AEM 313: Practice Exar	n 1 Name	2:	
29 th Sept 2016	75 minutes	6 Pages Clo	osed books, Closed notes, Calculator
			One page of notes.
100 total points	I	Read, think, plan, and then	write.

University of Alabama Academic Honor Pledge:

I promise or affirm that I will not at any time be involved with cheating, plagiarism, fabrication, or misrepresentation while enrolled as a student at The University of Alabama. I have read the Academic Honor Code, which explains disciplinary procedures that will result from the aforementioned. I understand that violation of this code will result in penalties as severe as indefinite suspension from the University.

Signature:_____

Date:		

Multiple Choice Problems: Circle EVERY correct answer [5 pts each]

1. Which of the following are definitions of vorticity?

A.	$\omega = \nabla \times V$	B.	$\omega = \nabla \cdot V$	C.	$\omega = \frac{dv}{dy}$	$\frac{du}{dx}$	D.	$\omega = \frac{dv}{dx}$	$\frac{du}{dy}$	E.	None of the above
----	----------------------------	----	---------------------------	----	--------------------------	-----------------	----	--------------------------	-----------------	----	-------------------

2. How can a fluid particle's vorticity magnitude increase?

A. NeverB. Vortex StretchingC. Unaligned Pressure and DensityD. Viscosity Shear StressE. None of the above		_			
A. Never B. Vortex Pressure and D. Viscosity E. None of the above Stretching Density Shear Stress			C. Unaligned		
A. Never Stretching Density Shear Stress E. None of the above	A Novor	B. Vortex	Pressure and	D. Viscosity	E None of the shows
	A. INEVEL	Stretching	Density	Shear Stress	E. None of the above
Gradients			Gradients		

3. Which airfoil is an NACA 0012?

4. In a wind tunnel, a wing is mounted at 20 degrees AOA. The normal force is 40 lbs. The axial force is -10 lbs. What is the lift to drag ratio?

A.	4.0	B4.0	C. 0.78	D. 9.58	E.	None of the above
----	-----	------	---------	---------	----	-------------------

5. How many slugs are in one slinch?

A.	12	B. 32.174	C. 1/12	D. 1/144	E.	None of the above
----	----	-----------	---------	----------	----	-------------------

6. Given the following symmetrical NACA 0012 airfoil, estimate C_m at the aerodynamic center.

A.	0	B. 0.12	C0.12	D. 2π	E. None of the above
	\subset				

7. A flow is irrotational and incompressible. Which of the following are true?

A.	Zero Lift	B. Zero Drag	C. Zero Divergence	D. $\nabla \cdot V = 0$	$E. p + \frac{1}{2}\rho V^2 = p_0$
----	-----------	--------------	-----------------------	-------------------------	-------------------------------------

8. For an NACA 64₃-418 airfoil at Re=9 million, what is the drag coefficient at 0 degrees AOA? The experimental data is plotted below (source: Theory of Wing Sections)

A.	60 counts	B0.0620	C. 0.0055	D. 0.35	E.	None of the above

9. Given an unsteady flow, which of the following visualizes **a trace of all fluid elements that flowed through a fixed location**?

F. Pa	athline	G. Streakline	H. Timeline	I. Streamline	J.	None of the above
-------	---------	---------------	-------------	---------------	----	-------------------

10. Given a 10% thick Joukowski airfoil at 10 degrees AOA, estimate $C_{l\alpha}$ per radian?

K.	6.8	L. 20 <i>π</i>	M. 0.11	N. 2π	O. None of the above
----	-----	----------------	---------	-------	----------------------

11. [20 pts] A flat plate with a chord of 1 foot and span of 10 feet generates a downstream wake described by:

The upstream velocity is V=1. The distance y is measured in feet.

What is the sectional drag coefficient C_d ?

12. [10 pts] A wind-tunnel model is connected to the following sting in a level attitude. The sting is initially pointed directly into the freestream velocity vector. The sting's roll mount is rotated right to $\phi=90^{\circ}$. The sting's pitch mount is rotated up to $\theta=30^{\circ}$. Then the sting's yaw mount is rotated left to $\psi=-30^{\circ}$ (note the minus). Determine α and β of the model with respect to the freestream.

13. [20 pts] Given a cylinder of radius 10 inches in a freestream flow of 100 ft/s at SSL, you measure stagnation points at -10 degrees below the chordline. What is the lift generated per unit span?

chard stagnation SL stagnetion SL 10