AEM 313: Practice Ex	xam 1 Name:	O'Ne	.[]
29 th Sept 2016	75 minutes	6 Pages	Closed books, Closed notes, Calculator
			One page of notes.
100 total points	Read,	think, plan, and	then write.
University of Alabam	na Academic Honor Pledg	ge:	
misrepresentation w Honor Code, which e	hile enrolled as a studen xplains disciplinary proce	t at The Universi edures that will r	n cheating, plagiarism, fabrication, or ity of Alabama. I have read the Academic result from the aforementioned. I as severe as indefinite suspension from the
Signature:	=-		

Multiple Choice Problems: Circle EVERY correct answer [5 pts each]

1. Which of the following are definitions of vorticity?

$$\omega = \nabla \times V$$
 B. $\omega = \nabla \cdot V$

$$C. \quad \omega = \frac{dv}{dy} - \frac{du}{dx}$$

C.
$$\omega = \frac{dv}{dy} - \frac{du}{dx}$$
 D. $\omega = \frac{dv}{dx} - \frac{du}{dy}$ E. None of the above

How can a fluid particle's vorticity magnitude increase?

A. Never

 C. Unaligned Pressure and Density Gradients

D. Viscosity **Shear Stress**

E. None of the above

3. Which airfoil is an NACA 0012? Hand: Camber the

None of the above

4. In a wind tunnel, a wing is mounted at 20 degrees AOA. The normal force is 40 lbs. The axial force is -10 lbs. What is the lift to drag ratio?

5. How many slugs are in one slinch?

6. Given the following symmetrical NACA 0012 airfoil, estimate C_m at the aerodynamic center.

D.
$$2\pi$$

$$C_n = -T \frac{f}{c}$$

7. A flow is irrotational and incompressible. Which of the following are true?

Zero Lift

B. Zero Drag

C. Zero Divergence

D. $\nabla \cdot V = 0$ E. $p + \frac{1}{2}\rho V^2 = p_0$

8. For an NACA 64₃-418 airfoil at Re=9 million, what is the drag coefficient at 0 degrees AOA? The experimental data is plotted below (source: Theory of Wing Sections)

A. 60 counts

В. -0.0620

C. 0.0055

D. 0.35

E. None of the above

9. Given an unsteady flow, which of the following visualizes a trace of all fluid elements that flowed through a fixed location?

F. Pathline

G. Streakline

H. Timeline

I. Streamline

J. None of the above

K. 6.67

L. 20π

M. 0.11

N. 2π

O. None of the above

11. [20 pts] A flat plate with a chord of 1 foot and span of 10 feet generates a downstream wake described by:

$$u(y) = \begin{cases} y^{1/7} & \text{with} \\ (-y)^{1/7} & \text{with} \\ -1 < y < 0 \\ 1 & \text{otherwis.} \end{cases}$$

The upstream velocity is V=1. The distance y is measured in feet.

U1-U2 = 1- y/2

What is the sectional drag coefficient C_d ?

$$D = \int P_{2} U_{2} (U_{1} - U_{2}) dy = 2 \int P_{2} U_{2} (U_{1} - U_{2}) dy = 2 \int P_{2} y''' (1 - y''') dy$$

$$= 2 P_{2} \int (y''_{1} - y''_{2}) dy = \frac{7}{8} y'''_{1} - \frac{7}{9} y''_{1} \Big|_{0}^{1} = (\frac{7}{8} - \frac{7}{9}) - (0 - 0)$$

$$= 2 P_{2} \cdot \frac{7}{72}$$

Name:

12. [10 pts] A wind-tunnel model is connected to the following sting in a level attitude. The sting is initially pointed directly into the freestream velocity vector. The sting's roll mount is rotated right to ϕ =90°. The sting's pitch mount is rotated up to θ =30°. Then the sting's yaw mount is rotated left to ψ =-30° (note the minus). **Determine** α and β of the model with respect to the freestream.

$$\begin{array}{cccc}
C_{\Theta}C_{\psi} & & \\
V & = & S_{\varphi}S_{\Theta}C_{\psi} & -C_{\varphi}S_{\psi} \\
W & & C_{\varphi}S_{\Theta}C_{\psi} + S_{\varphi}S_{\psi}
\end{array}$$

$$\alpha = \arctan\left(\frac{w}{v}\right) = \arctan\left(\frac{-0.5}{0.75}\right) = -4508^{\circ}$$

$$\beta = \arcsin\left(\frac{v}{v}\right) = \arcsin\left(0.433\right) = 24^{\circ}$$

13. [20 pts] Given a cylinder of radius 10 inches in a freestream flow of 100 ft/s at SSL, you measure stagnation points at -10 degrees below the chordline. What is the lift generated per unit span?

$$\psi = \sqrt{\alpha} r \sin \theta \left(1 - \frac{R^2}{r^2} \right) + \frac{\Gamma}{2\pi} \ln \left(\frac{r}{R} \right)$$

$$V_{\theta} = -\frac{d\psi}{dr} = -V_{\infty} \sin \theta \left(1 - \frac{R^{2}}{r^{2}}\right) + -V_{\infty} r \sin \theta \left((-)(-2) \frac{R^{2}}{r^{3}}\right) + \frac{\Pi}{2\pi} \frac{1}{r}$$

$$= -V_{\infty} \sin \theta \left(1 - \frac{R^{2}}{r^{2}} + \frac{2R^{2}}{r^{2}}\right) + \frac{\Pi}{2\pi r}$$

$$= \frac{\Pi^2.4. \vee_{\infty} \cdot R}{18}$$

$$= \rho V_{\infty}^2 T^2 \frac{4}{18} R$$

$$C_{p} = 1 - \frac{V^{2}}{V_{\infty}^{2}}$$