Separation in three-dimensional steady flow

PART 4 : TWO-DIMENSIONAL SEPARATION REVISITED WITH THE THREE-DIMENSIONAL CONCEPTS OR A CASE APPARENTLY SIMPLE!

Separation in two-dimensional flow Classical definition

Skin friction distribution

Generalisation of the notion of two-dimensional separation

Bubble inside an axisymmetric wake: the toroidal vortex is closed on itself

Generalisation of the notion of two-dimensional separation

Structure of a burst vortex. Meridian flow

There are many experimental evidences of the existence of three-dimensional perturbations in two-dimensional separated flows.

Ginoux- 1960Roshko and Thomke - 1965Settles et al.- 1978others...

Question: is the word "perturbation" appropriate as meaning a defect relatively to a real configuration?

➢ In reality, the so-called real configuration doest not exist, the perturbed case having only a true existence.

➢ In the framework of the critical point theory, in a twodimensional flow a separation line− of detachment or attachment - bears an infinite string of saddle points.

Such a circumstance is very unlikely in the real world where the three-dimensional character must manifest itself:

> - either a the microscopic scale by existence of substructures superimposed on an organisation globally two-dimensional,

- or at the macroscopic scale by an overall organisation having lost any two-dimensional character.

Separation in two-dimensional flow Reattachment behind an axisymmetric step

Separation in two-dimensional flow Reattachment on an axisymmetric flare

Examination of the case
$$\mathbf{q} = \mathbf{0}$$
 $\mathbf{q} = \left(\frac{\partial \tau_x}{\partial \mathbf{x}} \frac{\partial \tau_z}{\partial \mathbf{z}} - \frac{\partial \tau_z}{\partial \mathbf{x}} \frac{\partial \tau_x}{\partial \mathbf{z}}\right)$

The eigenvalues are given by :

$$S^2 + pS = 0$$
 ou $S(S + p) = 0$ Roots $\rightarrow S_1 = 0$, $S_2 = -p$

Skin friction line equations :

$$\mathbf{x(t)} = \frac{\mathbf{A}_{1}\mu_{2}}{\lambda_{1}\mu_{2} - \lambda_{2}\mu_{1}} - \frac{\mathbf{A}_{2}\mu_{1}}{\lambda_{1}\mu_{2} - \lambda_{2}\mu_{1}} \exp(\mathbf{pt})$$
$$\mathbf{z(t)} = -\frac{\mathbf{A}_{1}\lambda_{2}}{\lambda_{1}\mu_{2} - \lambda_{2}\mu_{1}} + \frac{\mathbf{A}_{2}\lambda_{1}}{\lambda_{1}\mu_{2} - \lambda_{2}\mu_{1}} \exp(\mathbf{pt})$$

Let us write:

$$B_{1} = \frac{A_{1}}{\lambda_{1}\mu_{2} - \lambda_{2}\mu_{1}}, B_{2} = \frac{A_{2}}{\lambda_{1}\mu_{2} - \lambda_{2}\mu_{1}}$$

$$\mathbf{x(t)} = \mathbf{B}_{1}\mu_{2} - \mathbf{B}_{2}\mu_{1}\exp(\mathbf{pt})$$
$$\mathbf{z(t)} = -\mathbf{B}_{1}\lambda_{2} + \mathbf{B}_{2}\lambda_{1}\exp(\mathbf{pt})$$

Skin friction lines straight lines of equation:

$$\lambda_1 \mathbf{x} + \mu_1 \mathbf{z} = \mathbf{B}_1 (\lambda_1 \mu_1 - \lambda_2 \mu_2)$$

with slope:
$$\frac{d\mathbf{z}}{d\mathbf{x}} = -\frac{\lambda_1}{\mu_1}$$

if $\lambda_1 > 0$ and $\mu_1 > 0$ and if p > 0

When t varies from $+\infty$ to $-\infty$ the solution curve is run from infinity to the critical point of coordinates:

$$\begin{aligned} \mathbf{x}(+\infty) &= -\infty \quad \rightarrow \quad \mathbf{x}(-\infty) = \mathbf{x}^* = \mathbf{B}_1 \mu_2 \\ \mathbf{z}(+\infty) &= +\infty \quad \rightarrow \quad \mathbf{z}(-\infty) = \mathbf{z}^* = -\mathbf{B}_1 \lambda_2 \end{aligned}$$

> Points X * et Z * are on the straight line of equation:

$$\lambda_{2} \mathbf{X}^{*} + \mu_{2} \mathbf{Z}^{*} = \mathbf{0}$$

This line bears an infinity of critical points obtained by varying B₁

>When t varies from $-\infty$ to $+\infty$ the skin friction lines are run according to a motion starting from the critical point

attachment behaviour

Case p > 0 Motion away from the critical point (attachment)

Case p < 0 Motion towards the critical point (detachment)

Topological structure of planar reattachment

Topological structure of planar detachment (separation)

Topological structure of planar separation

Critical point in the plane of the flow

Attachment

Special situations in the [p,q] plane

Side of the saddle points

Special situations in the [p,q] plane Tendency to axis q = 0or when nodes and saddle points meet

Attachment in a axisymmetric flow

Detachment

Infinite string of node-saddle point combinations in correspondence

Detachment region

Attachment region

Flow topology and contra-rotating vortices

Detachment and reattachment in two-dimensional flow

Detachment-reattachment surface

Detachment and reattachment in two-dimensional flow

Flow organisation in the separation bubble

Detachment and reattachment in two-dimensional flow

Planar two-dimensional (improbable)

Axisymmetric two-dimensional

Configuration rarely observed. The spanwise limitation of the geometry imposes a three-dimensional large scale structure.

The axisymmetry allows a periodic organisation of this type.

Topology of flows in planar two-dimensional geometries

Shock wave reflection at Mach 2

Reflection of an oblique planar shock wave

Surface flow visualisation

Reflection of an oblique planar shock wave

Skin friction line pattern showing side effects

Topology of flows in planar two-dimensional geometries

Transonic channel in the Onera wind tunnel S8Ch

Detachment and attachment in a transonic channel

Surface flow visualisation

Detachment and attachment in a transonic channel

Skin friction line pattern topology

Flow past a two-dimensional profile in a transonic wind tunnel

Two-dimensional profile in a transonic wind tunnel

Skin friction line pattern on the suction side

Two-dimensional profile in a transonic wind tunnel

Skin friction line pattern on the pressure side

Two-dimensional profile in a transonic wind tunnel

Skin friction line pattern at the profile-side wall junction
Skin friction line pattern at the profile-side wall junction

Detachment surface Σ_1

Detachment surface Σ_2

Detachment surface Σ_3

Detachment surface Σ_3 **. Other view**

Detachment surface starting from the truncated trailing edge

Skin friction line pattern on a blade suction side

Navier-Stokes computation

Topological interpretation

Skin friction line pattern on a blade suction side

Reconstruction of the toroidal vortex

Cut of the vortex by a median plane

Flow reconstruction past the blade

Axisymmetric flows

Propelled afterbody in the Onera-Meudon wind tunnel R1Ch

Axisymmetric afterbody at zero incidence

Ideal axisymmetric case (improbable)

The base sharp shoulder bears an infinite string of saddle points

The base sharp shoulder bears a finite number of saddle points and nodes

Two-vortex organisation

Possible skin friction line pattern

Flow in the meridian plane. Ideal axisymmetric flow

Flow in the meridian plane. Effective nearly axisymmetric flow

Flow behind a circular disk

Ideal axisymmetric case (improbable)

Cellular organisation

Two-vortex organisation

Skin friction lines and detachment surface at the base

Two-vortex system. Field in a vertical downstream plane

Meridian field. Ideal axisymmetric flow

Cellular organisation. Separation surfaces

Cellular organisation. Skin friction line pattern on the base

Unsteady flow

- The critical point theory and the resulting topological concepts can be applied to any vector field.
- If the flow is time dependant, the previous considerations are applied to the field at a given instant.
- Taking the time into consideration allows a still more faithful description of reality, the steady case being as inexistent as the two-dimensional case.
- The resulting analysis avoids the use of an average flow concept which is often acrobatic.

Karman vortex street behind a cylinder

Karman vortex street behind a cylinder

Instantaneous field topology

Concluding remarks (1)

→ Application of two-dimensional concepts to three-dimensional flows can be highly misleading. In 3D it is necessary to introduce a new terminology more precise and more accurate.

The critical point theory provides a tool – or grammar – allowing a rational description of three dimensional fields.

➔ The skin friction line patterns are the imprint on the surface of the outer flow. Their close examination and analysis are indispensable. **Concluding remarks (2)**

Modern investigation techniques – multi-hole pressure probes, LDV, PIV – coupled with powerful computing capacity may produce of a huge quantity of results.

Construction of a topologically consistent picture of these results is a prerequisite to any attempt to understand the physics or separated thee-dimensional flows.

➔ The above remarks also apply to the results produced by computer codes solving the Navier-Stokes equations.