AEM 313 Problem Set \#1

Due: $30^{\text {th }}$ August 2016 by 11:00am
Prepare solutions to the following 6 problems. Write on engineering or regular 8.5×11 paper and staple on the top left corner. Write out problem statement and assumptions. Provide calculations. Write a 1-2 sentence summary of what you learned. No more than one problem per page. Box your final answers.

1. Plot an NACA 2416 airfoil exactly to scale with a chord of 7 inches. Show the mean chord line, the locations of maximum thickness and camber.
2. Compute the density of wet air in English units given 90% relative humidly and 90 degrees Fahrenheit. Include your Arden-Buck calculations or ASHRAE Psychrometric chart.
3. Problem 1.18
4. Draw to scale the planform of a linearly tapered wing with the following properties:

- $b=10$ inch
- $\Lambda_{c / 4}=30^{\circ}$
$\mathrm{Cr}=2.5 \mathrm{in}$
- $\mathrm{AR}=5$
- $S=20$ sq-in

5. For the linearly tapered wing in problem derive equations for the following and compute:

- Average chord (e.g. $\bar{c}=S / b)$
- Tip chord
- Root chord
- Taper ratio
- Leading edge sweep angle
- Trailing edge angle
- MAC
- Port LE wing tip location (assuming FSO.0 BLO.0 is the root LE)

6. A wind-tunnel model is connected to the following sting in a level attitude. The sting is initially pointed directly into the freestream velocity vector. The sting's roll mount is rotated right to $\varphi=90^{\circ}$. The sting's pitch mount is rotated up to $\theta=20^{\circ}$. Then the sting's yaw mount is rotated left to $\psi=-45^{\circ}$ (note the minus). Determine α and β of the model with respect to the freestream.

