# AEM 313 MEMO

 Subject:
 Aerodynamics I Endurance Glider Project

 TO:
 AEM 313

 Date:
 17 Nov 2017

 CC:
 Memo:
 AEM313-P2-Assign

 From:
 Charles O'Neill

 REF:
 Ext:
 croneill@eng.ua.edu

## Summary:

Design and construct a glider carrying 8 quarters which maximizes **endurance**. A design report (50 pts) including concepts, analysis, and an aircraft photo are due on 1 Dec 2017. Flight trials (50 pts) will be held **indoors**. Aircraft must be **human powered**; no additional power sources. The aircraft structure is restricted to **foam and paper**. Design group sizes can be 1-4 with a preferred size of 2. The 3<sup>rd</sup> highest endurance determines the 100% score; all others are prorated. If you beat Dr. O'Neill, you receive a minimum 90% score.

### **Discussion:**

Endurance means optimizing  $C_L^{3/2} / C_D$ . I suggest 1) drawing a few concepts: monoplane, biplane, canard, and 2) evaluate and optimize performance 3) flight test and iterate.

### Grading

50% of from your report. 50% from the normalized endurance.

### **Reynolds Number**

These airplanes operate at low Reynolds numbers. Use XFOIL to determine CL and CD performance of airfoils. Traditional airfoils are probably not a good choice. You may wish to investigate flat and curved plates. Higher AR will give lower induced drag but at the expense of lower Re and thus higher profile drag.



### Quarters:

US dimes and quarters are \$20 per pound. Quarters are 0.0125 lbf each.

### **Structural Materials:**

Materials are available from the SupeStore on campus, Home Depot, Hobby Lobby in Northport, and online. You are restricted to **any** foam and/or paper (i.e. processed wood fiber) materials for the structure. Unprocessed wood fibers (e.g. balsa) are **not** permitted.