
Numerical Methods Appendix

to GES 554

Charles O'Neill

Lessons 37-40

1 Numerical Methods

Now that the govering equations are in a numerical form, there are two major
numerical methods required: time integration and matrix inversion.

1.1 Time Integration

Time integration involves integrating a temporal di�erential equation forward
in time. The general governing equation is

dy

dt
= f(y)

with initial conditions
y(0) = y0

1.1.1 Order Analysis

We have two types of governing equations: convection and di�usion. Given an
arbitrary solution in Fourier space

y = aeikx

The convection equation expands to

d
(

(ρu)2

ρ

)
dx

=
d

dx

(
abe2ikx/ceikx

)
= ikeikx

This gives an eigenratio of
λ = k

The dissipation equation expands to

1

Re

d2 (ρe)

dx2
=

d

dx

(
aeikx

)
= − k2

Re
eikx

1

for an eigenratio of

λ =
k2

Re

This indicates that when the Reynolds number is greater than k, then the
limiting timestep is convection. Boyd[2] states that �There is little advantage
to treating the nonlinear terms implicitly because a timestep longer than the
explicit advective stability limit would be too inaccurate to be acceptable.�

1.1.2 Literature

Time integration advances a solution when temporal derivatives are known. In
general, we are interested in 1st order ordinary di�erential equations of the form

dy

dt
= f (t, y)

with
y(t0) = y0

The �eld of di�erential equation integration has evolved tremendously in
the last few decades, so the well-known methods commonly seen in engineering
textbooks[8] must not be prematurely selected. The state of the art in the
late 20th century is represented by the Solving Ordinary Di�erential Equations

books in two volumes [5, 6]. For reasons to be discussed, volume two[6] is a
primary reference for this paper.

The Galerkin formulation of the Navier-Stokes equations are �very sti��
according to Boyd[2]. This implies either an implicit solver or an explicit solver
with small timesteps. Increasing the spatial solution order increases the solution
sti�ness. We should seriously consider an implicit scheme of approximately the
same temporal order as spatial order.

Implicit solvers have advantages for boundary conditions and solution assur-
ance. First, the implicit solvers have known residuals. These residuals are easy
to watch. Explicit solvers usually do not have as simple of a visual quality indi-
cator. However, too small of a timestep reduces higher order implicit schemes to
an equivalent backwards Euler scheme (with all of the disadvantages of such).

For implicit iteration, Hairer and Wanner[6] say:

For a general nonlinear di�erential equation the system... has to be
solved iteratively. In the stone-age of sti� computation (i.e., before
1967) people were usually thinking of �xed-point iteration. But this
transforms the algorithm into an explicit method and destroys the
good stability properties.

Traditional numerical method for implicit ode solution is based on Newton's
method which requires a Jacobian matrix. Our FE equations are not easily
decomposed into an explicit Jacobian, nor is a numerical approximation of the
Jacobian appropriate with array sizes in the millions. The most di�cult part of
an implicit FE solver is not the time advancement scheme but solving the linear

2

equation resulting from the scheme. State of the art for implicit ODE solutions
does not yet match the complexity of FE solvers. The issue is that while the
mass matrix is linear, the force vector is not.

M
da

dt
= F

F is neither trivial to calculate nor trivial to decompose into linear components
necessary for the Jacobian dF/da. Of course, Newton's method is preferred over
an iterative Krylov or Jacobi method simply for the convergence rate. Press[8]
states

Even when Newton-Raphson is rejected for the early stages of con-
vergence..., it is very common to �polish up� a root with one or two
steps of Newton-Raphson, which can multiply by two or four its
number of signi�cant �gures!

1.1.3 Predictor Corrector

Predictor corrector (PC) methods are a traditional[8] integration method with
the form

yj = hbif (ti, yi)

Expanded for order p+ 1, this is

yn+1 = yn + hβ0f (tn+1, yn+1) + hβ1f (tn, yn) + · · · + hβpf (tn−p+1, yn−p+1)

Predictor methods omit the implicit β0 term to get started; corrector methods
include the β0 term for higher accuracy. Increasing order is obtained by adding
more past derivatives. Thus, changing step size h either requires restarting with
a lower order approximation or deriving a series of special β terms for the step
size propagation.

Press[8] states �We suspect that predictor-corrector integrators have had
their day, and that they are no longer the method of choice for most problems in
ODEs.... There is one exceptional case: high-precision solutions of very smooth
equations with very complicated right-hand sides....� Even worse, the predic-
tor corrector's stability domain shrinks as the integration order increases[6].
Since the time integrator should roughly match the domain expansion order,
a decreasing stability domain is certainly not wanted. Innately, the predictor
corrector requires that the mapping f(t, y) does not change.

1.1.4 Runge Kutta

Runge Kutta methods refer to both implicit and explicit multi-stage time inte-
gration. Iserles's[7] book provides a valuabe reference for Runge Kutta schemes.

The general form of a Runge-Kutta type integrator is

yn+1 = yn + hbiki

3

ki = f (tn + hci, yn + haijkj)

ti = to + hci

Increasing order is obtained by adding more k terms. Changing step size h is
possible at each step. This form is often displayed as a tableau

c1 a11 · · · a1p
...

...
. . .

...
cp ap1 · · · app
� b1 · · · bp

Explicit methods consist of a lower triangular a where all aij = 0 when j ≥ i;
implicit methods have at least one non-zero aij term where j ≥ i. Implicit RK
requires iteration. RK properties include: ci =

∑
j aij and

∑
j bj = 1. For the

typical application, these properties are usually con�ned to transcription error
identi�cation.

Each RK step is completely independent of previous steps. More impor-
tantly, the mapping f(t, y) can change space. For CFD applications, RK allows
for a completely di�erent computational grid at each timestep.

We will describe some of the common RK integrators below.

Forward and Backward Euler The forward Euler, a 1st order method, is
a simple integrator.

yn+1 = yn + hf (tn, yn)

The tableau is
0 0

1

By comparison, the backward Euler is an implicit 1st order method

yn+1 = yn + hk

k = f (tn + h, yn + hk)

Notice that yn does not form a closure; iterations and stopping criteria are
required. Its tableau is

1 1
1

Crank Nicholson Crank Nicholson (C-N) is an implicit second order method
often seen in �nite di�erence codes. The tableau is

0 0 0
1 1

2
1
2

1
2

1
2

4

IRK2 One possible second order implicit RK2 method is

0 1
4 − 1

4
2
3

1
4

5
12

1
4

3
4

Expanded, this is

t1 = to

t2 = to +
2

3
∆t

z1 = yn + ∆t

(
1

4
F (z1, t1) − 1

4
F (z2, t2)

)
z2 = yn + ∆t

(
1

4
F (z1, t1) +

5

12
F (z2, t2)

)
yn+1 = yn + ∆t

(
1

4
F (z1, t1) +

3

4
F (z2, t2)

)
This looks ripe for iteration; however, this is exactly the situation Haier warns
about using �xed point iteration rather than fully implicit inversion.

Hammer-Hollingsworth This is another implicit RK2 method.

3−
√
3

6
1
4

1
4 −

√
3
6

3+
√
3

6
1
4 +

√
3
6

1
4

1
2

1
2

RK4 The canonical Runge-Kutta integrator is the explicit RK4. The tableau
is

0 0 0 0 0
1
2

1
2 0 0 0

1
2 0 1

2 0 0
1 0 0 1 0

1
6

1
3

1
3

1
6

Adaptive RK Adaptive RK typically indicates two RK methods where one
lower-order method is a subset of the higher-order method. Adaptive methods
allow for fast error estimates for calculating step sizes. Famous methods are
Cash-Karp, RKF, etc[8].

5

1.1.5 E�cient Implicit Formation

Directly implementing one of the above RK routines is not especially e�cient.
For the implicit RK routines, there are stability and major e�ciency issues
with stagewise iteration. The conceptual issue is that the mass matrix only
contains the temporal information about the governing equations. From theory,
this restricts both the rate of convergence and the timestep, since the product
of timestep and right-hand-side eigenvalues must be small. We need Jacobian
information.

A generic form of a RK stage is

zi = yo + ∆t aij

(
dz

dt

)
j

This implies a matrix inverse operation

zi = yo + ∆t aij
(
M−1B

)
j

where

M
dz

dt
= B

contains the �uid governing equations. However, this form is not especially
e�cient.

Instead, the equation is premultiplied by the conceptual mass matrix to form

Mzi = Myo + ∆t aijBj

Even further simpli�cation occurs when expanding zi

z = yo + ∆z

Also, B is expanded into a 1st order Taylor series as

B (zi) = B (y0) +
dB (y0)

dz
(zi − y0) = B (y0) +

dB (y0)

dz
∆z

Combining gives

M∆zi = ∆t aij

(
B (y0) +

dB (y0)

dz
∆z

)
Now, forcing function information is available for stage iterations(

M − dB

dz

)
∆zi = ∆t aijBo

This appears to be a distinct disadvantage since dB/dz, the Jacobian term,
is complicated. This is where a non-direct matrix inversion method allows a

6

simpli�cation for an already multiplied Jacobian and vector term. Following
Gear and Saad[4], a numerical Jacobian approximation is typically su�cient

Jv ≈ 1

ε
(B (z + εv) −B (z))

The time integration equations are now in a canonical form for numerical inver-
sion.

As expected, the multi-stage RK routines are now coupled where previously
they were block independent. A two stage RK routine ready for numerical
inversion has the form[

[M − ∆t a11J1] [−∆t a12J2]
[−∆t a21J1] [M − ∆t a22J2]

](
∆z1
∆z2

)
= ∆t

[
a11B(y0) + a12B(y0)
a21B(y0) + a22B(y0)

]
whereas the non-Jacobian form was[

[M]
[M]

](
∆z1
∆z2

)
= ∆t

[
a11B(z1) + a12B(z2)
a21B(z1) + a22B(z2)

]
This re�ects the change to a true implicit iterative scheme that satis�es the
Hairer and Wanner[6] �xed-point iteration stability comment. The disadvantage
is a tremendous increase in the computational requirement (i.e., computing J∆z
at each stage and step).

Expansion Point Expanding around a di�erent point is instructive.

z = z̄ + ∆z

so that
∆z = z − z̄

The 1st order Taylor series is

B (zi) = B (z̄i) +
dB (z̄i)

dz
(zi − z̄) = B (z̄i) +

dB (z̄i)

dz
∆zi

Combining as before gives

M (zi − y0) = ∆t aij

(
B (z̄i) +

dB (z̄i)

dz
∆zi

)
This needs one more step

(zi − y0) = (zi − y0 + z̄ − z̄) = ∆zi + (z̄ − y0)

Combining gives

M∆zi = ∆t aij

(
B (z̄i) +

dB (z̄i)

dz
∆zi

)
−M (z̄ − y0)

7

Nicely, the initial iteration residual is

R = ∆t aijB (zi)

and the linear term is
Ax = M∆zi

This form should be more robust when the Jacobian dB/dz is not exact. The
objective would be to reduce the converged ∆z to zero. Otherwise, this form
reduces to the previous form.

Time Integration Experiment The concepts introduced above are tested
for a known solution. The di�erential equation is

dy

dt
= −1 − Cy

with the initial condition
y(0) = 1

The solution is

y(t) = − 1

C
+

(
1 +

1

C

)
e−Ct

The objective is to compare simple one-stage time integration methods for
explicit (Forward Euler), �xed-point implicit (Backwards Euler), and Jacobian-
coupled implicit (Backwards Euler) routines. Figure 1 plots the one-step pre-
diction for an increasing timestep and increasing time constant C. Repeated,
this experiment only considers one step with a varying timestep ∆t from 0 to
2. Forward Euler behaves as expected with a linear prediction based on the so-
lution derivative at y(0). Fixed point iteration of the backwards Euler method
converges for small timesteps and diverges for larger timesteps; this situation
is what Hairer and Wanner mean by �xed-point iteration stability. The �xed
point scheme becomes unstable for timesteps larger than approximately 1/C.
This is consistent with the previous assertion that timestep multiplied by eigen-
values must be small. The Backwards Euler method with Jacobian information
converges for all timesteps.

The point to take away is that just because a scheme is iterative does not
mean that it is guaranteed to converge. Nor does an arbitrary iterative scheme
always allow larger timesteps than an explicit scheme. Fixed point iteration
does indeed destroy the stability advantages of an implicit scheme. As Boyd
illustrates[2], implicit methods track the slow manifold.

1.2 Numerical Matrix Inversion

Matrix inversion is a critical operation for e�ective PDE solver design. The
canonical form for matrix inversion is

Ax = b

8

dy/dt+ 1 + 0y = 0 with y(0) = 1

−4

−2

0

2

4

P
re
d
ic
ti
o
n
y
(∆

t)

0 0.5 1 1.5 2

Timestep ∆t

Exact

Forward Euler

Backward Euler Fixed Point

Backward Euler Jacobian

dy/dt+ 1 + 1y = 0 with y(0) = 1

−4

−2

0

2

4

P
re
d
ic
ti
o
n
y
(∆

t)

0 0.5 1 1.5 2

Timestep ∆t

Exact

Forward Euler

Backward Euler Fixed Point

Backward Euler Jacobian

dy/dt+ 1 + 2y = 0 with y(0) = 1

−4

−2

0

2

4

P
re
d
ic
ti
o
n
y
(∆

t)

0 0.5 1 1.5 2

Timestep ∆t

Exact

Forward Euler

Backward Euler Fixed Point

Backward Euler Jacobian

dy/dt+ 1 + 3y = 0 with y(0) = 1

−4

−2

0

2

4

P
re
d
ic
ti
o
n
y
(∆

t)

0 0.5 1 1.5 2

Timestep ∆t

Exact

Forward Euler

Backward Euler Fixed Point

Backward Euler Jacobian

dy/dt+ 1 + 10y = 0 with y(0) = 1

−4

−2

0

2

4

P
re
d
ic
ti
o
n
y
(∆

t)

0 0.5 1 1.5 2

Timestep ∆t

Exact

Forward Euler

Backward Euler Fixed Point

Backward Euler Jacobian

dy/dt+ 1 + 100y = 0 with y(0) = 1

−4

−2

0

2

4

P
re
d
ic
ti
o
n
y
(∆

t)

0 0.5 1 1.5 2

Timestep ∆t

Exact

Forward Euler

Backward Euler Fixed Point

Backward Euler Jacobian

Figure 1: Time Integration Experiment

9

In residual form for iteration, the canonical form is

r = b−Ax

The objective is to reduce the residual r to zero.
The numerical matrix inversion literature is large and continuously evolving.

The Templates book[1], Boyd's book[2], and [9] are useful starting points for
investigating iterative methods. Preconditioning and other advanced routines[3]
are known to improve convergence rates.

1.2.1 Generic Jacobi and Krylov Iteration

Jacobi iteration updates the state vector with the residual scaled for stability.

xi+1 = xi + αiri

where α is chosen based on an approximation to A's eigenvalues[11].

1.2.2 Richardson Residual Minimization

The Richardson Residual Minimization method[2] uses Jacobi iteration with

αi =

∑
riqi∑
qiqi

=

∑
riri∑
riqi

where qi is calculated as
qi = Ari

This method is a linear equation residual minimization along the steepest de-
scent direction. A should be positive semi de�nite but not necessarily symmetric[11].

1.2.3 Conjugate Gradient

The conjugate gradient (CG) method is popular with nice convergence prop-
erties at the expense of more storage. CG methods also require a positive
semi-de�nite symmetric A. Shewchuk[10] provides an excellent foundation to
the various CG methods. Press[8] shows Polak-Ribiere correction for β as

βi =
(ri+1 − ri) · (ri+1)

ri · ri
This correction gracefully adapts the CG to a soft restart. Computing the
correction is however not quite as graceful.

1.2.4 Preconditioning

Preconditioning the inversion improves the iterative process. The general idea
is that the inverse of A is di�cult, but an approximation to A is easy to invert.
So premultiply by the approximation P−1

P−1Ax = P−1B

10

Naturally, if P−1A = I, then there is no need to iteratively invert A. Yet, when
P contains some fundamental portions of A's eigenvectors, then P−1A becomes
more diagonal. The tradeo� is �nding a su�ciently complex but invertible
approximation to A.

References

[1] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra,
V. Eijkhout, R. Pozo, C. Romine, and H. Van der Vorst. Templates for

the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd

Edition. SIAM, Philadelphia, PA, 1994.

[2] John P. Boyd. Chebyschev and Fourier Spectral Methods. Dover, Mineola,
NY, 2 edition, 2000.

[3] W. La Cruz and M. Raydan. Residual iterative schemes for large-scale
nonsymmetric positive de�nite linear systems. Comput. Appl. Math., 27(2),
2008.

[4] C. W. Gear and Y. Saad. Iterative solution of linear equations in ODE
codes. SIAM J. Sci. Stat. Comput., 4(4):583�601, December 1983.

[5] Ernst Hairer, Syvert Paul Nørsett, and Gerhard Wanner. Solving ordi-

nary di�erential equations I: Nonsti� problems, volume 1. Springer-Verlag,
Berlin, 2nd edition, 2008.

[6] Ernst Hairer and Gerhard Wanner. Solving ordinary di�erential equations

II: Sti� and di�erential-algebraic problems, volume 2. Springer-Verlag,
Berlin, 2nd edition, 2010.

[7] Arieh Iserles. A First Course in the Numerical Analysis of Di�erential

Equations. Cambridge University Press, Cambridge UK, 1996.

[8] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Nu-

merical Recipes: The Art of Scienti�c Computing. Cambridge University
Press, Cambridge, 2 edition, 1992.

[9] Yousef Saad. Iterative Methods for Sparse Linear Systems. SIAM, Philadel-
phia, PA, 2nd edition, 2003.

[10] J.R. Shewchuk. An introduction to the conjugate gradient method without
the agonizing pain, 1994.

[11] Gilbert Strang. Introduction to Applied Mathematics. Wellesley-
Cambridge, Wellesley, MA, 1986.

11

