of
the wake occurs out of contact with a wall. Such a method is
more effective than the best possible deceleration in contact
with a wall.

5) Fresh-boundary-layer effect—each new element starts
out with a fresh boundary layer at its leading edge. Thin
boundary layers can withstand stronger adverse gradients
than thick ones.

Those effects will now be explained and discussed in turn at
some length. Laminar bubbles, merging boundary layers, and
the like may complicate the problem; but when Reynolds
numbers are high and at design conditions, such side effects
should not be important. Therefore, only conventional
boundary-layer effects are considered.
5.4 Slat Effect

Figure 35 displays the slat effect. A slat that is lifting has
circulation in the direction sketched in the upper part of the

o.o
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eg TOTAL = 2.4741
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c, AIRFOIL = 0.3680

Fig. 35 Velocity distributions on an airfoil with and without a vortex
located as shown. 5 is the arc length around the airfoil surface begin-
ning at the trailing edge, measured in a clockwise direction. Total
perimeter is unity.
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figure. To a first approximation, a slat may be simulated by a
point vortex. A more accurate approximation would account
for thickness by means of several sources and sinks, sources in
front and sinks behind, the total yield being zero, of course.
For our purposes, it is sufficient to consider only the vortex.
From the sketch it is evident that the velocities induced on the
airfoil by the vortex run counter to those that would develop
on the nose of the isolated airfoil, especially at high angle of
attack. Pressure peaks would therefore be reduced. Liebeck
and Smyth37 studied the effect by means of a special
generalized Joukowski airfoil program combined with com-
puter graphics. Figure 35 is an example of the work. In the
method, the vortex could be moved around at will. The best
location found for the vortex was typical of the location of a
slat. The "best" location is not a precise statement. It is the
location where the nose suction peak was largely eliminated
and resulting pressure distribution was smooth. At a = 15°,
the plain airfoil developed a very strong suction peak. As is
noted at the bottom of the figure, c( for the airfoil alone is
2.37. With a vortex located as shown, the pressure peak was
completely eliminated, the airfoil c( fell to 1.88, but the total
lift, including the vortex, increased to 2.47. In Fig. 35, the
curve called "vortex" shows the velocity induced on the air-
foil by the vortex in the absence of the main stream. For best
cancellation of the isolated airfoil suction peak, vortex
position and strength were so adjusted as to generate a
negative velocity peak that was roughly the mirror image of
the isolated-airfoil suction peak. Flow near the rear of the air-
foil was almost unaffected, as can be seen by examination of
either the airfoil pressure distribution or of velocities induced
by the vortex.

That then is the slat effect. Contrary to the implication in
the various quotations cited in Sec. 5.3, the velocity on the
nose of the airfoil is reduced. Peak nose velocity ratio was re-
duced from about 4.4 to under 2.0. Obviously, the bound-
ary layer is much better able to negotiate the modified
distribution. With a vortex operating, there is only a very
small increase in total lift, a fact that is consistent with wind-
tunnel observations. With slat extended, the main effect is to
delay the angle of stall, not particulary to shift the angle of
zero lift. In the beginning of this discussion, it was mentioned
that thickness effects could be accounted for approximately
by sources in front and sinks behind, to approximate the
shape of the flap. Since total sink strength must equal total
source strength and since the sinks are closest to the airfoil,
the net effect of the combination is the induce a small forward
velocity component on the airfoil. Hence thickness effects
should generally reinforce the circulation effects.

30 40 50 60
PERCENT CHORD

Fig. 36 Typical theoretical pressure distributions for a two-element
airfoil, corrected for the boundary layer. The dumping velocity is
denoted by the arrows. Also included is the canonical pressure
distribution for the upper surface, as well as pressure distribution for
the main airfoil alone. The latter exhibits clearly the favorable effect
of a slat, a = 13.15°, ct = 1.45 for the two-element airfoil.

There is an interesting and more physical way of explaining
the slat effect. Again consider Fig. 35. When the airfoil is at
an angle of attack, flow whips rapidly around its nose, which
has a small radius. High centrifugal forces are developed.
Without outside help, high negative pressures around the nose
are needed to balance out the centrifugal force. But the vortex
is a turning aid, and a true slat also would be one. There
should be a close correlation between the amount of load
carried by the slat and the average Cp-reduction over the
nose. The author looked at Fig. 35 and made the following
crude estimates: Area modulated = 10% chord, mean Cp of
the airfoil alone for this region =-8. Mean Cp for same
region with vortex present =-2. Net exchange = 6. Then
approximate lift force c( that must be supplied by the vortex
is 6x0.6. The actual lift on the vortex is the difference
between cftotal and cfairfoil. According to the numbers at bot-
tom of Fig. 35, cF = 0.6 is indeed the load carried by the vor-
tex. Probably, the analysis cannot be made quantitative, but it
does add to the understanding of the flow process. The
problem would be a good one for further study. The force
exerted by the vortex is not just vertical; it has a drag com-
ponent too. According to the figure, because net drag must be
zero, its c^-value is —0.3680, a negative force that causes slats
to extend automatically. A more careful analysis would con-
sider this component.

The slat effect on a real airfoil is illustrated well by Fig. 36,
which represents a well-developed, practical design. The
pressure distribution for the airfoil without slat is also shown.
The quantity (ue/u00)2 reached a maximum value of 10.04
(C^-9.04). With the slat in place, the value was reduced
remarkably, to just over 3. The effect is strikingly similar to
that of the point vortex in Fig. 35. The figure also shows the
upper-surface pressure distribution in canonical form. Again,
signs of a jet blowing effect are conspicuous by their absence.
This and most of the other pressure distributions were
calculated by one version or another of the Douglas Neumann
program38'39 that has been tested by so many hundreds of
comparisons with wind-tunnel and other data that its predic-
tions can be accepted as being essentially exact, at least for
our current purposes.

Figure 37 was specially synthesized for purposes of this
paper. It consists of three identical airfoils, all at the same
angle of attack. For comparison and indication of the degree
of interference, the pressure distribution for the isolated air-
foil is included. Observe the extreme rounding of the peaks of
the two rear airfoils, which again is the slat effect. A small
amount of the rounding is undoubtedly due to the decreased
velocities that accompany a converging flow, as at a trailing
edge. As in the point-vortex example, the rear of each airfoil
is covered with a surface sink distribution, according to the
Neumann program. The surface sinks induce a counter-flow
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jj £/ ON SIMPLE AIRFOIL = 1.69
ON I si AIRFOIL = 3.1 4

Q ON 2"° AIRFOIL =0.98
\ C£ ON 3«° AIRFOIL =0.49

TOTAL SYSTEM = 1.54

2.0 2.2 2.4 2.6 2.8 3.0

Fig. 37 Pressure distribution on a three-element airfoil formed from
three NACA 632-615 sections, arranged as shown. All are at the same
angle of attack, 10°. Shown also is the pressure distribution on the
basic simple airfoil at 10° of attack. Slot gaps are 1% of each chord.
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a = ( 5 °
cj OF ISOLATED
AIRFOIL = 2.5937

c/ TOTAL = 3.4937
Cj AIRFOIL = 3.3631
C. AIRFOIL = -0.0763

Fig. 38 Point vortex used to simulate a slotted flap. Vortex increases
Cg of airfoil at a =15° from 2.59 to 3.36. Leading-edge pressures are
greatly increased by action of the vortex.

Fig. 39 Airfoil-circular-cylinder combinations studied to learn effect
of an obstruction on circulation.

over the following airfoil. Although it was not done, it would
be easy to learn the thickness effect by replacing a forward
element by a much thinner section while keeping the same
mean line.

5.5 Circulation Effect

The slat effect has been recognized before; in fact, it was
clearly recognized as far back as 1923 by Lachmann.7 But the
circulation effect does not seem to be explicitly recognized.
Figure 38, which shows the effect in its simplest form, was
produced by the computer graphic setup used in Fig. 35. Since
the vortex could be placed anywhere in the field, it was now
placed near the trailing edge, as indicated in the figure. If it
were to represent the lift of a slotted flap, the vortex cir-
culation would be as indicated. The flow effectively places the
trailing edge at a high angle of attack, and if the Kutta con-
dition is to be met, the circulation must increase. The effect is
little different from that of deflecting a small plain flap on the
isolated airfoil. In that case, the onset flow would be ap-
proaching the rear of the airfoil at a considerable angle. But
for Fig. 38 we did not turn the trailing edge; instead, we used a
device to turn the flow. Figure 38 shows a slightly different
airfoil from that in Fig. 35, but again the angle of attack is the
same. The vortex has a drastic effect on circulation, in-
creasing Cg from 2.59 to 3.49. In Fig. 38, the vortex-alone
curve shows the velocity distribution around the airfoil that is
induced by the vortex. That distribution does not meet the
Kutta condition, but the airfoil vortex combination does, of
course. It is obvious from the figure that any means of
changing the flowfield near the trailing edge would change
the lift. Hence, a source, properly positioned, is apt to be as
effective as a vortex. The effects on circulation that are due to
aft distortions of the flow are then what we call the circulation
effect.

According to Fig. 38, the final upper-surface velocity is in-
creased considerably over the upper-surface velocity for the
isolated airfoil. Because of the additional velocity caused by
adding the vortex to the general translational flow, the airfoil

discharges boundary layer at the trailing edge into a stream
that is locally of higher velocity. That is the "dumping effect"
that has already been mentioned and that will be discussed
further in Sec. 5.6.

We have just indicated that any method capable of in-
troducing cross flow at the trailing edge will influence the cir-
culation. An obstruction, properly placed, can be a powerful
factor for controlling the circulation. To illustrate such con-
trol, we used a circular cylinder, which is about as neutral a
body as can be selected. Figure 39 shows the system studied.
Two circular cylinders of different diameters are centered on a
ray from the trailing edge. The gap is constant at 0.1 chord.
The angle of the ray, 6, was varied from 0° to 90°. The lift on
the airfoil and on the airfoil-circle combination was
calculated. Figure 40 shows some results for the case where
the cylinders were directly to the rear of the chord line
(6 = 0°). Large increases in lift are indicated. The cylinder it-
self carries a large amount of lift, even though it has no
trailing edge. Figure 41 shows the effects in more detail, as
functions of d. As might be expected, an optimum deflection
angle is found. The most effective angle is about 60° or 70°.
At 15° angle of attack, the lift coefficient of the isolated air-
foil is ce= 1.75. With the 0.50c circular cylinder set at 6 = 60°,
ct = 3.35 for just the airfoil, nearly double the value for airfoil
alone. Hence the effect is very great. Figure 39 is drawn with
5 = 60°. It appears that this most effective position is similar
to the position found most effective for slotted flaps and slats
in combination with airfoils. Considered as a control surface,
the control effectiveness dcf/dd is not much less than that of a
plain flap.

Figure 42 shows calculated pressure distributions for the
cases with 6 = 60° and with ct held constant at 1.5. The
corresponding values of a are noted in the figure. Peak
velocities at the nose are considerably reduced by the cylinder.
If the pressures were plotted in canonical form, the ones with
the cylinder would appear considerably more favorable.
Velocity ratios at 0.975c, which amount to the dumping
velocity, are tabulated. The cylinders double the dumping
velocity ratio. However, according to Figs. 19 and 20,
separation should still occur in all cases. That is not sur-
prising, in view of the specified cf and shape of the airfoil.

2.0 ———————-

,0=0.50

•Q.25C
'/D-0.5C

=0.25C

Fig. 40 Cg vs a curves for airfoil-cylinder combinations, showing
strong effects on circulation. Deflection 5 of cylinder = 0°.
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^a = \5° ISOLATED AIRFOIL
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Fig. 41 Airfoil-circular-cylinder combinations. Effect of
diameter on lift coefficient.

6, and

CONFIGURATION
ISOLATED AIRFOIL
0.25C CIRCLE
0.50C CIRCLE

12.8642° 20.2548 0.8800
6.5950° 13.3444 1 . 1 4 7 2
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Fig. 42 Pressure distribution at c£=1.5 for airfoil-cylinder com-
binations. 6 = 60°.

The velocity ue on the surface of an isolated circular cylin-
der in crossflow is ue/u ^ = 2 sin j3, where /3 is angle from the
nose. For our problem, the velocity component that is normal
to the airfoil is 2 sin 0 cos /3 = sin 2/3. The maximum value of
that component, which occurs at 0 = 45°, is not much less
than the 6 = 60° maximum seen in Fig. 41. The rough coin-
cidence justifies the assumption that the change in circulation
is a function of the cross flow induced at the trailing edge by
other bodies.

Another aid in thinking about the problem of modifying the
circulation is to consider the rear stagnation point in nonlift-
ing flow. Without circulation, the rear stagnation point is on
the upper surface at some distance forward of the trailing
edge. The farther it is moved forward, by whatever means, the
greater the circulation required to move it back to the trailing
edge. The two guidelines—cross-flow strength and nonlifting
stagnation-point location are the best that can be proposed as
means of understanding and designing to maximize the cir-

0° SOLUTION

CIRCULATION SOLUTION 90° SOLUTION

Fig. 43 Three fundamental solutions used for calculating flow about
a lifting airfoil at angle of attack.

culation. The factors cannot be isolated—there are too many
interactions. Fortunately, accurate multi-element-airfoil
analysis methods are available, together with much ex-
perience. But perhaps factors such as those discussed here will
be of value in endeavors to improve design. Rarely do people
involved in design of a slotted flap understand why the best
place to position the nose of the flap is slightly behind and
below the trailing edge of the main airfoil. They just know
that with the flap in that position the system worked. We hope
we have explained why.

The reason why augmented circulation is helpful needs to
be given. In numerical airfoil methods of the Douglas-
Neumann type, the complete solution is a linear combination
of three fundamental solutions, which are shown in Fig. 43.
Because of the small radius of the leading edge, local velocity
ratios in that region are very high indeed for both the 90° and
the circulation solutions. A positive lifting circulation is
shown in Fig. 43c. It is clear that its disturbance velocities add
to those of the 90° solution for positive angles of attack. For
an ordinary airfoil, increasing the lift requires increasing the
angle of attack. But in the process more of the undesirable
90° solution enters into the summation. Now if the airfoil
nose can be kept at low angle of attack, a gain will be made if
circulation can be produced by other methods. A plain flap in-
creases that circulation because when it is deflected, a con-
siderable cross-flow component of the onset velocity exists at
the trailing edge. The vortex or an obstacle at the trailing edge
has the same effect. To avoid nose peaks, the nose should be
at a slight negative angle in any real design, in order that the
velocities in the circulation and in the 90° solutions oppose
each other and cancel out, or more precisely, the linear com-
bination of the three solutions substantially cancels out. In
short, considering the separation problem, high lift is best ob-
tained by keeping the nose angle of attack low and inducing
circulation by means other than pitching.

Figure 37 illustrates the circulation effect. The c(
on the rear airfoil, which has no device to augment its cir-
culation, is only 0.49. The rear airfoil boosts the circulation of
the middle airfoil, which has a cf of 0.98. The two rear air-
foils act together on the front airfoil, giving it a c( of 3.14.
There is some feedback, of course. Circulation on a forward
element effectively reduces the angle of attack of a rear
element, as well as the velocities on its surface, and hence
reduces its lift. That is one reason for the very low lift of the
rear element.

In Sec. 4.1, it was suggested that slots amount to a short-
circuiting of the lift. That effects seems to exist if the elements
are not properly poisitioned. Observe the drop in pressure
near the slots in Fig. 37. It is interesting to note that at 10°
angle of attack, according to inviscid-flow calculations, the
single-element airfoil carries slightly more load than the three-
element system.

The same kind of interaction occurs between sails on a
sailboat or even between sailboats in close proximity. Ac-
cording to Fig. 37, if the airfoils correspond to sailboats, the
last two boats, which are drawing up on the leader, would
find it very difficult to pass him. They are augmenting his lift
and reducing theirs. The effects are even stronger between
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sails on the same boat. A useful and very interesting study of
the problem has been made by A. E. Gentry. ̂  By using the
electrical-analogy technique and conducting paper, he ex-
plained correctly for the first time the jib-mainsail interaction
effect.

5.6 Dumping Effect

Closely related to the circulation effect is the dumping ef-
fect. The favorable interference of a downstream element in-
duces cross flow at the trailing edge that enhances circulation
of the upstream element. But the interference may also in-
crease velocities in a tangential direction so that the flow from
a forward element is discharged into a higher velocity region,
thus reducing pressure-recovery demands. The effect is quite
favorable to the boundary layer. According to Eq. (4.4), the
suction lift can be increased in proportion to (u T E ) 2 for the
same margins against separation.

Does the effect really exist? Yes, indeed! It can be seen in
any properly designed multielement airfoil. It is clearly shown
theoretically in Fig. 42; values of the dumping-velocity ratio
are tabulated in the right-hand columns of the table in the
figure. For the three cases—plain airfoil, airfoil plus 0.25c cir-
cle, and airfoil plus 0.50c circle—the velocity ratios are 0.88,
1.147, and 1.186, respectively. The canonical ratio nearly
doubles; it increases from 0.043 to 0.085.

Figure 36 is a theoretical case for an airfoil with slat. For
the main airfoil, the dumping-velocity ratio squared is 0.85.
On the slat, it is much higher: 2.35. The pressure distributions
are also shown in canonical form, and according to them the
slat is less severely loaded than the main airfoil—in the sense
of margin against boundary-layer separation.

Figure 44 shows experimental data for a three-element air-
foil. Again the dumping-velocity effect is clearly displayed,
this time confirmed by experiment. For the three surfaces,
starting with the flap, the dumping-velocity-squared ratios
(ue/u oo ) 2 are 0.67, 2.0, and 2.28. The canonical plots in-
dicate that, for the conditions shown, the main airfoil is less
severely loaded than the slat and the flap. The enhanced
dumping velocity shown is typical. The pressure distribution
of any properly designed multielement airfoil shows it; one
only need look for it.

It is interesting to conjecture what might be done with the
effect if an inverse design method for multielement airfoils
became available, assuming that the complete airfoil
requirements permitted. Start with some desired pressure
distribution for a hypothetical three-element airfoil, for

example, that of Fig. 45. The basic pressure distribution that
we shall use is shown as the dashed line. Then suppose we seek
a three-element airfoil that has that canonical pressure
distribution for all three elements. Furthermore, assume that
the rear element induces a dumping-velocity-squared ratio
( H e / t i n ) 2 of 1.5 on the middle element. Because that
element now has higher circulation, it can induce even greater
effects on the front element. Assume the induced velocity
ratio is the same for each element with respect to its own
velocities, which is a bold assumption. With that assumption,
the pressure distribution for the three elements in Fig. 45 is as
sketched. The load carried is far greater than that of the
equivalent single-element airfoil, yet the several canonical
pressure distributions are all the same.

The effect, as just described, is readily quantified. It will be
done only for a three-element airfoil, but the analysis is easily
generalized. Let c = chord of the ensemble; /] c = chord of rear
airfoil (element 1); f2c = chord of center airfoil (element 2);
and/3c = chord of front airfoil (element 3). Then for the three
elements /! +/2+/3 = l. Also let m 2 = magnification ratio
for velocity at trailing edge of element 2 due to being in the
high-velocity field of the nose of element 1; and
m 3 = magnification ratio for velocity at trailing edge of
element 3 due to being in the high-velocity field of the nose of
element 2.

Let the upper-surface lift coefficient be ce for the given
basic pressure distribution. Then for the rear element the suc-
tion-side lift is/7cfo. On element 2, the wind speed over the
whole element is greater by a factor m2. Hence for element 2,
the lift isf2c(om2. For the front element, the apparent wind
speed is increased by a factor m3. But the speed on the middle
element has already been increased by the factor m2. Hence
on element 3 the lift isf3(m2m3)2c(o. Then the lift of the en-
semble is

and the ratio is

(Ct/c{o)=f!+f2m2+f3(m2m3)

(5.1)

(5.2)

For the example of Fig. 45, fl = 0.30, f2 = 0.55, and f3 = 0.15.
Also, m2 = m3 = (1 .5) 1/2 . Then, according to (5.2),

(c,/c,o) =0.30 + 7.5(0.55) +2.25(0. 15) =1.463

Fig. 44 Typical three-element airfoil,
showing dumping velocity effect. Arrows
denote dumping velocity. NACA 23012 air-
foil, a = 8°. Line marked trailing edge level is
trailing edge dumping velocity divided by
maximum velocity on main element.
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that is, a 46% gain, with no more tendency for separation
than on the base airfoil. The effect definitely exists, but (5.1)
is as much hypothesis as it is statement of fact. In any real air-
foil design, so many more factors enter into the problem that
is is not nearly that simple. Compressibility problems would
ultimately set in, for instance.
5.7 Off-the-Surface Pressure Recovery

Off-the-surface pressure recovery has already been
discussed in Sec. 4.9. Without its assistance, boundary layers
would often be unable to meet all pressure-rise demands.
Consider Fig. 44, which represents theory roughly confirmed
by test data. The scale on the right-hand side shows the total
deceleration ratio from the peak velocity. At the trailing edge
of the flap, the velocity-squared ratio has decreased to 0.075.
Figure 17 shows a theoretical pressure distribution that can be
realized experimentally. Its final velocity-squared ratio is
0.025. According to Figs. 19 and 20, the flow would never
have reached such very low velocity ratios if it had been a sim-
ple boundary-layer flow that was always in contact with a
wall. But in multielement flows, the front element's boundary
layer, which undergoes the greatest deceleration ratio, is
largely decelerating off the surface. Figure 4 illustrates an air-
foil that shows a theoretical total deceleration ratio ( U T E /
u max) 2 equal to 0.0045.

It is opportune to mention something that has been almost
taken for granted—that any accurate calculation of pressure
distributions must take into account the displacement
thickness of the boundary layer. That assumption is well
covered in Ref. 39. In this paper, we have not been consistent,
because consistency is not necessary to illustrate our point. In
general, our simple theoretical calculations do not consider
boundary layers. In other cases, we note in the caption
whether or not boundary-layer corrections were included.

A wake alongside a body has only a slight effect on the in-
viscid theoretical lift. If a wake has a square profile, it can be
approximated by sheets of vorticity, positive vorticity on one
side and negative on the other. Obviously, the wake has some
effect on circulation, although the two sheets almost cancel
each other. Furthermore, if the wake flow is curved, there is a
centrifugal force of the same sort that is developed by the cur-
ved sheet of a jet flap, except that here the momentum
amounts to a defect instead of an excess. Foster, Ashill, and
Williams,32 and Ashill41 have carefully examined those ef-
fects in both theoretical and experimental studies. They
develop formulas for the various effects. In general, they
found that, for properly designed multielement airfoils, the
only effect of importance is that of the displacement
thickness. Moser and Shollenberger42 also have studied the

problem theoretically and experimentally. They found that
the theoretical inviscid effect of the wake is to reduce lift by a
small amount, typically a few hundredths in cf. Their theory
is in satisfactory agreement with experiment. In one particular
study that used an NACA 4415 airfoil, they found that c? was
reduced by an amount 2.3 c ds, where c ds is the drag coef-
ficient of the slat. All the findings have, in general, been con-
firmed by practical experience.

To summarize—without the displacement-thickness correc-
tion the errors are greater than desirable. With the
displacement thickness considered, the errors are so small that
a design engineer would hardly know what to do with more
accuracy—in the case of fully attached flow, of course.

5.8 Fresh-Boundary-Layer Effect

On each element of a properly designed multielement air-
foil, the boundary layer starts out afresh. It is well known, of
course, that thinner boundary layers can sustain greater
pressure gradients than thicker ones. That fact is demon-
strated well by Figs. 19 and 20. It can be displayed in a more
analytic form by Stratford's formula, Eq. (4.10), which we
here repeat.

] V2=(10-6R)1/WS (4.10)

where 5 is a constant. The term (10-6R)1/10 varies so slowly
that it is almost constant. But x, a measure of distance from
the origin of the flow, enters to the 1/2 power, and, ob-
viously, longer boundary layers admit less adverse_gradient.
Viewed in another way, we see that if x is halved, dCp/dx can
be doubled with the same safety against separation.
Therefore, breaking up a flow into several short boundary-
layer runs is favorable with respect to the delay of separation
and hence to the increase of lift. It might be argued that
breaking up the surface into a number of elements steepens
gradients just as much as length is shortened, leaving x(dCp
/dx) unchanged. In view of the favorable interference and
shape of the total pressure distributions the quantity does in-
deed reduce.

5.9 Are Two Elements Better Than One?

Our previous discussion indicates that several elements are
better than one element. But there has been no proof. Here we
shall attempt a proof. The proof will be for a two-element
case, but by the nature of the development it will be seen that
the proof could also show that three elements are better than
two, four better than three, etc. We make the following

Fig. 45 Illustration of compounding of lift
by using multielement airfoils. For this / ^6 \
illustration the factor m is (1.5)1/2. \ U<»)

BASE
DOMPING
VELOCITY

x/c
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5 ITERATIONS

Cp

Fig. 46 Load diagram for proof that a two-element airfoil can
develop more lift than a single-element airfoil.

assumptions: 1) the lower surface plays only a weak role, and
hence only the upper surface needs to be considered; 2)
Reynolds number effects are weak—which they are at large
scale. Hence the lift on an airfoil whose chord is unity is just
the same as the lift on two of the same airfoils whose chords
are each 1/2; 3) by some means, perhaps an inverse method,
the elements can be so shaped that both develop the same
canonical upper-surface pressure distribution. The shape of
the pressure distribution is not restricted; and 4) boundary
layers and wakes of forward elements do not degrade the lift-
ing capacity of following elements.

Consider Fig. 46. Let ABCDE be pressure distribution on
the upper surface of an airfoil of chord AE. That same load
distribution could be applied twice, to two 1/2-chord elements
as loads ABC'D'E" and E"B"C"DE. The sum of those two
areas equals area ABCDE. By proper inverse methods, the
shapes of two elements that could generate the same pressure
distribution can probably be found, although that is a weak
point of our proof. For the two half-size pressure
distributions, the basic dumping velocities squared are E"D'
and ED, which are equal. Now on any properly designed
multielement airfoil, the flow off the trailing edge of the for-
ward element can be made to discharge into the high-velocity
region of the rear element. Hence for the front element the
dumping velocity squared is increased from E"D' to E"F. The
increase is the key to our proof. Two cases now arise:

a) the maximum velocity has some kind of limit; and
b) the maximum velocity has no limit.

Consider case (a) first. Perhaps the velocity limit comes from
Mach number considerations. Because E / / F<E:D / , the start
of pressure rise can be moved back from point C' to a new
point G. Now, area ABGFE" >ABC'D'E", which proves
our case. Consider case (b). If dumping velocity is increased
from E"D' to E"F, the entire forward pressure distribution
can be scaled in the ratio E"F/E"D' to obtain AHIFE".
Again, and even more strongly, area AHIFE" > ABC'D'E".
Q.E.D.

We have not assumed that the basic canonical pressure
distribution be any kind of optimum-just that it be carrying
its capacity load without separation. It is not necessary to the
proof that the two elements be of equal chord. One possible
weakness of the proof is that for a two-element airfoil the
final velocity DE cannot be maintained at as great a value as it
can for a single-element shape, which means that all pressure
levels would be depressed. That is a problem that can best be
answered by inverse multielement-airfoil theory, for which
there is a great need and a great future.

Fig. 47 Shapes producing Liebeck-Stratford pressure distributions
similar to that of Fig. 26. Velocity-squared values on the forward
element are required to be magnified by a factor of two. ct of the com-
bination is 3.82.

An attempt to apply these concepts has been made using
Wilkinson's approximate multielement inverse method.43 By
means of the method we searched for the shape of a two-
element airfoil that had the same thickness distribution and
the same canonical upper surface pressure distribution as in
Fig. 26. The distributions were to apply to both elements and
the dumping velocity ratio of the forward element was to be
(2)I/2 times that of the rear element so that all uI values on the
front element would be twice those on the rear. Chords of the
two airfoils were to be equal. Figure 47 is the result. A drastic
change in shape is shown. We obtain a crvalue of 3.82, com-
pared with 2.31 for the single element airfoil. Because both
pressures are identical in the canonical sense, there is no
greater danger of separation on the two-element airfoil than
on the single-element airfoil. Only one gap size and position
was tried. Other gap geometries would change the shape. The
method cannot be called entirely satisfactory; partly because
of iteration difficulties. It is noticed that the asked for
pressure distribution is measurably different from the best
that could be found using Wilkinson's method. Whether the
asked for pressure distribution is even possible to develop of
course is unknown. It is well known that every shape has a
corresponding pressure distribution, but not every pressure
distribution has a corresponding shape. Nevertheless, the
result is indicative of what can be done and of things to expect
in the future. It confirms our proof that two elements are bet-
ter than one.

5.10 Two Spectacular Examples of High-Lift Airfoils

In Sec. 2, Handley Page's 8-element airfoil system was
shown (Fig. 4). It occurred to me that it might be of interest to
calculate its theoretical pressure distribution, not only to show
the power of modern computation but also because it might
afford information about interactions, dumping velocity, and
other features not clearly exhibited in the usual multielement
airfoils that are so strongly hardware oriented; where they are
influenced by the requirements of construction and restric-
tion.

Coordinates were measured from a photographic blowup
of the illustration in Handley Page's original paper.5 (It is
hoped that his original drawing was accurate.) Figure 4 shows
the results. His 8-element shape developed a wing CL — 3.3 at
a = 42° (see Fig. 5). The wing was rectangular and had an
aspect ratio of 6. According to wing theory, the midspan sec-
tion was at an effective angle of attack of about 36°, the value
used in our two-dimensional calculations. No boundary-layer
corrections were made. The total calculated section cf was
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4.33. Velocity ratio instead of velocity ratio squared was used
in order to avoid excessively large ordinates on two of the
figures (Cp less than -36 was indicated).

Values of c( in each velocity diagram represent the lift
carried by that element, referred to full chord. Four of the
diagrams show a second pressure distribution. It is the one
that would develop if the airfoil was alone, at the same angle
of attack. The leading element is at a considerable negative
angle of attack, with a strong pressure peak on the lower side,
which might cause separation. Nevertheless, the element is
very highly loaded. In spite of the increasing angle of attack
of each element, the lift contribution decreases continuously
towards the rear. The final element carries a c( of only 0.08,
in spite of being at almost 90° angle of attack at the trailing
edge. If it were in isolation, it would be carrying cp of 6.80.

Although not converted to canonical form, none of the
pressure distributions appears to be very close to separation,
even that of the front element. Perhaps that is not surprising,
for we are showing a condition that represents maximum lift
for an airfoil whose chord Reynolds number was about
250,000, making the Reynolds number of each element about
50,000. At such low Reynolds numbers, separation should
occur quite early, which makes the theoretical pressure
distributions look quite safe when judged by our current high
Reynolds number standards.

Figure 5 should be reexamined, now that our calculation
has been made. In general, it confirms our conclusion that—if
properly designed—the more slots, the better. But the seven-
slot configuration is inferior to the six-slot configuration. The
reason is not known, but the author suspects it is due to
drastic modification of the trailing-edge contours when the
eighth element was formed (see Fig. 4). Figure 48 shows the
dumping-velocity ratio for each of the elements. There is a
rather smooth and definitely continuous increase from rear to
front. The rearmost element has a value of about 0.4, and the
front element reaches 2.25.

Figure 49 shows the extremes that can be reached in
producing special-purpose high-lift airfoils. The section
shown was designed by R.H. Liebeck of the Douglas Aircraft
Company as a wing for Dan Gurney's Indianapolis-type race
cars. The shape is a result of careful direct-method analysis
and modification of his optimum airfoil studies. As installed
on a racer, the wing is rectangular and of aspect ratio 2.15,
with small end plates. The wing was designed theoretically,
then built without benefit of wind-tunnel tests, and tested on
the racer. At an angle of attack of 14°, tufts used to indicate
flow separation remain fully attached and the maximum
wing-section c( is about 5, according to calibrated spring-
deflection tests.

In the past few years the word "synergistic" has become
popular. Those examples, the proof of Sec. 5.9, the dumping
effect discussed in Sec. 5.6, as well as the various test data, all
indicate that airfoils properly placed in tandem are fine exam-
ples of synergism.

6. Power-Augmented Lift
6.1 General

A few remarks should be made about the subject of power-
augmented lift. Power properly applied, as through bound-
ary-layer control, can greatly delay separation and hence in-
crease maximum lift. Powered lift augmentation usually
requires pumps and internal ducting, which amounts—at
least—to weight and cost complications. There is no doubt
that higher lifts can be obtained, but whether they make for a
better total airplane system is a moot question. The answer
depends on the efficiency of the lift-augmentation system.
Here we shall confine ourselves to three studies that touch on
the theoretical performance possibilities, together with ideas
for improving the overall system.
6.2 Area Suction

The thorough studies reported in Ref. 44 show that tur-
bulent flows with mass transfer can be calculated with nearly

2.0
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Fig. 48 Upper surface dumping velocity values for the airfoil and
conditions of Fig. 4. The ratio ( W T E /w m a x ) 2 for the ensemble is
0.0045.

a = 10'

Fig. 49 Special-purpose Liebeck high-lift airfoil designed for
Indianapolis-type racers (Pat. Pend.).

as good accuracy as turbulent flows over impervious walls. A
generalized eddy-viscosity formula has been developed that is
responsible for that accuracy. Therefore, it was felt ap-
propriate here to throw some light on the subject of delaying
separation, by considering the theoretical suction require-
ments. An illuminating procedure is to use the Cp=xm

canonical plots presented earlier, in Figs. 19 and 20. Because
suction introduces another variable, space does not permit us
to present results for all four lengths of flat-plate run. In-
stead, we consider only the one-foot run, which case may be
considered roughly to approximate an airfoil with a flap.

In conventional boundary-layer calculations where a trans-
formed stream function is used, we are given the wall con-
ditions that/7

 w ~ u w = 0 (no slip) and/w ~ $ w = 0 (impervious
wall). Then the problem is to find/" w ~ cf. In the calculations
to be presented, we keep/' w = 0, of course, but seek values of
fw that will maintain an arbitrarily chosen constant
Cj — 0.001. The altered procedure is just a switch in boundary
conditions that is entirely acceptable according to
mathematical theory. Some kind of real limiting suction
would be found for the special case cf = 0, as in Stratford
flows, but because the machine program involves numerical
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Fig. 50 Effect of area suction on separation. Suction starts where Cf
has decreased to 0.001 and then vw is adjusted to maintain this value
of Cf. Initial flat plate run is 1 ft, turbulent, u 0 /v = 106/ft.

Fig. 51 Effect of area suction on separation. Suction starts where Cf
has decreased to 0.001 and then vw is adjusted to maintain this value
of c f . Initial flatplate run is 1 ft, turbulent, u0/v = 107/ft.

solution of a partial differential equation, computing and
convergence problems arise when Cf is set equal to zero. We,
therefore, avoided those difficulties by specifying that suction
would be sufficient to maintain cf at a value equal to 0.001.
Thus the results to be shown contain a certain margin of
safety. Previous studies have specified the suction and then
found the resulting skin friction. Figures 50 and 51 show
results for (u 0 / v ) — values of 106 and 107.

The results are shown in terms of values of v w/ue required
to maintain cf at the chosen value 0.001. Suction starts where
Cf had decreased to 0.001. At first the suction rates are quite
small but the rates increase rapidly as the higher pressure
region is penetrated. The final contour v w/u e = 0.05 is one for
which a variable constant in the boundary-layer equations is
about to exceed the range of its validity. Furthermore, the
boundary-layer equations start losing their validity when v w is
not very small compared with u e. Total suction flow rates can
be determined approximately by integrating the v w values.
According to the figures the effect of Reynolds number is not
strong.

The charts show that suction is highly effective in causing
small delays in separation. But when large delays are desired,
suction loses efficiency, so that strong suction is required. The
effect can be explained physically in a neat fashion. Assume
the region of pressure rise to be quite short so that the suction
can be assumed to be concentrated at a point. Let us then
examine the special case of a flat-plate flow entering a sudden
pressure rise assisted by suction. Long ago, in connection with
Griffith airfoils, G. I. Taylor considered the same kind of
problem. He first assumed that the pressure rise occurred in
such a short distance that the total head along each streamline
in the boundary layer would remain constant. Then he
hypothesized that no filament whose total head was less than
the downstream static pressure could flow into the down-
stream region of higher pressure. In other words, unless it was
sucked off the filament would separate. These hypotheses give
us a procedure for calculating the amount of suction required

to prevent separation at a pressure jump. His analysis has
been well confirmed by experiment for laminar flows, some of
the confirmation being the author's.

Let us apply the hypotheses to our problem, namely the
flows illustrated in Figs. 50 and 51, except that the pressure
rise region will be approximated by an instantaneous jump.
Let ( )c designate critical conditions. Then, using our
canonical flow notation we have for the total head along any
streamline

(6.1)

If all velocity head is expended in reaching a higher pressure,
p c, downstream, we have

Hc=pc=p0+V2Puc
2 (6.2)

where uc is the velocity of the dividing streamline, all fluid
below being sucked off. Using Cp = (p—p0)/(l/2)pu2

0
we find

(6.3)

This relation states that removal of fluid up to a height u c will
permit a canonical pressure rise from Cp =0 to Cp .

How much flow must be removed? Because thecinitial flow
is flat plate it is convenient to use the 1/7 power formulas.
The quantity that must be removed is Qc — \ y

0
cudy which in

coefficient form is

cQc- Qc i (y° u-^~ = — \ —— dy (6.4)unx x J o Un

The 1 /7 power formulas are

u/u0= ( y / b ) l l 7 and d(x) = 0.37x/(u0x/v)1/5

Upon insertion of the first, and integrating we have

CQc = (7/8)(d/x)(y/d)8
c"

From Eq. (6.3) and the first of Eq. (6.5) we can also write

(6.5)

(6.6)

When this, together with the second of Eq. (6.5) are sub-
stituted into (6.6) we obtain

CQc= [0.324 / (u (6.7)

This formula shows that if the demanded pressure rise is in-
deed low the required suction C Q is very low. If u Ox/v is 107

then CQc = 0.013 C*f. If Cpc = 0.c5, the required CQc is only
0.0008 but for reaching stagnation pressure it is 0.013°. Unlike
the results on Figs. 50 and 51 some suction is indicated for
even the smallest pressure rise, but the fourth power variation
shows the demand to be exceedingly small. The most in-
teresting result from this analysis is the fourth power relation
ofCQtoCp.

In Lachmann,7 Wuest presents theoretical studies made by
Pechau's approximate method. The studies were of area suc-
tion applied to simple airfoils in various ways. Suction
requirements for avoiding separation are given. Generally,
our calculations show the same C Q = Q/u Ox magnitude as his,
that is, of 0(10-3). We have not presented specific examples,
because charts like Figs. 50 and 51 are more general. For a
real engineering problem, since the boundary-layer computing
method is entirely general, the particular case should be and
can be studied carefully. Charts are then just a guide for
preliminary estimation purposes.

The results shown represent no kind of optimum. The start
of suction was arbitrarily chosen, and the intensity chosen was
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such as to maintain cf at a value 0.001. A smaller Cy-value
would clearly reduce v w and C Q. In the belief that earlier suc-
tion would be slightly less efficient, we started suction only
when the boundary layer began needing help. Undoubtedly,
there is an optimum distribution for each of the Cp=xm

distributions, but we believe our values do not miss the op-
timum by very much.

There surely is some best combination of suction
distribution and pressure distribution for obtaining the
greatest pressure rise with the minimum C Q. Determining that
combination amounts to a calculus-of-variations problem of
finding the best combination of path and suction. It is in-
teresting to note that the basic tool for the problem has re-
cently been developed.45 The boundary-layer calculation
method has been extended to find the pressure distribution
necessary to provide a given c^-history, which amounts to
solving a nonlinear eigenvalue problem, where the eigenvalue
is dp/dx. Since suction could already be analyzed by both
direct and inverse methods, we now have available the tools
for seeking the optimum combinations of v w(x) andp(x).
The problem is an interesting mathematical challenge.

6.3 Tangential Blowing

To round out the discussion, we give a limited comparison
of blowing applied to the same Cp=xm flows. The wall-jet
method of Gartshore and Newman46 is used. As for the suc-
tion case, blowing is assumed to start shortly before natural
separation would occur, that is, at the Cy^ 0.001 locus.
Figures 52 and 53 are the results.

The conventional blowing coefficient C ^ is defined for two-
dimensional incompressible flow as

C M = thrust/<?c = (2uf/u i )t/c (6.8)

When applied to a family of canonical pressure distributions,
both reference velocity and reference length lose their
meanings. But we know, from basic boundary-layer theory
and from the parabolic nature of the equations, that the direct
determinants of the development of a flow subject to a certain
pressure history are the characteristics of the boundary layer
at the starting station. The length of prior run, the pressure
distribution, and whether it is laminar or turbulent, only help
to establish the boundary layer at the station where the
blowing studies are started. When the boundary layer is
viewed in this fundamental way, chord and freestream con-
ditions lose their significance. Momentum thickness at the slot
comes forward as the logical reference length. Furthermore,
the momentum defect at this point is pu$, which is a drag
force. The tangential blowing produces a thrust. We therefore
introduce a new form of the incompressible blowing coef-
ficient called C ̂ , which is defined as

jet thrust
momentum

defect
pujO

ujt
ujB

(6.9)

Equations (6.8) and (6.9) can be combined to give a relation
between the two blowing coefficients,

C=2(uj/ul)(e/c)Cit (6.10)

With C^ as our blowing parameter, we obtain a direct "feel"
for the strength of the blowing, for we are making up for the
momentum lost in the boundary layer. Then, if the blowing is
to be applied over only a short distance, it is to be expected
that the required value of C ̂  will not be greatly different
from unity.

That is indeed the case with Figs. 52 and 53. Gartshore's
program deck was used for the calculations. Several different
values of Uj/ue were tried and results were found to be sen-
sitive to the ratio. Furthermore, since the method was only ap-
proximate, hangups were encountered in some cases when the

Fig. 52 Effect of tangential blowing on location of separation.
Blowing slot is located at point where Cf = 0.001. Blowing velocity
ratio U j / u e = ( W ) l / 2 . Initial flat plate run =1 ft, turbulent; u0/v =
107/ft, Gartshore-Newman type of calculation.

Fig. 53 Effect of tangential blowing on location of separation.
Blowing slot is located at point where Cf = 0.001. Blowing velocity
ratio U j / u e = (10)1/2. Initial flat-plate run= 1 ft, turbulent;
u0/v = lft1 /ft, Gartshore-Newman type of calculation.

wall-jet boundary-layer profile developed a hollow. Hence,
the values shown in Figs. 52 and 53 should not be considered
much more than estimates, or a start toward more precise
analysis. The blowing slot is located at the C^e = 0 line, which
is the cf-0.001 locus. Then, as blowing is increased,
separation is delayed to the contours noted. Blowing with an
intensity C^ = 2.0 appears to delay separation nearly to the
stagnation point. Blowing at the cf = 0.001 line with a C ̂ -
value of 1.0 is just enough to make up for the momentum loss
at the slot location. Hence the separation locus should be ap-
proximately the same as for the case of natural separation
when the initial boundary layer is very thin. If one examines
Figs. 19 and 20 for the flat-plate run equal to 1/64 ft, he sees
that separation locus is not much different from the C llff = 1
loci in Figs. 52 and 53.

6.4 Inverse Problem for Jet Airfoils

A kind of lifting efficiency can be defined for airfoils. It is
illustrated in Fig. 54. The efficiency is simply the ratio of the
area contained within the canonical-pressure-distribution
loop to that of the circumscribed rectangle. The falloff in
pressures toward the rear on the upper surface is necessitated

Fig. 54 Illustration of the concept of lifting efficiency. Pressure
distributions for two airfoils are shown.
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to varying degrees by flow-separation requirements. If the
figure represented were a_ design pressure distribution for
some problem, the upper Cp bound might be determined by
Mach number, for example. Two pressure distributions are
shown in Fig. 54, one for a slightly cambered airfoil at angle
of attack, the other for a cambered Joukowski airfoil. The
cambered airfoil has the higher efficiency. Obtaining lift by
angle of attack, according to the definition of efficiency, is
inefficient. Because the start of pressure rise can be delayed
more if design lifts are low, the efficiency at low lift coef-
ficients is often higher than that of shapes either designed for
or operating at high lift.

Powered lift can improve the efficiency markedly. When
there is a curved jet, load can be carried by the jet, and it
becomes possible to carry load all the way to the trailing edge.
Thus the pressure-recovery problem can be eliminated en-
tirely.

A highly accurate theory of jet-flap airfoils that makes it
possible to realize that benefit has been worked out in the past
few years by Lopez and his co-workers. 47>48 One of his co-
workers, Halsey,48 reviews the airfoil work in general. But
here we feel we have space only to mention one aspect of it, a
method that appears to have produced an interesting and
significant advance. He has developed an inverse method for
jet airfoils. That is, the method specifies the pressure
distribution and the jet momentum coefficient and finds the
airfoil shape and the jet leaving angle necessary to generate
that shape.

The method is not a classical inverse method, such as James
has developed for conventional airfoils. Instead, it is a kind of
iterative procedure that involves finding a mean line and ob-
taining modified shapes until convergence is reached. Re-
course can be had to the exact direct method for checking pur-
poses. The effects of jet entrainment on the pressure
distribution are accounted for approximately. The procedure
has been found to produce rapid convergence and accurate
results. We can do no better than to quote from Ref. 48 to

AIRFOIL 1,

SPECIFIED VELOCITY DISTRIBUTION
FINAL DESIGN, AIRFOIL I, CA = 2.427
FINAL DESIGN, AIRFOIL 2, eg = 1.635
FINAL DESIGN, AIRFOIL 3, Of, = 1.320

0.2

X/C

show the specific steps that are taken in finding a shape. The
steps, slightly paraphrased, are as follows:

1) Specify the desired airfoil velocity distribution and jet
momentum coefficient.

2) Divide the velocity distribution into symmetric and an-
tisymmetric components.

3) Determine the approximate jet-entrainment effects.
Since the operation is noniterative, the sink distribution rep-
resenting the jet is placed on an extension of the airfoil chord,
and its strength is determined by assuming that the velocity
just outside the jet is equal to the freestrearn value. The en-
trainment effects at the true airfoil surface are assumed to be
the same as those calculated at the airfoil chord line.

4) Use an inverse method to find the thickness distribution
that corresponds to the symmetrical component of the
velocity specified in step 2 that remains after entrainment ef-
fects have been subtracted out.

5) Design the mean line needed to produce the an-
tisymmetric portion of the velocity distribution, including the
influence of the jet. For that purpose, a linearized method is
used. This part of the design procedure is the only part that is
fundamentally different from conventional design methods.
For more details, see Ref. 48. Either: a) the vorticity at the
trailing edge can be specified, find the jet angle; or b) the jet
angle can be specified, find the vorticity at the trailing edge.

6) Combine camber and thickness distributions.
7) Using the general nonlinear direct jet-flap airfoil

method, check the result. If necessary, repeat the cycle with
pressures slightly modified to correct errors revealed by the
direct-method check.

We present two figures to show typical results. Figure 55
shows the effect of blowing. High blowing rates relieve the
camber, assuming that the velocity distribution is maintained
constant. The points are checks of the computed inverse shape
by means of the direct, nonlinear method using it as input
data. The difference in c( noted for the three airfoils is due to
the lift component of the jet. Each airfoil is shown at the
angle required to develop the design pressure distribution.

An extreme case, one that taxes the linearized camber treat-
ment, is shown in Fig. 56. Here entrainment effects have been
included in the inverse method. The entrainment effects, as
well as the entire camber-shape solution, are worked out

2.5 r
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Fig. 55 Effect of C^ on shape of airfoils all designed to have the
same upper-surface velocities. Blowing is in direction of mean line at
the trailing edge, and indicated by the arrows. Each airfoil is shown at
its design angle of attack.

Fig. 56 A highly cambered jet-flapped airfoil designed by the inverse
method, including entrainment effects. The solid line is the specified
velocity distribution. The o points show check results from the exact
nonlinear direct method of calculation.
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along the chord line. The final jet angle is at an inclination of
— 74.4° to the chord plane, and the airfoil is nose down 4.7°
to develop the design pressure distribution. Agreement bet-
ween the exact check calculation and the linear design method
is fair. Considering the extreme nature of this problem, the
result is satisfactory.

7. The Future
It was my original intention in planning this lecture to

devote considerable attention to the state of knowledge about
three-dimensional flows and high-lift flows in the transonic
region. However, I shall not, for two reasons. First, I am
already exceeding the desired length for this paper, and
second, there is not much in the way of theory and analysis
methods that can be called solid. Low-speed, two-dimensional
airfoil high-lift theory has become a fairly "hard" science,
but three-dimensional and transonic theory is still no more
than a "soft" science, if that much.

It is only necessary to read Callaghan's AGARD lecture
notes 19 to realize the diversity of problems that arise as we
come closer to real aircraft configurations and to realize the
kind of practical empiricism that one is forced to use in ap-
plied aircraft design.

Like the two-dimensional problem, the three-dimensional is
an analysis involving a combination of inviscid- and bound-
ary-layer flow. The inviscid analysis is nearly here. That is,
lifting inviscid-potential-flow solutions can now be calculated
readily for as many as 1000 coordinate points. That number
will easily solve nearly any simple wing-alone geometry and is
rather good at handling wing-fuselage combinations. 1000
points is marginal for a two-element wing alone, but it can
produce useful information. To handle three-element wings
together with major body effects at least 2000-point solutions
are needed. In a private communication, we learn from Nor-
man Donaldson that Bell Aircraft has extended the method to
handle 3000 data points. The work is done on a modified
UNIVAC 1108 computer. A problem of this size requires
more than two hours of machine time. It is hoped that cost per
data point continues to decrease.

The boundary-layer solution lags behind the inviscid-flow
solution. Although there are formulations and methods for
analyzing three-dimensional laminar and turbulent
flows—and even a book49 on the subject—none is powerful
enough to analyze the complicated problems of applied
analysis that occur, for example, those of swept wings.
Progress in fundamental work is encouraging, however. It ap-
pears that extensions of the eddy-viscosity formulations used
quite successfully for two-dimensional flows do not lose ac-
curacy when extended to three-dimensional flows.50 In the
case of turbulent flow, much empiricism is involved, and the
accuracy of a method can be determined only by extensive
comparison with experiment. A milestone in the development
of the art of computing two-dimensional turbulent boundary
layers was the Stanford Conference,51 in which each par-
ticipant who claimed to have a good boundary-layer method
was asked to calculate a large variety of flows, all from stan-
dardized input data under prescribed rules. Sometime in the
rather distant future, that kind of conference will be needed to
establish the accuracy of methods of calculating three-
dimensional flow.

Beyond that problem is the problem of calculating
maximum lift, as contrasted with the problem of calculating
initial separation. If the calculations of three-dimensional
boundary layers are forced to stop when the first separation is
encountered, they are likely to do more than barely start. In
two dimensions, we can now predict separation reasonably
well. With that problem out of the way, the problem of
predicting flows with partial separation comes to the front.
Ideas being explored range all the way from direct numerical
attempts at solving the complete Navier-Stokes equation to
approximating the separated region by an inviscid flow.

In the transonic regime, where separation involves shocks,

again there is no method of prediction that can be called
general. There is a large traffic in papers on shock-boundary-
layer interaction, but so far as the author knows, the problem
has not been solved in any general sense. A vigorous attack is
under way that uses finite-difference methods. Possibly prac-
tical methods of analysis will result.

One could talk indefinitely about other special problems
related to high lift but that won't do, so I shall end by listing
what I think are the ten most important basic theoretical
problems of high-lift aerodynamics:

1) Very general calculation of three-dimensional laminar
and turbulent flows.

2) Calculation of flows involving partial separation in the
rear.

3) Practical calculation of flows involving forward sep-
aration bubbles.

4) Practical calculation of flows involving shock-
boundary-layer interaction.

5) Calculation of the viscous flow on airfoils and bodies of
revolution of length c from about 0.95c Jo 1.05c. In that
region of very rapid change and strong interaction, boundary-
layer equations do not apply. With our recently acquired
ability to calculate well the forward 95%, our inability to
solve the next 10% is a real irritant. Beyond 105% chord, we
again can usually do an acceptable job.

6) Further development of inverse methods.
7) Drag of multielement airfoil systems. Drag predictions

have a relative error one order of magnitude greater than that
of lift predictions. Since propulsive and acceleration in-
formation is crucial to aircraft design, that is a very important
problem.

8) Practical calculation of merging boundary-layers, wall
jets and wakes. Although methods have been developed, it is
felt that considerable further development is needed.

9) The analysis of flows over swept wings on which a
leading-edge vortex is developed. When the vortex develops,
conventional calculations are about 100% in error.

10) Three-dimensional transonic calculations, particularly
for arbitrary wings and wing-body combinations.

In several of those problems, the first phase is two-
dimensional analysis, but as soon as that is accomplished the
three-dimensional looms up as the next target.

As you can see from the list, aerodynamics still has a long
way to go before we can truly calculate, instead of just
estimate. Yet in retrospect, we see that we have progressed a
long way toward the goal in the past thirty years. Perhaps
another Wright Brothers lecture should be given on this same
subject 20 to 30 years from now. With the computer
revolution that we have, the prospects of finding practical
calculation methods for most of the ten problems are bright.
We hope there will be some new "inventions" in flow and
flow control. Cornish's spanwise blowing52 might be one, and
effective application of the trapped-vortex idea53 might be
another.

In October 1908, at a banquet in his honor in France and
after very successful flights in September, Wilbur Wright was
unexpectedly called on to say a few words. He said, "I know
of only one bird, the parrot, that talks, and it can't fly very
high." I, too, cannot fly very high and I have talked too
much.
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