Energy

$$
E=\underbrace{E E}_{\text {total }}+\underbrace{K E}_{\text {polonlial }}=\underbrace{K E}_{\text {Kinetic }}=W \cdot h+\frac{1}{2} m V^{2}=W h+\frac{1}{2} \frac{W}{9} V^{2} \quad \text { units de enemy }
$$

Ex: what is the total energy of a 12500^{16} Twin otter at 12000^{ft} at 120^{ktr} ?
mostly dritude f on this stow a/c
Specific Energy

$$
E_{s}=\frac{E}{W}=\frac{w h+\frac{1}{2} \frac{w}{9} v^{2}}{w}=h+\frac{1}{2} \frac{v^{2}}{g} \quad \text { units of length! "energy height" }
$$

Derivative wot time.
$\begin{gathered}\text { where h } \\ \text { seen this } \\ \frac{T-D}{W}\end{gathered}$
Lines of constant E_{s}

Now you see why we multiplied by V/W, as this gives specific power.

$$
E_{s}=C=h+\frac{1}{2} \frac{v^{2}}{9} \Rightarrow h=C-\frac{1}{2} \frac{v^{2}}{9}
$$

In a frictionless environment, objects would travel along a line of constant E trading h and V.

Example Es Ps

80000

F-16C: SEP dates, frown air inter rational.

Level Acceleration

(2) finn er

Track time, velocity while meinteriegs h

Ex:
An aircraft accelerated from $80-85 \mathrm{ktas}$ in 2 seconds, what is the equivelat climb rode?
$Q:$ Is P_{s} strick positive? No! $Q:$ what happens when $p_{s}<0 ?$ slow O_{n}

Ps is extreanaly useful for determines optimal flynn profiles for: time to climb, fuel to climb, glide path, etc.

Correction for non-standard weight

$$
\begin{array}{ll}
P_{s}=V \frac{T-D}{W} \quad \text { solve for } T=\frac{P_{s} w}{V}+D \quad 0 \quad d^{0} \\
\text { solve foriv ort } W & \frac{d}{d P_{s}}(T)=\frac{d}{d w}\left(\frac{P_{s} W}{V}+D\right) \\
\end{array}
$$

multiply by ΔW (std-test)

$$
\Delta P_{s}=\underbrace{-\frac{P_{s}}{W} \Delta W}_{\text {inertia }}-\underbrace{\frac{V}{W} \Delta D}_{\text {induced dens }} \quad \text { (and since } \Delta D=\Delta D \text { proficic }+\Delta D_{\text {induced }} \text {) }
$$

From Aerodynamics, we can estimate drag (induced) as $D=\frac{2 n^{2} W^{2} \cos ^{2} \theta}{b^{2} \pi e M p_{0} \delta}$
$\Delta D=\frac{2 \cos ^{2} \theta}{b^{2} \pi M^{2}}\left[\left(\frac{(n W)^{2}}{\delta}\right)-\left(\frac{(n W)^{2}}{\delta}\right)\right]$

$$
\Delta D=\frac{2 \cos ^{2} \theta}{b^{2} \pi e M^{2} p_{0}}\left[\left(\frac{(n W)^{2}}{\delta}\right)_{s+\delta}-\left(\frac{(n W)^{2}}{\delta}\right)_{\text {test }}\right]
$$

ΔP_{s} :

$$
\Delta \rho_{s}=-\frac{P_{s}}{W} \Delta W-\frac{V}{W} \frac{2 \cos ^{2} \theta}{b^{2} \pi e^{2} p_{0}}\left[\left.\frac{(n W)^{2}}{g}\right|_{s / 1}-\left.\frac{(n W)^{2}}{\delta}\right|_{\text {test }}\right]
$$

For a level acceleration

$$
\Delta P_{s}=P_{s_{s+d}}-P_{s_{\text {tat }}}=-\frac{P_{s_{\text {tot t }}}}{W_{\text {tot t }}}\left(W_{\text {std }}-W_{\text {tet }}\right)-\frac{2 V_{a}}{W_{\text {total }} b^{2} \pi e M^{2} p_{0}}\left[\left.\frac{(n W)^{2}}{\delta}\right|_{\text {still }}-\left.\frac{(n W)^{2}}{\delta}\right|_{\text {tat }}\right]
$$

Example: An A5M is at 200^{kts} at $\mathrm{hp} 10000^{\mathrm{ft}}$. If the standard weight is $3700^{\text {lb f }}$ and the test is at $3500^{10 f}$, deternimo the corrected specific excels power. The wins span is 36^{f+}. The aircraft is ceceleration at $2 \mathrm{kt} / \mathrm{s}$.

$$
200^{\mathrm{k}+} 010^{\mathrm{kH}}
$$

$$
M 0.31
$$

$$
\delta=
$$

$$
\begin{aligned}
& \text { - }\left(\frac{3700^{2} 147^{2}}{0.688}-\frac{3500^{2} 1 \mu 4^{2}}{0.688}\right) \\
& =-2.0-0.488 \\
& P_{s_{d w}}=P_{s_{\text {test }}}+\Delta P_{s}=35 \frac{\mathrm{ft}}{\mathrm{~s}}-2.488 \mathrm{ft} / \mathrm{s}=33.5 \mathrm{ft}
\end{aligned}
$$

Altitude Correction
From our atmosphere $d p=-\rho g_{0} d h \Rightarrow \Delta h=-\frac{\Delta p}{\rho g_{0}}$
For a standard atmosphere, $\Delta h_{i}=-\Delta p$
For our "test" atmosphere. $\Delta h_{t}=-\Delta P$
At the same pressure (usci, the altimeter!!)

$$
\Delta h_{i}=\frac{T_{s d d}}{T_{+}} \Delta h_{+} \Rightarrow \frac{d h_{i}}{d t}=\frac{T_{\text {std }}}{T_{+}} \frac{d h_{+}}{d t}
$$

The conversion from a test atmosphere to a stand.ed atrospter is

$$
\frac{\left[\begin{array}{l}
\dot{h}_{\text {std }} \\
P_{s_{\text {tape }}}=
\end{array}=\frac{\dot{h}_{\text {test }}}{\theta}=\dot{h}_{\text {test }} \frac{T_{\text {std }}}{T_{+}}\right.}{a k^{(d h}\left(\frac{d}{d t}\right)_{2}}
$$

This only corrects the measured attitude term!!

Ex:
An AV8r aircraft climbs at 1500 fpm at sea level on a $90^{\circ} \mathrm{F}$ day, what is the tapeline correction?

$$
\dot{h}=\left(\frac{d h}{d t}\right)_{2}=1500 \mathrm{fpm} \cdot \underbrace{\frac{518.67^{R}}{549.67^{R}}}_{1 / \theta}=1415 \mathrm{fpm}
$$

Thrust and Drag Correction

$$
\begin{aligned}
& \text { Thrust horsepower } \equiv \text { pHP }
\end{aligned}
$$ provide 500 lbs of thrust. It should provide 525 lbs . Compute the thrust corrected ROC.

$$
\begin{aligned}
& =1520 \mathrm{fpm}
\end{aligned}
$$

Accelerated Climb

Along $\perp V_{\infty}: \operatorname{ma}_{a}^{0}=\Sigma F=L-W \cos \theta$

Along $V_{a}: \underbrace{m a}_{\frac{W}{g} \frac{d V}{d t}}=\Sigma F=T-D-W \sin \theta$

$$
\underbrace{\frac{V}{g} \frac{d V}{d t}}_{\substack{\text { Acceleati- } \\ \text { power }}}=\underbrace{V \frac{T-D}{W}}_{\substack{\text { excess } \\ \text { power }}}-\underbrace{V \sin \theta}_{\dot{h}} \quad \frac{d h}{d t}=V \frac{T-D}{W}-\frac{V}{9} \frac{d V}{d t}
$$

Solve for $d h / d t$:

$$
\frac{d h}{d t}\left(1+\frac{V}{9} \frac{d V}{d h}\right)=V \frac{T-D}{W} \Rightarrow \frac{d h}{d t}=\frac{V(T-D)}{W} \cdot\left(\frac{1}{1+\frac{V}{g} \frac{d V}{d h}}\right)
$$

Nonstandard Lapse Rates

$$
\left(\frac{d h}{d t}\right)_{+}=\frac{V_{+}\left(T_{n_{+}}-D_{+}\right)}{W_{+}}\left(\frac{1}{1+\frac{V_{+}}{g} \frac{d V_{+}}{d h_{+}}}\right) \text {and }\left(\frac{d h}{d \hbar}\right)_{s+d}=\frac{V_{s+1}\left(V_{n_{s+1}}-D_{s+1}\right)}{W_{s+1}}\left(\frac{1}{1+\frac{V_{s+1}}{g} \frac{d V_{V_{1+}}}{d h_{s+1}}}\right)
$$

$$
\left(\frac{d h}{d t}\right)_{y}=\left(\frac{d h}{d t}\right)_{3}\left(1-\frac{V_{s t d}}{g \Delta h}\left(\Delta V_{s+d}-\Delta V_{t}\right)\right)
$$

with

$$
\begin{gathered}
V=M a=M \sqrt{\gamma R T} \\
\Delta V=M \underbrace{\sqrt{\gamma R}}_{\sqrt{2403.1} \frac{\mathrm{ftl/LI}}{R \text { stubs }}}\left(\sqrt{T_{2}}-\sqrt{T_{B}}\right)
\end{gathered}
$$

Ex: The Aver aircraft above shows a temperature of $30^{\circ} \mathrm{F}$ at 19000^{ft} and 28 at 11000 ft .

$$
\begin{aligned}
& M_{\text {aah }}=\frac{200 \mathrm{fPs}}{1077 \mathrm{fps}^{2}}=0.185 \\
& \Delta V_{t}=0.185 \cdot 49.02 \cdot(\sqrt{28+199}-\sqrt{30}+459)=-0.4128 \frac{8}{5} \\
& \Delta V_{\text {std }}=0.185 \cdot 49.02 \cdot(\sqrt{19+454}-\sqrt{23 \text { r489 }})=-0.74 \mathrm{fy} / \mathrm{s} \\
& \left(\frac{d h}{d t}\right)_{y}=1520 \mathrm{fpm}\left(1-\frac{200 \mathrm{ff}}{\mathrm{f}} \left\lvert\, \begin{array}{c|c}
8^{2} & (-0.74+0.412)^{f t} \\
82.174 \mathrm{ff} & 1000 \mathrm{ft}
\end{array}\right.\right)=1520 \cdot 1.002= \\
& =1523 \mathrm{fpm}
\end{aligned}
$$

K-16C SLP datas, from air international.

