AEM 313 PS. \#6

1) Estimete the throst and power reguired fon a Boeing 747-8 at grass weight clabiis out at 150 knots.

Aircraft specs.

$$
\begin{array}{ll}
b=224.5^{\mathrm{ft}} & \Lambda \approx 37^{\circ} \\
S=5960 \mathrm{At}^{2} & A R=\frac{b^{2}}{s}=8.45
\end{array}
$$

Velority:

$$
\begin{array}{l|l}
150 \mathrm{kts} & 1.688 \mathrm{ft} \\
\hline & 1 \mathrm{kt} \mathrm{~s}
\end{array}=253 \mathrm{ft} / \mathrm{s}
$$

Climb out

$$
=2.18
$$

Oswald Efficionoy

Throst:

$$
\begin{aligned}
e \approx & 4.61\left(1-0.045 A R^{0.68}\right)\left(\cos \Lambda_{L E}\right)^{0.15}-3.1 \\
& 4.61\left(1-0.045 \cdot 8.45^{0.61}\right) \cos (37.5)^{0.15}-3.1=0.497 \\
C_{D_{i}}= & \frac{C_{L}^{2}}{\pi R R e}=\frac{2.18^{2}}{\pi \cdot 8.45} \cdot 0.497=0.36
\end{aligned}
$$

$$
F=q S C_{D}=W \cdot\left(\frac{D}{L}\right)=987000^{16 f} \cdot \frac{0.36}{2.18}=163000^{16 f}=D
$$

Power:

$$
\begin{aligned}
& \text { oity } \\
& L=W
\end{aligned}
$$

2) $C_{D_{0}}=180$ counts. Determi. excess thrust.

Accost:

$$
\begin{aligned}
& 4 \times 66500^{11 \mathrm{f}} \text { engines } \\
& C_{0}=C_{D_{0}}+C_{0:}=0.0180+0.3600=0.378 \\
& D=987000 \mathrm{lbf} \cdot \frac{0.378}{2.18}=171140^{167} \\
& \text { Excess thrust }=4.66500-0 \\
& E_{\text {xes }} \text { That }=94900^{16 f}
\end{aligned}
$$

Note: this would give about 0.1 g of acceleration at lift. th.
At 180 Kts, $C_{L}=1.5, C_{D_{i}}=1737$ counts,$C_{D}=1917$ counts
Excess thrust is $139000^{16} \Rightarrow 0.14 \mathrm{~g}$
At $200 \mathrm{kts}, C_{L}=1.22, C_{0}:=1128$ counts, $C_{D}=1300$ counts Excess throwout is $16000016 \Rightarrow 0.16$ s

Thus, it takes about 10 seconds to accelerate from 150 to 180 knots at a level altitude. You will revisit this concept next semester in AEM368.

