AEM 313: Exam 2 C

3rd Nov 2016
75 minutes
Name: \qquad

100 total points
Read, think, plan, and then write.

University of Alabama Academic Honor Pledge:
I promise or affirm that I will not at any time be involved with cheating, plagiarism, fabrication, or misrepresentation while enrolled as a student at The University of Alabama. I have read the Academic Honor Code, which explains disciplinary procedures that will result from the aforementioned. I understand that violation of this code will result in penalties as severe as indefinite suspension from the University.

Signature: \qquad
Date: \qquad

\qquad

Multiple Choice Problems: Circle EVERY correct answer [4 pts each]

1. Estimate $C_{L_{\alpha}}$ at $C_{L}=2.0$ for a flat elliptical wing with an aspect ratio of 1 using Prandtl Lifting Line
A. 2π
B. $2 \pi / 3$
C. $1 / \pi$
D. 0.01
E. Not Valid
2. A flat elliptical wing has an aspect ratio of 6 . What is $C_{D_{i}}$ at $C_{L}=-2.0$? Note the negative lift!
A. $-2 / 3 \pi$
B. 2122 counts
C. 0
D. 0.106
E. None of the above
3. A flat tapered wing has an aspect ratio of 8 and taper ratio of 0.8. What is $C_{D_{i}}$ at $C_{L}=0.5$?
A. $1 / 32 \pi$
B. 96 counts
C. 0
D. 0.103
E. None of the above
4. For a subsonic flat linearly tapered wing, which taper ratio gives the lowest induced drag?
5. 0.0
6. 0.35
7. 0.5
8. 1.0
1.5
9. Compute the induced drag described by an upstream velocity of $u=10 \mathrm{ft} / \mathrm{s}$ at SSL and a downstream velocity defined by:

$$
v^{2}+w^{2}=\left\{\begin{array}{cc}
x & 0<x<1 \quad 0<y<1 \\
0 & \text { otherwise }
\end{array}\right.
$$

A. $\pi \rho$
B. 5 counts
C. $\rho / 4$
D. $\frac{2 \pi}{100}$
E. None of the above
6. Which XFOIL command sequence would simulate an NACA 0012 at $\mathrm{Re}=60000$ at $\mathrm{AOA}=5$?
A. naca 0012
oper
visc 60000 alfa 5 hard
B. naca 0012 oper visc 60000 alpha 5
C. load naca0012 ppar 280 oper visc 60000 alpha 5
D. naca 0012
ppar N 280 oper visc 60000 aseq 5
\qquad
7. For an NACA 4414 airfoil simulated with XFOIL, determine the most likely Reynolds number?

A. Inviscid
B. 60000
C. 600000
D. $6.0 \cdot 10^{6}$
E. $6.0 \cdot 10^{7}$
8. Where is the shed vorticity in the wake highest?
A. Where Γ is highest
B. At a wing geometry change
C. At the wingtip
D. Where
$|d \Gamma / d y|$ is \quad E. None of the above
largest
9. For a delta wing, increasing the leading edge sweep angle from 50 to 70 degrees tends to
A. Increase
$C_{L \text { max }}$
B. Increase
$C_{L_{\alpha}}$
C. Increase induced drag
D. Increase Aspect Ratio
E. Increase the vortex burst AOA
10. For a transport aircraft with flaps up at low altitudes, where are contrails likely to $1^{\text {st }}$ occur?
A. Wing tips
B. Jet exhausts
C. Strakes
D. Wing root
E. Flap tips
11. What is the velocity vector at $(x, y, z)=(1,0,1)$ consistent with an infinite vortex of strength 2π along the x axis (i.e. positive vortex about positive x direction)?
A. $(0,0,0)$
B. $(0,-1,0)$
C. $(0,1,0)$
D. $(0,-1 / 2,0)$
E. $(0,-0.707,0)$
\qquad
12. Which wing geometries tend to have higher C_{l} loading near the wing root?
A. Aft swept
B. Forward $\begin{aligned} & \text { swept }\end{aligned}$
C. Washout
D. Washin
E. Elliptical wings
13. Circle the phenomena described: Drag due to lift
A. Induced
B. Adverse
C. Proverse
D. Aileron Reversal
E. Not possible
14. If a flat non-elliptical $\lambda=1$ wing is designed to give an Oswald efficiency factor for 1 (i.e. mimicking an elliptical wing), what is true?

| | B. airfoil sections
 mustbe
 thicker at the
 root | C. The wing
 twist varies
 with span. | D. The
 quarterchord
 downwash is
 constant. | E. The zero lift line |
| :--- | :--- | :--- | :--- | :--- | :--- |
| varies with span | | | | |

15. Given the following lift distribution at $A O A=10$ for the following $A R=10$ wing with $C L=0.814, C D=0.024$ and $\lambda=3$, estimate the Oswald Efficiency Factor, e.

\qquad
16. [20 pts] Estimate the takeoff speed in ft / s of a $\mathrm{B}-58$ at 150000 lbf at $\mathrm{AOA}=14$ degrees at SSL. The leading edge sweep is 60°. The aspect ratio is 2.09 . The wing area is $1542 \mathrm{sq}-\mathrm{ft}$. Hint: $\mathrm{V}>200 \mathrm{mph}$

\qquad
17. [20 pts] Estimate the lift coefficient of a thin cambered airfoil at AOA=0. The airfoil is composed of two linear parts. The maximum camber is 10% at the quarterchord.

