AEM 313 Problem Set \# 3

Due: $13^{\text {th }}$ September 2016 by 5:oopm

1. For a generic wake deficit velocity of:

$$
V_{\infty}-u=A V_{\infty} \exp \left(-B y^{2}\right)
$$

- Draw the generic wake deficit velocity showing how varying A and B changes the profile. Actual wake deficits far downstream theoretically converge to this function.
- Determine the drag coefficient when $\mathrm{A}=0.5$ and $\mathrm{B}=0.1$. Hint:

$$
\int_{0}^{\infty} \exp \left(-B x^{2}\right)=\frac{\sqrt{\pi}}{2 \sqrt{B}} \operatorname{Erf}(\infty)=\frac{\sqrt{\pi}}{2 \sqrt{B}}
$$

2. Watch "Vorticity Part 1" and "Vorticity Part 2" at http://web.mit.edu/hml/ncfmf.html.

- Provide a statement verifying that you completed both videos.
- Provide a short summary/abstract of these films. Concise, technical, and succulent.

3. Determine the vorticity field $\omega(x, y)$ of the following flow:

$$
\begin{aligned}
& u(x, y)=y+\cos (x) \\
& v(x, y)=\sqrt{x}+\sin (y)
\end{aligned}
$$

4. For the following flow (N.b velocities are in cylindrical coordinates):

$$
\begin{aligned}
& u_{r}(\mathrm{r}, \theta)=\frac{\Lambda}{2 \pi r} \\
& \mathrm{u}_{\theta}(\mathrm{r}, \theta)=\frac{\Gamma}{2 \pi r}
\end{aligned}
$$

- Compute the circulation about a unit circle
- Compute the divergence about a unit circle
- Where is this flow rotational? Where is this flow irrotational?

