AEM 313: Practice Exam 2

Name:

25th Oct 2016

75 minutes

6 Pages

Open Open Open Wastabooks, Elasti notes, Calculator

100 total points

Read, think, plan, and then write.

Lessons 12-18 Anderson book Chap 4-5

University of Alabama Academic Honor Pledge:

I promise or affirm that I will not at any time be involved with cheating, plagiarism, fabrication, or misrepresentation while enrolled as a student at The University of Alabama. I have read the Academic Honor Code, which explains disciplinary procedures that will result from the aforementioned. I understand that violation of this code will result in penalties as severe as indefinite suspension from the University.

Signature:		
Date:		

Multiple Choice Problems: Circle **EVERY** correct answer [3 pts each]

 $\frac{211}{1+\frac{2}{AR}}: \frac{211}{1+\frac{2}{3}} = \frac{211}{1.25}$

1. A flat elliptical wing has an aspect ratio of 8. What is

tis(C.)?	JCL
	22

A. B. C. D. E. None of the above

5.026

2. A flat elliptical wing has an aspect ratio of 8. What is C_{D_i} at $C_L = 0.5$?

A. B. C. D.

3. A flat tapered wing has an aspect ratio of 8 and taper ratio of 0.5. What is C_D , at $C_L = 0.5$?

B.

A.

C.

D.

E. None of the above

4. For a subsonic flat linearly tapered wing, which taper ratio gives the lowest induced drag?

1.	0.0	2. 0.3	3. 0.5	4. 1.0	1.5

5. Compute the induced drag described by an upstream velocity of u=1 at SSL and a downstream velocity defined by:

5. Why is the lift distribution $\Gamma(y) = y$ not physically possible for a finite wing of span b=1?

A. Negative Γ

B. Not elliptical

C. Asymmetric

D. Infinite velocities

E. None of the above

$$\frac{2}{\sqrt{5}} = \int_{-\infty}^{\infty} \cos(\pi \frac{y}{6}) dy \qquad \frac{y}{\pi} = \frac{1}{2}$$

- Why do increasing lengths of contrails indicate the increasing possibility of stormy weather?
 - A. Combustion provides ionic paths for lightning
- B. Vortices create an unstable atmosphere
- C. Contrails increase atmospheric heating
- D. Atmospheric moisture is increasing
- E. None of the above

In the following figure, where is the shed vorticity in the wake highest?

F.	Combustion provides		
	for lin	htnina-	

- H. Contrails increase atmospheric heating
- I. Atmospheric moisture is increasing
 - J. None of the above
- 9. A finite wing with AR=10 has the following Fourier coefficients. What is the lift coefficient?

TIARA,

= TTAR OIL

A.

B.

C.

D.

E.

10. In a panel method for an airfoil, where are numerical instabilities most likely to occur?

Trailing Edge

- B. Leading Edge
- C. Freestream
- D. Maximum thickness
- E. None of the above

- 11. Where is the theoretical aerodynamic center of a flying wing?
 - A. Neutral point
- B. Half chord
- Quarter Chord
- D. Leading edge
- E. None of the above
- 12. For a delta wing, increasing AOA tends to move the vortex burst point

A. Forward

- B. Aft
- C. Outboard
- D. Below wing
- the
- E. Does not move

13. For attached flow over an NACA 0012 airfoil, where is the vorticity concentrated?

B. Quarter Chord

C. Wake

- D. Near the surface
- Nowhere. Zero vorticity
- 14. For a high speed aircraft at high altitudes, where are contrails likely to 1st occur?

A. Wing tips

B. Jet exhausts

C. Strakes

- D. Wing root
- E. Flap tips

15. What is the velocity imposed by a semi-infinite vortex of strength 1 at a distance h=1?

A. B. C. $\sqrt{\frac{1}{4\pi}}$ D. E. $=\frac{1}{4\pi}$

16. Which wing geometries tend to have higher C_i loading near the wingtips?

17. Circle the phenomena described: A positive roll moment creates an opposite yaw moment.

18. Circle the Helmholtz vortex filament theorems

19. Given the following lift distribution at AOA=10 degrees, which wing modifications are likely to improve flight performance and pilot workload during high AOA maneuvers near stall? Assume that the airfoil

20. Estimate the lift to drag ratio (CL/CD) of an F-102 Delta Dagger at AOA=35 degrees?

A. B. C. D. E.

$$C_{b} = K_{p} \sin \alpha \cos^{2} \alpha + K_{v} \cos \alpha \sin^{2} \alpha = \frac{1.759}{1.231}$$

$$C_{b} = K_{p} \sin^{2} \alpha \cos \alpha + K_{v} \sin^{3} \alpha = \frac{1.759}{1.231}$$

21. [20 pts] Estimate the lift, drag, and moment of a thin cambered airfoil at AOA=0. The airfoil is composed of two linear parts. The maximum camber is 10% at the midchord.

$$A_{1} = \frac{2}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{\cos \theta} d\theta + \frac{2}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{\cos \theta} d\theta = \frac{2}{\pi} \frac{1}{5} \cdot 2 = \frac{4}{5\pi}$$

$$A_2 = \frac{2}{7} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{\cos 2\theta} d\theta + \frac{2}{7} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{\cos 2\theta} d\theta = 0$$

$$C_{\ell} = 2\pi A_{0} + \pi A_{1} = 2\pi (20) + \frac{4}{5}$$

$$G_{m}: -\frac{7}{4}(A_{1}-A_{2}) = -\frac{1}{5} = [-0,2]$$