AEM 313: Practice Exan	n 2 Name:		
25th Oct 2016	75 minutes	6 Pages	Closed books, Closed notes, Calculator
100 total points	Read,	think, plan, and th	nen write.

University of Alabama Academic Honor Pledge:

I promise or affirm that I will not at any time be involved with cheating, plagiarism, fabrication, or misrepresentation while enrolled as a student at The University of Alabama. I have read the Academic Honor Code, which explains disciplinary procedures that will result from the aforementioned. I understand that violation of this code will result in penalties as severe as indefinite suspension from the University.

Signature:_____

Date:			

Multiple Choice Problems: Circle **EVERY** correct answer [3 pts each]

1.	. A flat elliptical wing has an aspect ratio of 8. What is $C_{L_{\alpha}}$?									
	А.	В.	C.	D.	E. None of the above					
2.	2. A flat elliptical wing has an aspect ratio of 8. What is C_{D_i} at $C_L = 0.5$?									
	А.	В.	C.	D.	E. None of the above					
3.	A flat tapered wi	ng has an aspect rati	io of 8 and taper rat	to of 0.5. What is C	C_{D_i} at $C_L = 0.5$?					
	А.	В.	C.	D.	E. None of the above					
4.	For a subsonic fla	at linearly tapered w	ving, which taper rat	io gives the lowest	induced drag?					
	1. 0.0	2. 0.3	3. 0.5	4. 1.0	1.5					

5. Compute the induced drag described by an upstream velocity of u=1 at SSL and a downstream velocity defined by:

5. Why is the lift distribution $\Gamma(y) = y$ not physically possible for a finite wing of span b=1?

A.	Negative Γ	B.	Not elliptical	C.	Asymmetric al	D.	Infinite velocities	E.	None of the above
----	-------------------	----	----------------	----	------------------	----	------------------------	----	-------------------

6. Determine the lift coefficient of a wing of span b=2 given the following bound vortex distribution:

$$\Gamma(y) = \cos\left(\pi \frac{y}{b}\right)$$

A. B. C. D. E. None of the

7. Why do increasing lengths of contrails indicate the increasing possibility of stormy weather?

A. Combustion	B. V	Vortices		C.	Contrails	р	Atmograha	ria		
provides ionic paths for lightning	c u a	create unstable atmosphe	an re		increase atmospheric heating	D.	moisture increasing	is	E.	None of the above

8. In the following figure, where is the shed vorticity in the wake highest?

F.	Combustion	G.	Vortices		H.	Contrails	т	A tree a such a mi a			
	provides ionic paths for lightning		create unstable atmosphere	an e		increase atmospheric heating	1.	Atmospheric moisture is increasing	S	J.	None of the above

9. A finite wing with AR=10 has the following Fourier coefficients. What is the lift coefficient?

```
A_n = 0.1^n \cos(n\pi)
```

A.	В.	С.	D.	E.

10. In a panel method for an airfoil, where are numerical instabilities most likely to occur?

A. Trailing Edge	B. Leading Edge	C. Freestream	D. Maximum thickness	E. None of the above
---------------------	--------------------	---------------	-------------------------	----------------------

11. Where is the theoretical aerodynamic center of a flying wing?

A. Neutral point	B. Half chord	C. Quarter Chord	D. Leading edge	E. None of the above
------------------	---------------	---------------------	--------------------	----------------------

12. For a delta wing, increasing AOA tends to move the vortex burst point

A. Forward B. Aft	C. Outboard	D. Below the wing	E. Does not move
-------------------	-------------	-------------------	------------------

13. For attached flow over an NACA 0012 airfoil, where is the vorticity concentrated?

A. Everywhere B. Quarter Chord	C. Wake	D. Near the surface	E. Nowhere. Zero vorticity
-----------------------------------	---------	---------------------	-------------------------------

14. For a high speed aircraft at high altitudes, where are contrails likely to 1st occur?

A. Wing tips B. Jet exhausts	C. Strakes	D. Wing root	E.	Flap tips	
------------------------------	------------	--------------	----	-----------	--

15.	What is the velocity	y imposed b	v a semi-infinite vortex of strength 1 at a distance h=1?

А.	B.	C.	D.	E.

16. Which wing geometries tend to have higher C_l loading near the wingtips?

A. Aft swept	B. Forward swept	C. Washout	D. Washin	E. Elliptical wings
--------------	------------------	------------	-----------	---------------------

17. Circle the phenomena described: A positive roll moment creates an opposite yaw moment.

	A. Induced Drag	B. Adverse Yaw	C. Proverse Yaw	D. Aileron Reversal	E. Not possible
--	--------------------	-------------------	--------------------	------------------------	-----------------

18. Circle the Helmholtz vortex filament theorems

A. Constant filament strength	B. Filaments never end within a fluid	C. Filaments convect downstream	D. Filaments shapes remain constant	E. Filaments decay exponentially
-------------------------------------	--	---------------------------------------	--	----------------------------------

19. Given the following lift distribution at AOA=10 degrees, which wing modifications are likely to improve flight performance and pilot workload during high AOA maneuvers near stall? Assume that the airfoil section has a maximum lift coefficient of $C_{l_{\text{max}}} = 1.1$

20. Estimate the lift to drag ratio (CL/CD) of an F-102 Delta Dagger at AOA=35 degrees?

21. [20 pts] Estimate the lift, drag, and moment of a thin cambered airfoil at AOA=0. The airfoil is composed of two linear parts. The maximum camber is 10% at the midchord.

22. [20 pts] The Prandtl Lifting Line theory for a non-elliptical wing's induced drag is:

$$C_{Di} = \frac{C_L^2}{\pi \cdot AR \cdot e}$$

Given the following Fourier coefficients for a tapered wing of aspect ratio 10, compute the efficiency facter "e".

n	An
1	0.0228
2	0.0000
3	-0.0031
4	0.0000
5	0.0016
6	0.0000
7	-0.0002
8	0.0000
9	0.0003
10	0.0000
11	-0.0001
12	0.0000