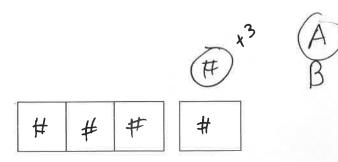


Happy Halloween (today) and All-Hallows Day (tomorrow)

AEM 313: Exam 2 C	Name:	O'Neil]	
3rd Nov 2016	75 minutes	6 Pages	Open book, Open notes, Calculator

100 total points

1


Read, think, plan, and then write.

University of Alabama Academic Honor Pledge:

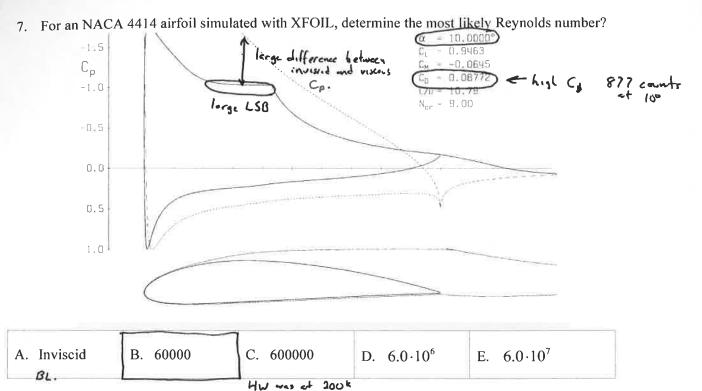
I promise or affirm that I will not at any time be involved with cheating, plagiarism, fabrication, or misrepresentation while enrolled as a student at The University of Alabama. I have read the Academic Honor Code, which explains disciplinary procedures that will result from the aforementioned. I understand that violation of this code will result in penalties as severe as indefinite suspension from the University.

Signature:_____

Date:_____

Name:

	oblems: Circle EVER) at $C_L = 2.0$ for a flat			$AR = 1 \iff 4$ f Jusing Prandtl Lifting Lin	
Α. 2π	B. 2 <i>π</i> /3	C. 1/π	D. 0.01	E. Not Valid	
2. A flat elliptica	I wing has an aspect	ratio of 6. What	is C_{D_t} at $C_{L} = -2.0$ S	Note the negative lift!	$C_{0} = \frac{C_{\nu}}{\pi A R}$
A. $-2/3\pi$	B. 2122 counts	C. 0	D. 0.106	E. None of the above	TTAR
3. A flat tapered	wing has an aspect ra	tio of 8 and tap	er ratio of 0.8. What is	s C_{D_i} at $C_L = 0.5$?	Lesson 17 S=0.038
A. $1/32\pi$	B. 96 counts elliptic ((S+1)	C. 0	D. 0.103 elliptiel (6+1) studied by 10	E. None of the above	Fig = p.5
			shifted by io	est induced drag?	Lesson 17
1. 0.0	2. 0.35	3. 0.5	4. 1.0	1.5	Fig on pS


5. Compute the induced drag described by an upstream velocity of u=10 ft/s at SSL and a downstream velocity defined by:

	v^2 -	$w^2 = \begin{cases} x & 0 < x \\ 0 & 0 \end{cases}$	x < 1 $0 < y < 1otherwise$	$D = \frac{1}{2} P \iint (V^2 + w^2) dA$ $= \frac{1}{2} P \iint (dx dy) = \frac{1}{4} P$
Α. πρ	B. 5 counts	C. p/4	D. $\frac{2\pi}{100}$	E. None of the above

6. Which XFOIL command sequence would simulate an NACA 0012 at Re=60000 at AOA=5?

A. naca 0012 oper visc 60000 alfa 5 hard	B. naca 0012 oper visc 60000 alpha 5	C. load naca0012 ppar 280 oper visc 60000 alpha 5	D. naca 0012 ppar N 280 oper visc 60000 aseq 5	E. None of the above
hard copy	Spellin,		1 Se guerose	

Name:

8. Where is the shed vorticity in the wake highest?

A. Where Γ is highest	B. At a wing geometry change	C. At wingtip	the	D. Where $ d\Gamma / dy $ is largest	E. None of the above
-----------------------	------------------------------------	------------------	-----	--------------------------------------	----------------------

9. For a delta wing, increasing the leading edge sweep angle from 50 to 70 degrees tends to

A. IncreaseB. Increase $C_{L_{\max}}$ $C_{L_{\alpha}}$	C. Increase induced drag D. Increase Aspect Ratio	E. Increase the vortex burst AOA
--	---	----------------------------------

10. For a transport aircraft with flaps up at low altitudes, where are contrails likely to 1st occur?

A. Wing tips B. Jet exhausts C. Strakes D. Wing root E. Flap tips	A. Wing tips
---	--------------

11. What is the velocity vector at (x,y,z)=(1,0,1) consistent with an <u>infinite</u> vortex of strength 2π along the x axis (i.e. positive vortex about positive x direction)?

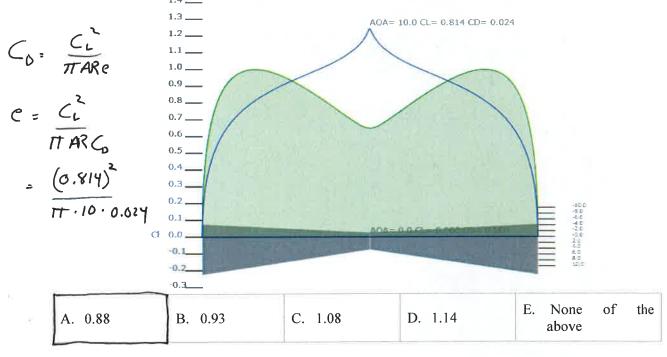
	A. (0,0,0)	B. (0,-1,0)	C. (0,1,0)	D. (0,-1/2,0)	E. (0,-0.707,0)
--	------------	-------------	------------	---------------	-----------------

 $V = \frac{\Gamma}{2\pi h}$

Name:

12. Which wing geometries tend to have higher C_l loading near the wing root?

A. Aft swept B. Forward Swept C. Washout D. Washin	E. Elliptical wings
--	---------------------


13. Circle the phenomena described: Drag due to lift

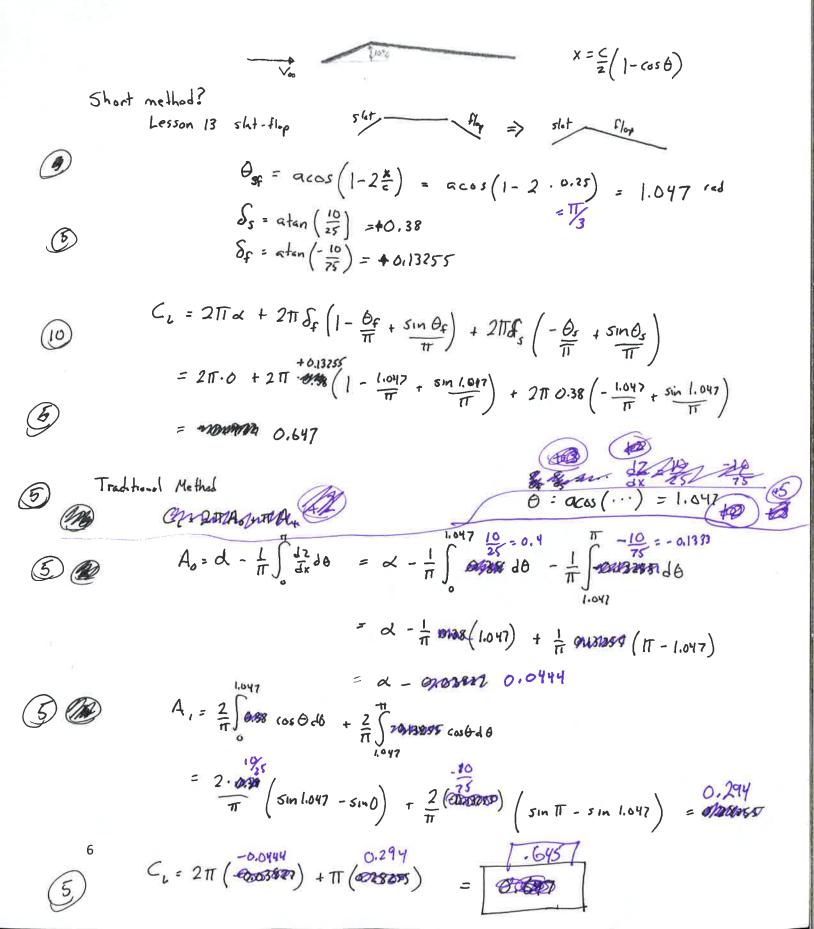
A. Induced	B. Adverse	C. Proverse	D. Aileron	E. Not possible
Drag	Yaw	Yaw	Reversal	

14. If a **flat** non-elliptical $\lambda = 1$ wing is designed to give an Oswald efficiency factor for 1 (i.e. mimicking an elliptical wing), what is true?

A. Not possible	B. airfoil sections must be thicker at the root	C. The wing twist varies with span. D. The quarterchord downwash is constant.	E. The zero lift line varies with span
-----------------	--	---	--

15. Given the following lift distribution at AOA=10 for the following AR=10 wing with CL=0.814, CD=0.024 and $\lambda = 3$, estimate the Oswald Efficiency Factor, e.

Name:


16. [20 pts] Estimate the takeoff speed in ft/s of a B-58 at 150000 lbf at AOA=14 degrees at SSL. The leading edge sweep is 60°. The aspect ratio is 2.09. The wing area is 1542 sq-ft. Hint: V>200mph

5)
$$k_{p} \approx 2.25$$

 $K_{r} \approx 2.9$
 $C_{L} = k_{p} \sin \alpha \cos^{2} \alpha + k_{r} \cos \alpha \sin^{2} \alpha$
 $= 2.25 \sin |4|^{\circ} \cos^{2} |4|^{\circ} + 2.9 \cos |4|^{\circ} \sin^{2} |4|^{\circ}$
 $= 0.677$
 $E = W = 85C_{L} = \frac{1}{2} PV^{2}SC_{L}$
 $V^{2} = \frac{2W}{pSC_{L}} \Rightarrow V = \sqrt{\frac{2W}{pSC_{L}}}$
 $V = \sqrt{\frac{2 \cdot 150000 |4F|}{0.00237 sJc_{5}}} \frac{PT^{2}}{1542 Pr^{F}} \frac{1}{0.677} \frac{1}{|4Fs^{2}}$
 $V = 348 f^{4}_{rs}$
 $\approx 240 \text{ mph}$

Name:

17. [20 pts] Estimate the lift coefficient of a thin cambered airfoil at AOA=0. The airfoil is composed of two linear parts. The maximum camber is 10% at the quarterchord.

