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Aircraft Flight Dynamics with a Non-Inertial CFD Code

oo

A
Charles R. O’Neill* and Andrew S. Arena. Jr.! /‘\J\g("- \were
. PR [y
Oklahoma State Universily eos
Stillwater, Oklahoma 74078 E ‘

Aircraft flight dynamics are investigated with a non-inertial, finite element, Eulerian
CFD code. This project developed a fully 6 DOF rigid body dynamics solver for a non-
inertial finite-element inviscid CFD solver. A non-inertial CFD formulation appears to
have significant advantages for arbitrary rigid body simulations. Missile, aircraft and wedge
dynamics are simulated for small and large rigid body motions. The non-inertial formulation
also offered an intuitive and simple stability derivative extraction routine.

I. Introduction

Modern flight testing involves characterizing complex, high performance flight vehicles operating over
wide flight conditions and variable vehicle geometries. Simulating these coupled structural, aerodynamic,
and control systems computationally allows for powerful, timely, and efficient flight test support. The Struc-
tural Analysis Routines! (STARS) code developed at NASA Dryden supports Dryden’s flight, tests with a
suite of multidisciplinary tools for structural, aerodynamic, thermal, and control system analysis. STARS
has powerful aeroelastic and aeroservoelastic simulation capabilities. Stability and control, and sensor simu-
lations are also available. Recent programs supported by the STARS code include the X-29, X-33, F-18, and
HyperX.!:?

The computational fuid dynamics (CFD) component of STARS solves the Euler and Navier-Stokes
governing equations. STARS’s aerodynamic solvers are not limited by governing equations but by system
coupling. The recent addition of a non-inertial reference frame CFD formulation extends the capabilities
of STARS to include rotational and translational motions.® Coupling rigid body dynamics with the non-
inertial CFD opens significant possibilities for flight test support. Figure 1 conceptually shows some of these
possibilities. Rigid body dynamics are needed to simulate these complex, but common, flight configurations.

R rni——
Super
Maneuvering Formation Helicopter Variable Flight Multiple Vehicle and
Aircraft Flight Rotors Geometry Store Separation

Figure 1. Rigid Body Dynamics Applications

A. Objective

This paper’s objective is to develop a 6 degree of freedom rigid body solver and then couple the rigid body
solver into a computational fluid dynamics (CFD) solver. Coupling into a CFD solver requires determining

*Graduate Research Assistant, Student Nember ATIAA
tProfessor, Senior Member AIAA
Copyright © 2005 by Charles R. O’Neill and Andrew S. Arena, Jr. Published by the American Institute of Aeronautics
and Astronautics, Inc. with permission.
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boundary conditions from the previous aerodynamically and inertially generated forces. This paper con-
centrates on the flight dynamics applications of the rigid body dynamics in an inviscid but compressible
flow.

Rigid body dynamics are governed by two sets of equations: attitude representation, and body-frame
motion. Attitude representation uses an inertial fixed reference frame for translations and directions. The
body-frame kinematics uses translational and rotational forms of Newton’s classical law.

II. Literature Review

Sinndating aerospace vehicle dynamics is common. Nelson? derives a traditional approach to applying
rigid body dvnamics to aireraft. Phillips® reviews Euler angles, direction cosines, and quaternions for aircraft
motion specification. Phillips suggests using quaternions to avoid the computational expeunses and singular-
ities inherent in the Euler angle representation. Stevens and Lewis® derive a quaternion approach to rigid
body dynamics. Visually, Kato” discusses large amplitude maneuvers and their effect on motion descriptions.
Store separations with multiple body dynamic simulations is a related and active field.*"'" Recently, Rizk!!
implemented a 6 degree-of-freedom store separation dynamics simulation.

Primary references for this paper are: Aireraft Control and Simulation,® Flight Stability and Automatic
Control.* and Finite Element CFD Analysis of Super-Maneuvering and Spinning Structures.* Babcock’s
paper'? provides the stability derivative extraction methodology.

III. Attitude Representation

Attitude representation involves specifying the aircraft’s position and orientation, and converting between
inertial and non-inertial frames. For the scope of this paper, the inertial frame is Earth fixed, and the non-
inertial frame is aircraft body-fixed.

A. Inertial and Non-Inertial Frames

The crux of attitude representation is converting between body fixed and inertial reference frames. Figure 2
shows a two-dimensional representation of an inertial frame (X,Y) and a non-inertial frame (x.y) connected
by vector R. A point at vector r,, in the non-inertial frame transforms to a vector ¢; in the inertial frame.
The relationship is given below:

gi = Ri + Bry

B is a transformation operator between the body b and inertial 7 frames. So, B™! transtorms from the inertial
frame to the body frame. Intuition suggests that B and B~! must be similar. In fact, transformation matrices
have a special property that BBT = I, which implies B~ = BT

AY

W<

Figure 2. Coordinate Systems

B. Orientation

Orientation concerns the directionality of the body-fixed frame with respect to an inertial frame. For the
scope of this project, the Earth is a sufficient inertial frame. This paper uses quaternions for orientation.
The objective is to convert body frame rotations to inertial frame attitudes.

Euler angles were rejected for the well-known pitch singularity. Preliminary testing also showed that while
the Euler angle singularity is at § = +90°, attitude errors become noticeable earlier. For a generic motion
simulations, Euler angles are unwelcome.
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Quaternions have no such singularity —at the expense of an extra parameter. The quaternion form consists
of four parameters: a scalar {(¢y), and a vector (g1, g2, ¢3). An extra constraint is required, @+ai+qi+¢i =1
For a quaternion based representation system, the transformation matrix B is:®

g+a—a—d  2Aqnge—qgs)  2(q1gs+ Gugz)
B=| 2(qg+qgs) q5—ai+as—d3  2(g24s — qoq)
2(q193 — qug2) 2(qags + @) g0 — i — 43 + a3
Quaternion updates are via four 1st order differential equation. The almost-linear quaternion differential
equation is:’

qu o » q i
¢ Il =p 0 —r g /1
| 2| -¢ 7 0 -p 42
g3 —-r —q p 0 s

Solely for human visualization, traditional Euler angles are needed. The quaternion to Euler angle con-
. - 6
version is:

¢ arctan (2(qoq1 + ¢2g3)/ (46 — af — 45 + 43)) : —T<¢<Tw
g | = arcsin (2(qoga — q144)) with the ranges —7/2<6 <7/2
P arctan (2(gogs + q192)/ (a8 + o} — 43 — a3)) —r<yp <7

Inspection of the Quaternion to Euler angle conversion shows that unity magnitude quaternions are needed
to remain in the real valued arcsin() and arctan() domains. Re-normalizing the quaternion appears necessary
before converting to Euler angles.

C. Position

Inertial frame positions are calculated from body frame velocities and inertial orientation. Position updates
use the B transformation matrix developed above. The translational equation is:

The result is three 1st order differential equations for inertial position. Integration is simple when no rotations
occur.

IV. Body Frame Kinematics

Aircraft velocity kinematics are calculated in the non-inertial (body) frame. Nelson* derives a set of
aircraft equations of motion. Inertias are referenced to the body fixed frame. Except for certain body forces
such as gravity, the body fixed equations of motion are independent of attitude.

A. Translation

For the translational rigid body modes, the equations of motion are:*

X —mgSy = m(i + qw — rv)
Y +mgCySy = m(v + ru — pw)
Z +mgCeCy = m(w + pv — qu)

The translation equations become nonlinear when the rotation axis is not along the translation velocity axis.
Solving for the translational derivative terms yields:

i 0 r  —q i 1 X —mgSy

v |l=|-r 0 »p v+ — Y +mgCsySy

1w q p O w Y + mgCyCy
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The translational equation of motion consists of three 1st order nonlinear differential equations.

B. Rotation

The rotational equations of motion in the body frame for typical symmetrical aircraft are:*

L=1p—IL.r+ .- 1,)qr — I.ypq
M = 1yg+ (I, = I)rp + Lz (p* = %)
N=-I.p+ I.r+ (]y - ]J)pq + Io-qr

The equations are nonlinear when certain translations and rotations occur. In contrast to the single transla-
tional mass, 6 rotational inertias are possible. Solving for the rotational equations or motion for the rotational
derivatives yields:

P L—(I. — Iy)gr + I..pq
G| =11 | M=, - L)rp— L.(p* — 77
T N_(]y_I:c)pq—Iwqu

A general inverse inertia matrix?® is:

(| e 0 L
1= = F| 0 T/, 0
IJ.'L 0 I.c
with
C=11-12,

The rotational equation of motion consists of three 1st order nonlinear differential equations.

V. Coupled Rigid Body Equations of Motion

The objective of this section is to show the total 6 degree of freedom rigid body dynamics equations of
motion. The state vector is: S = [cyzuvwpqgr g q1 G2 q3]T. Combining the above orientation and
kinematic equations yields thirteen 1st order nonlinear differential equations. From Stevens and Lewis® the
complete system with lumped coupling terms (Qp, §1,, 1) is:

0 B 0 0 0

. = -1

S = 0 QB (1) 0 S-I— m 1FB
0 0 -17°Qpl 0 J T
0 0 0 -1q, 0

On first inspection, the system appears linear, but this is not the case since the state variable is contained
inside the gradient matrix.

A. Numerical Methods

Appropriate numerical methods are required for the quaternion governing equation —the quaternion mag-
nitude must remain unity. Phillips® discusses this topic and suggests at least a 4th order ODE numerical
solution. This paper uses a 4th order Adams Moulton finite difference ODE numerical integration method.
The update is discrete in time based on continuous derivatives (y) at four discrete timesteps.

y(t+1) =y(t) + g& (559(t) — 59y(t — 1) + 37y(t — 2) — 9y(t — 3))

4This inertia matrix assumes that the only asymmetrical component is Iz;.
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VI. Non-inertial CFD Formulation

The non-inertial CFD program (eulerdd) used for this paper is developed in Cowan’s Ph.D dissertation.®
The CFD solver was developed using Euler Angles for attitude representation. The appropriate attitude
terms need to be reviewed and converted to the quaternion format. This section reviews Cowan’s work to
describe how boundary conditions are specified. The inviscid, compressible Euler fluid dynamics governing
partial differential equation in a non-inertial frame is:

ou N ar, g
o de,
with the following vectors
[ o 0
[ iy p511- 0
U= puz F=| puus | + | pda S=-p a; + QV,
iy Py pds; a, - (V/ +V,)
\ PEy pue, pu;

The source term S contains the non-inertial parts with the following source terms:

Vi=B Wy+QOr, d =B lag+PPr,+ O + OV,

8] —w: Wy
“.g = w! - 0 —Wg
—wy  Wg 0

Notice, as expected, that the CFD solver uses only non-inertial (body) frame motions and the B transfor-
mation matrix. A significant advantage of this non-inertial formulation is that the CFD solver needs only a
single, fixed computational grid for any arbitrary rigid body motion.

VII. Verification

The objective of this section is to establish that the rigid body equations of motion are being solved
correctly.

A. Energy Conservation

This case tests for rigid body dynamics energy conservation. The concept is to give an initial motion and
track the total energy. Constant energy verifies that the rigid body dynamics solver is solving the correct
equations. Additionally, this testcase shows timestep sensitivities with regard to the rigid body dynamics
solver.

The governing energy equation for translations and rotations is:

E(t) = Z %mivi(t)zﬂ— Z %Iiwi(t)z

1=T,y,2 1=p,q,7
For this particular testcase, the masses and inertias are:
M=1, I,=1, I,=2, I.=3

For an initial body-fixed translation vector of (1,2,3) and a rotation vector of (4w, 2w, ) radians per second,
the theoretical kinetic energy is 140. A time history plot (Fig. 3) shows the non-linear behavior. Figure 4
shows the kinetic energy content for timesteps varying from 0.01 to 0.0001 —equivalent to 50 to 5000 points
per highest frequency (roll rate of 720 degrees per second). Above 100 points per cycle seems appropriate;
fewer points per cycle tend to artificially dampen the dynamics solution. Timestep sizes for accurate dynamics
responses appear to be larger than the corresponding CFD timestep sizes.
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Figure 4. Energy Sensitivity

Figure 3. Energy Time History

B. Translational and Rotational Forced

This case directly specified the translational forces inside the CFD solver. The objective is to verify the
constant force displacement motion. The non-dimensional forces in each coordinate direction are: F, = 0.25,
F, = 0.5, F, = 1.0. Since the forces are uncoupled when viewed in each orthogonal coordinate system, the

displacement motion’s form in each coordinate direction is:
1 F ;2
2M
The CFD solver was hard-coded to represent the above forces. Figure 5 shows the translational displace-
ments from 0 to 5 seconds with a mass of 1/500.> The solution for z(t) is:

z(t) = 250 ¢*

dy(t)

At time 5, the error between theory and the solver is 1.5 out of 6250. The dynamics output matches theory.
Likewise, the rotational degree of freedom is tested. Figure 6 shows the dynamic solver Euler angles
versus theory for an accelerating roll. The roll Euler angle, ®, maps between +m regardless of the total rolled

angle. Thus, the solution for ® is:
O(t) = 2.5t - 2n7

The error at time 5 is 0.04 out of 62.5 total radians of rotation. Again, the dynamic solver matches theory.

Rotation Displacement

AL
4 VTN

0 L -4 :
0 1 2 3 4 5

Translation Displacement
10000

Figure 5. Translational Forced Displacement Figure 6. Rotational Forced Displacement

C. Simple Pressure Field Motion

The objective of this section is to verify that the CFD solver’s pressure integration is input correctly into
the rigid body simulation. This case will test the CFD pressure to rigid body coupling. A simple pressure

field was specified:
1 ifz>e¢

p*(z,y,2,t) =< -1 ifz<e

0 otherwise

bThe 1/500 mass ratio occurs because the CFD forces are scaled by dynamic pressure.
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Since the trailing edge does not ezactly lie at z = 0, an ¢ parameter is used to prevent pressure wrap-over
on the trailing edge node.

The pressure field is shown in Figure 7. Conceptually, the pressure above the zero waterline is greater
than below. For reference, the dimensional pressure is 1000 psf. With a rotation point at the leading edge,
the theoretical pitch moment is 20 ft-1b or 0.04 (non-dimensional). The time and moment response is given
in Figure 8. The integrated CFD moment gives 0.0392; the error occurs in the finite length of the trailing
edge element. This test concludes the verification process.

Rotation Displacement Forces
4
Bl M N N0 | 0.04 5
A
| / 0.02
j \|FAT \. ATAIN
J \ ‘ |
o———— 4
-0.02" =
2 0 05 1 156 2

Figure 8. Specified Pressure Motion and Forces

Figure 7. Specified Pressure
Field

VIII. Validation

The objective of this section is to validate the dynamics solver with quasi-steady aerodynamics solutions.
Both the translational and rotational frames are tested.

A. Translational Rate Damping

This testcase tests the z-axis translational motion with airfoil rate damping. The concept (Fig. 9) is to allow
an airfoil to reach a steady state upward velocity —via the airfoil’s lift— when starting from an initial angle
of attack, ay. Intuition indicates that the final upward translational velocity will be such to provide an
effective angle of attack of zero.

o

U

Figure 9. Translation Rate: Geometry

Assuming quasi steady aerodynamics, the lift is a linear function of the instantaneous angle of attack. For
this problem, the effective angle of attack comes from an initial angle of attack, ay, and a plunging velocity
to freestream ratio, #(t)/V. Thus, the governing equation is:

r(t
mi(t) = ¢Cr, S (— arctan T—‘(/l + 0’0)

When assuming small angles, arctan <5 is approximately 5. A solution to the above differential equation is:

. 2 : 2 '
2(t) = ao Vi — anV?m  agVi*m N (_qC’Lu S )

¢Cr.S  ¢Cp, S mV

The solver (dots) and theory (lines) predictions are shown in Figure 10. As expected, a steady state
velocity is reached. The dynamics solver matches theory, which appears to suggest that the dynamic solver’s
translational displacement and velocity are properly passed to the CFD solver’s boundary conditions.
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Figure 10. Translation Rate: Lift

B. Rotational Rate Damping

This testcases’s objective is to validate a rotational degree of freedom. An airfoil slit is rotated axially about
an inboard axis. A rotation rate, w, creates an effective angle of attack at the airfoil of a = arctan (wL/U).
Figure 11 shows the geometry. The governing equation of motion when assuming quasi-steady aerodynamics
is:

d(t) = —L"C,S Cr
The case has an initial rotation velocity of 90 degrees per second, a velocity of 500, and a axis offset of 16.
The rotational rate damping response is shown in Figure 12 for theory (lines) and the dynamic solver output
(dots). The rotational degree of freedom appears to work correctly.

arctan —
U

[T re—)

Figure 11. Rotating Rate
Damping Geometry Figure 12. Rotating Rate Damping Response

IX. Flight Dynamics

Flight dynamics concerns the interaction between aerodynamics and a rigid body with respect to aircraft
motions. An aircraft undergoing common maneuvers and a rotating wedge are presented.
A. Simplified General Aviation

A Navion general aviation aircraft was approximated with simplified geometry. The aircraft consists of a
wing, horizontal, and vertical. Figure 13 shows the geometry. Figure 14 shows the surface Mach distribution
at o = 0 and 8 = 0 for 174 ft/s at SSL. Mass and sizing information comes from Nelson.*
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Figure 13. Navion Geometry Figure 14. Navion 174 ft/s Mach Distribution

1. Rudder/Dihedral Response

The dihedral roll moment effect can be created with a rudder input. This case considers the stick-fixed free
response for an initial left rudder input of 20 degrees. Again, the Navion’s states are: V=174 ft/s, stick-fixed,
and zero bank, pitch, and yaw angle. For easier visualization, gravity is removed. Intuition suggests that the
near constant yaw angle will cause a roll moment, which causes a roll rate.

Figure 15 shows the translational and rotational motions. The deflected rudder rolls the aircraft in the
expected barrel-roll maneuver in about 8 seconds. Figure 16 shows a visual representation of the aircraft’s
trajectory. The yaw angle is visible.

Translalion Displacement Rotalion Disptacement
2000 4

- _ _ ——3 ;1-___'J‘=____,_._:._'__._d_:ﬁ___:,'_.,—_-: :: {v V g N

-2000

~4n50 —— -
0 1000 2000 2000 n 1000 2000 3000

Translalion Velocity 107 Rotation Velocity _ ="
05 ) 3000 S '( -
= ' -2500 F “~
ol — . ) \a&
5 - —— 2000 _Q
{
-05 I\ -1500
Je= ol
T —— — -1000 "
sl . = -500 —
0 1000 2000 3000 0 1000 2000 3000 e 50 O
o 15 -100
-200
Figure 15. Navion Rudder/Dihedral Response Time
History Figure 16. Navion Rudder Response Trajectory

2. Loop

This case’s objective is to loop the Navion with a constant elevator deflection. To ensure sufficient energy
to complete the maneuver, the aircraft begins inverted at the top of the loop. Initial conditions are 174 ft/s
and a 20 degree elevator deflection.

The trajectory for the first case with the CG at 30% MAC (Fig. 17) shows a successful loop with the
expected tightening at the top and an overall loss of altitude. Aircraft attitudes during the loop are visually
consistent with reality.

Case 2 considers the same Navion aircraft and initial conditions but with the CG at a vastly tail-heavy
and statically unstable 88% MAC. Figure 18 shows the trajectory with a stall/fall-out coming through the
loop’s bottom. Visually, the aircraft is pitch unstable.
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Figure 17. Navion Loop Figure 18. Navion Loop with Fall Out
3. Spin

Spinning aircraft exhibit non-linear behavior. This spin case considers the Navion with 20 degrees up-elevator
and 20 degrees left-rudder. Initial conditions are a negative vertical velocity with an initial yaw rate. Spin
entry is not considered. Also, the inviscid Euler solution is likely to attenuate the separation for this viscous
dominated stalled airfoil liow. Figure 19 shows the translational and rotational motions. From the low, non-
increasing forward velocity and the harmonic rotational motion, the maneuver appears to be a spin and not
a spiral motion. Altitude loss is approximately 500 feet per turn —interestingly consistent with reality when
considering the inviscid Euler solution. The spin trajectory (Fig. 20) also appears consistent with an actual
spin’s behavior.

0.
Transiation Displacement Rotation Displacement I-
00| & _
| | 100 .
O —————— 2|
| . =y =200 .|
-s00| S i ;
-2 ) »
au}:l s -4 ! —_— -300:
1000 2000 3000 4000 1 1000 2000 3000 4000 X
Translation Velocity x 107 Rotation Velocity _
01 B =
I = 400 . i,
= 3
O TN i ¢ ~ 2 pad
0\ AN NS gl T < 500 e
? B I AR
02, o B of ff R 3
. R I . -500 .|
:§ 1000 2000 3000 4000 o 1000 2000 3000 4000
Forces Forces
{[e ) =33 =700 .
500
p———— -800 )
s 3 ﬁ
e ) v -f, ‘><<<<f;§o
o 1000 2000 3000 4000 o 1000 2000 3000 4000 EBO _‘&
Figure 19. Navion Spin Motion Figure 20. Navion Spin Trajectory

B. Wedge Drop

This case simulates a 10% thick wedge, free to translate and rotate, being dropped in air. The concept is
to release the wedge flat from rest. A pair of vortices form off the sharp wedge edges, which eventually
degenerate into a vortex street with an asymmetrical pressure distribution. The translational and rotational
motions are shown in Figure 21. The wedge’s CG trajectory is shown in Figure 22 with tick marks at each
1/2 second.
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Figure 21. Wedge Time History Figure 22. Wedge Trajectory

Initially, alternating vorticies appear to form causing a tumbling leaf motion. Interestingly, the wedge
transitions to a lift generating Magnus motion with an apparent L/D of near 4. This experiment qualitatively
matches the tumbling behavior of thin. light strips.

X. Stability Derivatives

Time-marched rigid body dynamics solutions as described above are expensive, general non-linear so-
lutions. Stability derivatives are a traditional approach to simplifying aerodynamics by decomposing the
dominant aerodynamics to the forces and moments caused by specific boundary condition. The rigid body
dynamics solver’s development allows for simplified boundary condition specification for simplified stability
derivative extraction.

An advantage for stability derivative extraction, non-inertial CFD frames allows for direct, uncoupled
boundary condition specification. This section replicates Babcock’s method'? with a direct boundary condi-
tion specification scheme.

A. Finned Missile

This case determines stability derivatives for the finned missile commonly known as the Finner using the
rigid body dynamics solver and euler3d CFD solver. The missile has a standardized and well tested geome-
try!315 (Fig. 23). The overall geometry consists of a cone connected to a cylinder with fins. Figure 24 shows
the corresponding finite-element CFD surface grid. Computational results are compared with experimental
stability derivatives.'? 14

2
g

1od —

Figure 23. Finned Missile Geometry Figure 24. Finned Missile CFD Grid

1. Chp, Pitch Moment Angle Derivative
This case determines the pitch moment due to angle of attack, Chy,. Pitch moment for the finned missile

is non-dimensionalized by cross-sectional area and diameter: M = q%d‘*CAL At a free-streain Mach of 1.6,

Cyy, per radian is estimated as -41.8, which compares with -40 to -43 for experimental results.™® ¢
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2. Cyp, Roll Moment Rate Derivative

This case determines the roll moment due to roll rate, Cr . Roll Moment is dimensionalized by: L = q%(l3 Cr.
The Mach 1.6 roll moment derivative C'r  is estimated as -32.5, which compares with the experimental results
of -30 in NAVORD!® t0-27 in DREV.13' 14 At Mach 2.4, the roll moment derivative is -17.7. The experimental
derivative in DREV!® is -18.

3. Cn, Plunge Force Apparent Mass Dertvative

The rigid body dyvnaiuics solver allows for unusual boundary condition specifications. This case determines
the rarely reported plunge force apparent nass 'y, . The derivative is expected to result from physies
similar to the apparent mass terms in the Theodorsen problem. Plunge force is non-dimensionalized by:
N = (]%(IL‘CN. Also, the Cy, derivative —for this paper— is defined as:
BCN
)
V2

The Mach 1.6 derivative Cp, is estimated to be -900. No experimental data exists for this derivative.

B. Transonic F-18

F-18B stability derivatives are estimated in this section. The F-18’s finite element grid has 2.18 million
elements and was solved with the inviscid euler3d CFD code. Derivatives were determined for Mach 0.90
and Mach 1.30 and compared with flight test data from Moes.!%

The resulting stability derivatives compare favorably with the experimentally determined flight test
derivatives. However, the Mach 1.30 results generally show better agreement. Also, the experimental yaw
axis derivatives appear relaxed because the flight test F18 has an extended canopy (two seat), while the
CFED model is for the single seat F18. Only a subset —one angle and one rate— of the estimated derivatives
are reported here.

Figure 25 shows the flight test data for the normal force derivative Cn, from Moes with the CFD
determined derivatives overlaid as dots. Figure 26 shows a comparison for pitch rate moment derivative
Cu,-

pEvremis: D 25k = N ¢ 15 = WKL 4 S5k PEN aesuic B = M | 1sam = AR 4 SR
o Predcaous: B - - EE am i — 1im o Tl —— T, - Sk - — WA — — — WA s
== | 2 v T
P 1 B
'./ :‘ﬁ' ;_ e iMachOQO LB T < =5 = »,.,._i_-.-,?_- F
“_i 1 Tt = g 1 W Machi30
- = § »43 : 2ol 224 |-
Oy r-, S Gy - z 'l - ] Mach 090
=y . & |Machi3o Ca b N T |
= _ur oo ¥ {} +
= = - d i
| L
c » E ] EY RE ) 156 1% it t;" (¥ I-I' 136 \N‘_“s -5 L) 1.~ I‘Iﬁ e 145 - Lr LS ] L5
W e Je— ach wsnbes
Figure 25. F18B SRA Cy, : Normal Force Deriva- Figure 26. F18B SRA C,,,: Pitch Rate Moment
tive Derivative

This stability derivative test-case shows the applicability of rigid body dynamics to actual aircraft stability
and control extraction without solving the time-marched, coupled, rigid body dynamics differential equations.

XI. Conclusions

This paper coupled a non-inertial aerodynamics CFD solver and rigid body dynamics solver. The CFD
and rigid body governing equations are reviewed. This paper showed non-linear flight dynamics and stability
derivative extraction.

A rigid body dynamics solver was successfully implemented. The quaternion orientation scheme appears
preferable to Euler angles except for human visualization. The developed rigid body solver appears robust
and accurate. Non-linear flight dynamics were simulated and appear qualitatively correct.
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Overall, a non-inertial CFD formulation is shown to have significant advantages for rigid body dynamics
and stability derivative extraction. A non-inertial formulation allows for a single, non-moving grid, while
allowing direct motion specification. The current CFD solver used the inviscid Euler equations, which limited
the solution quality in particular rigid body motions. Interesting rigid body dynamics appear correlated with
viscous aerodynamics.

Stability derivative extraction as proposed by Babcock was presented. The rigid body solver’s boundary
condition specifications were coded for simplified use of a stahility derivative extraction method. Extracted
stability derivatives appeared cousistent with experimental derivatives.
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