Takeoff Performance

Texas Flying Club Charles O'Neill 14 Oct 2024

https://charles-oneill.com

How this discussion is structured:

- 1) Start with an interesting question or observation.
- 2) Dig into the physics, TTPs, and details.
- 3) Zoom out and give actionable knowledge.

Scariest Take Off I've Ever Seen - Aircraft Performance and Personal Minimums

Flight Chops Video at: https://tiny.cc/AEM368ScaryTakeoff

- I am not a CFI. Refer to a CFI and your POH/AFM.
- This discussion may contain simplifications or errors and thus is not appropriate or safe for your aircraft.
- Don't be this guy.

CFI: How does takeoff distance vary with

POH/AFM

TAKEOFF DISTANCE

MAXIMUM WEIGHT 2300 LBS SHORT FIELD

CONDITIONS:

Flaps Up Full Throttle Prior to Brake Release Paved, Level, Dry Runway Zero Wind

NOTES:

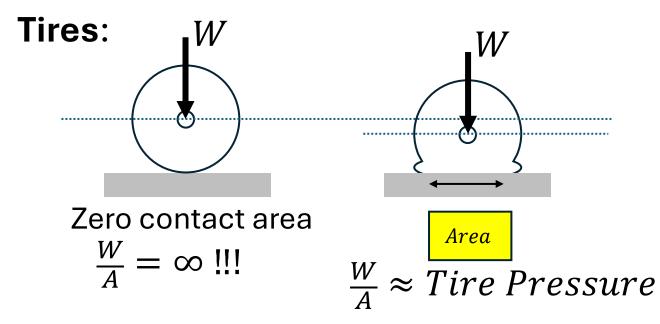
Short field technique as specified in Section 4.

- Prior to takeoff from fields above 3000 feet elevation, the mixture should be leaned to give maximum RPM in a full throttle, 2. static runup.
- 3. Decrease distances 10% for each 9 knots headwind. For operation with tailwinds up to 10 knots, increase distances by 10% for each 2 knots.
- For operation on a dry, grass runway, increase distances by 15% of the "ground roll" figure. 4

	TAKEOFF SPEED		PRESS	0°C		10 ⁰ C		20 ⁰ C		30°C 40°C			40°C
LBS		AS AT 50 FT	ALT FT	GRND	TOTAL TO CLEAR 50 FT OBS		TOTAL TO CLEAR 50 FT OBS				TOTAL TO CLEAR 50 FT OBS		TOTAL TO CLEAR 50 FT OBS
2300	52	59	S L. 1000 2000 3000 4000 5000 6000 7000 8000	720 790 865 950 1045 1150 1265 1400 1550	1300 1420 1555 1710 1880 2075 2305 2565 2870	775 850 930 1025 1125 1240 1365 1510 1675	1390 1525 1670 1835 2025 2240 2485 2770 3110	835 915 1000 1100 1210 1335 1475 1630 1805	1490 1630 1790 2175 2410 2680 3000 3375	895 980 1075 1185 1300 1435 1585 1755 1945	1590 1745 1915 2115 2335 2595 2895 3245 3670	960 1050 1155 1270 1400 1540 1705 1890 2095	1700 1865 2055 2265 2510 2795 3125 3515 3990

Figure 5-4. Takeoff Distance (Sheet 1 of 2)

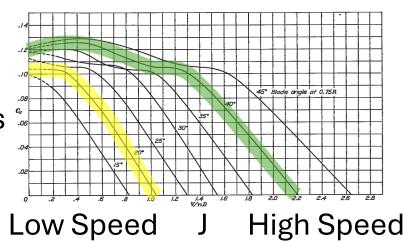
Some important questions:


- How are these generated?
- What are the physics implied in the NOTES?
- What about non-tabulated values? Is interpolation safe?
- How much does \bullet technique change the takeoff roll?

SECTION 5 PERFORMANCE

CESSNA

Takeoff Ground-Roll Performance Theory Let's start with a Free Body Diagram. Lift L Velocity V DAero Drag Sum Forces in Vertical Direction: Mass Thrust T $L + R_{\nu} = W$ m Tire rolling R_h resistance Horizontal Direction: $m\frac{dV}{dt} = T - D - R_h$ Weight on Wheels Weight W R_{ν}


All Models are wrong, but some are useful.

Thrust:

From our last conversation, the thrust at low speeds is relatively constant.

 $T = C_T \rho n^2 D^4$

Rolling resistance

 $R_h = \mu_r (W - L)$

Rolling resistance coefficient μ_r depends on many parameters:

- Tire pressure & Load
- Brakes & Bearings (bad!)
- Ground conditions
 - 0.02 concrete
 - 0.05 packed dirt
 - 0.10-0.30+ soft soil

Simple Physics Model of the Takeoff Roll

Assumptions for our calculus and algebra elves:

- Level attitude (not a tailwheel ac) $\rightarrow C_L \approx 0$ until rotation
- Aero drag is small. (meh!)

$$a = \frac{dV}{dt} = g\left(\frac{T}{W} - \frac{D}{W} - \mu_r\left(1 - \frac{L}{W}\right)\right) \approx g\frac{T}{W} - g\mu_r$$

The takeoff distance, s, is

$$s_{to} = \frac{1}{\rho} \left(\frac{W}{S} \right) \frac{1}{C_{L_{to}}} \frac{1}{g \left(\frac{T}{W} - \mu_r \right)}$$

Simplify to:

$$s_{to} \cong \frac{1}{\rho^2} \left(\frac{W^2}{S} \right) \frac{1}{C_{L_{to}}} \frac{\rho_{ssl}}{gT_{ssl}}$$

- Inverse of Lift Coefficient (AOA!)
- Inverse of density squared! Why? This is about 10% per 1000 feet DA.
- Square of mass! Why?
- Rolling resistance directly reduces T/W ratio.
- Inversely with wing area

Q: Does a headwind reduce takeoff roll by the **same** increment as a tailwind increases it?

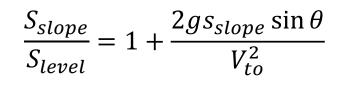
Herrington's Semi-Empirical Takeoff Estimation

How did the Cessna engineers "reduce" limited takeoff data for the POH?

"A low cost method for generating takeoff ground roll charts from flight test data", Erb, SFTE, 1996 & Herrington's original AFTR 6273, 1966 work.

2.00

2.00


Density: Weight:

$$\frac{S}{S_o} = \left(\frac{\rho}{\rho_o}\right)^a \qquad \frac{S}{S_o} = \left(\frac{W}{W_o}\right)^a$$

Wind:

$$\frac{S}{S_o} = \left(\frac{GS}{TAS}\right)^c$$

Runway Slope (iterative solve!):

Tabulated values for the exponents									
Source	Density Exponent			Headwind Exponent					
Beechcraft Sierra, Sundowner	-2.34	1.37	1.44	0.987					
Piper Tomahawk, Archer II	-3.73	2.12	2.46	1.07					
Cessna T-41C/D	-2.40	2.39		1.88					
Herrington	-2.40	2.40	1.85	1.85					

Tobulated values for the avagante

Answer: A tailwind is worse.

2.00

From Erb, 1996

- Are you surprised that ac are different?!
- Cessna: 10% degradation per 1000 ft DA.
- Pipers: 15-18% degradation per 1000 ft DA. Why?

-2.00

Analytical

Examples:

Q1: Your C-172 claims a takeoff distance of 860 ft at 0 C, what is the distance at 40 C?

Ideal gas laws say density scales with the inverse of temperature.

$$\frac{S}{S_o} = \left(\frac{\rho}{\rho_o}\right)^{-2.40} = \left(\frac{0 + 273.15}{40 + 273.15}\right)^{-2.40} = 0.87^{-2.4} = 1.4$$

$$S = 1.4S_o = 1.4 \cdot 860 = 1200 \ ft$$
The POH says 1150 ft.

Q2: The club's 172N takeoff NOTES say the following. Verified?

Decrease distances 10% for each 9 knots headwind. For operation with tailwinds up to 10 knots, increase distances by 10% for each 2 knots.

$$\frac{S}{S_o} = \left(\frac{59-9}{59}\right)^{1.85} = 0.74 \qquad \qquad \frac{S}{S_o} = \left(\frac{59+2}{59}\right)^{1.85} = 1.06$$

Cessna is being conservative. Gusts are a thing.

Data Reduction Example:

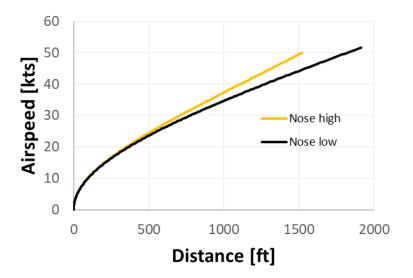
Reduce the following flight test data for a Vr=60 kt aircraft at 2400 lbs.

Windle	All	Weight	slope	temp	TO dist
7	2000	2450	0.2°	80	1157
-2	2000	2440	0.2°	82	1509
1	2000	2395	- 0.2°	86	1181
2	2000	2390	-0.2°	87	1145

Data Reduction Example:

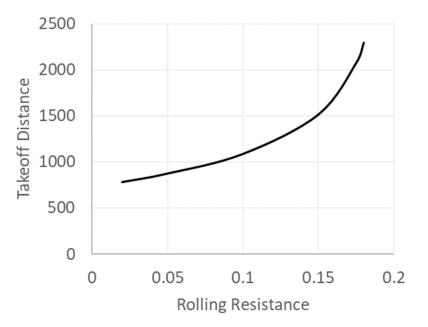
Given TO dist		slope	Weight	Alt	Wind (m)	at 3	2400 th. Slope (3)	Weight	Density	ulated Wind
10 disf 1157 1509 1181 1145	temp 80 82 86 87	0.2° 0.2° -0.2° -0.2°	2450 2440 2395 2390	2000 2000 2000 2000	7 -2 1 2	7	1.06 1.06 0.94 0.94	1.05 1.04 0.995 0.99	(.216 1.277 1.300 (.306	0.81 1.06 0.969 0.94
			he	duced 7 st fit 1000 fl		_	product at 1 1.15 1.51 1.18 1.15	ratios W		

Q: Does the proper takeoff configuration and procedure affect takeoff roll distance?


Takeoff Roll (Directly Integrate the ODE)

$$\frac{dV}{dt} = g\left(\frac{T}{W} - \frac{D}{W} - \mu_r\left(1 - \frac{L}{W}\right)\right)$$

Choose your favorite technique for controlling Lift during the TO roll.


Q: Does keeping the nose high during a soft field TO help?

Yes. For soft dirt (mu=0.15) this reduces the distance by about 25%. The gain is mainly above 25 kts.

Yet, for a normal TO on concrete, a nose high attitude increases the TO distance by at least 10%.

Small changes in surface resistance create huge changes in TO distances. When μ is greater than T/W, you are officially stuck.

Q: Is the 70% airspeed at 50% distance true?

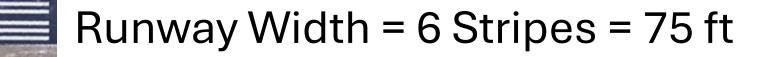
Yes. This seems to be a good rule of thumb.

Q: Could this tool introduce some dangerous yet physically feasible results?

Yes, and so I'll stop here.

Remember that the takeoff is only part of the challenge.

Coulter Runway Challenge


Distances

- 1. Runway length & Width
- 2. 1000' Marker & Length
- 3. Centerline Spacing & Painted Length
- 4. Numbers
- 5. Threshold Offset and Length
- 6. Where is 1/2? Where is 1/2 marking?
- 7. How deep is the drainage ditch?

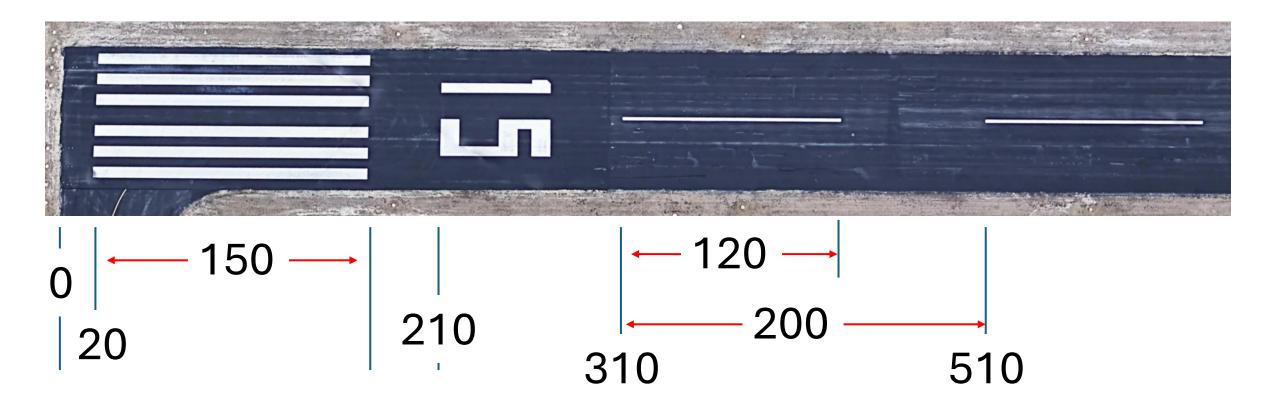
Coulter Runway Solution (Google Earth)

1. Runway Length = 4000 ft

2. The 1000' Markers start at 1020' and are 150' in length.

Coulter Runway Solution

6. The ½ point is near the tree line. The painted ½ marker is gone.



7. The drainage ditch is 25 feet deep!

Coulter Runway Solution

- 3. Centerline Spacing 200' & Painted Length 120'
- 4. Numbers start at 210'
- 5. Threshold 20' Offset and 150' Length

Q: Quick Coulter Distances?

Number 200, Stripes 300, 500, 700, 900, 1000 foot.

Q: Did this change my (CO's) takeoff procedure?

Yes, previously I briefed "If not off by 1/2, abort takeoff".

Now, my limit is **much** shorter.

Texas Flying Club Charles O'Neill 14 Oct 2024 https://charles-oneill.com