AEM 313: Exam 2 C	Name	:	
3rd Nov 2016	75 minutes	6 Pages	Open book, Open notes, Calculator
100 total points	I	Read, think, plan, and th	en write.

University of Alabama Academic Honor Pledge:

I promise or affirm that I will not at any time be involved with cheating, plagiarism, fabrication, or misrepresentation while enrolled as a student at The University of Alabama. I have read the Academic Honor Code, which explains disciplinary procedures that will result from the aforementioned. I understand that violation of this code will result in penalties as severe as indefinite suspension from the University.

Signature:_____

Date:			

AEM 313: Exam 2 C

Name:

Multiple Choice Problems: Circle **EVERY** correct answer [4 pts each]

1. Estimate $C_{L_{\alpha}}$ at $C_{L} = 2.0$ for a flat elliptical wing with an aspect ratio of 1 using Prandtl Lifting Line

A. 2π B. $2\pi/5$ C. $1/\pi$ D. 0.01 E. Not valid

2. A flat elliptical wing has an aspect ratio of 6. What is C_{D_i} at $C_L = -2.0$? Note the negative lift!

A. $-2/3\pi$ B. 2122 counts C. 0 D. 0.106 E. None of the ab

3. A flat tapered wing has an aspect ratio of 8 and taper ratio of 0.8. What is C_{D_i} at $C_L = 0.5$?

A. 1/32π	B. 96 counts	C. 0	D. 0.103	E.	None of the above
----------	--------------	------	----------	----	-------------------

4. For a subsonic flat linearly tapered wing, which taper ratio gives the lowest induced drag?

1.	0.0	2. 0.35	3. 0.5	4. 1.0	1.5

5. Compute the induced drag described by an upstream velocity of u=10 ft/s at SSL and a downstream velocity defined by:

$$v^{2} + w^{2} = \begin{cases} x & 0 < x < 1 & 0 < y < 1 \\ 0 & otherwise \end{cases}$$

A. $\pi\rho$ B. 5 counts	C. <i>ρ</i> /4	D. $\frac{2\pi}{100}$	E. None of the above
--------------------------	----------------	-----------------------	----------------------

6. Which XFOIL command sequence would simulate an NACA 0012 at Re=60000 at AOA=5?

A. naca 0012 oper visc 60000 alfa 5 hard	B. naca 0012 oper visc 60000 alpha 5	C. load naca0012 ppar 280 oper visc 60000 alpha 5	D. naca 0012 ppar N 280 oper visc 60000 aseq 5	E. None of the above
--	---	---	---	----------------------

A. Inviscid B. 60000	C. 600000	D. $6.0 \cdot 10^6$	E. $6.0 \cdot 10^7$
----------------------	-----------	---------------------	---------------------

8. Where is the shed vorticity in the wake highest?

A. Where Γ is	B. At a wing	C. At	the	D. Where $ I_{\rm D} (I_{\rm D}) = 1$	
highest	geometry	wingtin		d1 / dy = 18	E. None of the above
	change			largest	

9. For a delta wing, increasing the leading edge sweep angle from 50 to 70 degrees tends to

A. Increase	B. Increase	C. Increase	D. Increase	E.	Increase th	ne
$C_{L \max}$	$C_{L_{lpha}}$	induced drag	Aspect Ratio		vortex burst AO	A

10. For a transport aircraft with flaps up at low altitudes, where are contrails likely to 1st occur?

A. Wing tips	B. Jet exhausts	C. Strakes	D. Wing root	E. Flap tips
A. wing tips	B. Jet exhausts	C. Strakes	D. wing root	E. Flap tips

11. What is the velocity vector at (x,y,z)=(1,0,1) consistent with an infinite vortex of strength 2π along the x axis (i.e. positive vortex about positive x direction)?

A. (0,0,0)	B. (0,-1,0)	C. (0,1,0)	D. (0,-1/2,0)	Е. (0,-0.707,0)
------------	-------------	------------	---------------	-----------------

AEM 313: Exam 2 C

A. Aft	t swept	B. Forward swept	C. Washout	D. Washin	E. Elliptical wings
--------	---------	------------------	------------	-----------	---------------------

12. Which wing geometries tend to have higher C_l loading near the wing root?

13. Circle the phenomena described: Drag due to lift

A. Induced	B. Adverse	C. Proverse	D. Aileron	E. Not possible
Drag	Yaw	Yaw	Reversal	

14. If a **flat** non-elliptical $\lambda = 1$ wing is designed to give an Oswald efficiency factor for 1 (i.e. mimicking an elliptical wing), what is true?

A. Not possible	B. airfoil sections must be thicker at the root	C. The wing twist varies with span. D. The quarterchord downwash is constant.	E. The zero lift line varies with span
-----------------	--	--	--

15. Given the following lift distribution at AOA=10 for the following AR=10 wing with CL=0.814, CD=0.024 and $\lambda = 3$, estimate the Oswald Efficiency Factor, e.

16. [20 pts] Estimate the takeoff speed in ft/s of a B-58 at 150000 lbf at AOA=14 degrees at SSL. The leading edge sweep is 60°. The aspect ratio is 2.09. The wing area is 1542 sq-ft. Hint: V>200mph

AEM 313: Exam 2 C

17. [20 pts] Estimate the lift coefficient of a thin cambered airfoil at AOA=0. The airfoil is composed of two linear parts. The maximum camber is 10% at the quarterchord.