For the following wave equation, find and sketch the solution to the following ICs in the x-t plane. There are 6 regions of interest.

$$
\begin{aligned}
& u_{t t}=u_{x x}
\end{aligned} \quad-\infty<x<\infty, ~ \begin{aligned}
& u(x, 0)=0 \\
& u_{t}(x, 0)= \begin{cases}1 & 0<x<1 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

D'Alembert's solution is

$$
u(x, t)=\frac{1}{2} f(x+c t)+\frac{1}{2} f(x-c t)+\frac{1}{2 c} \int_{x-c t}^{x+c t} g(\zeta) \mathrm{d} \zeta
$$

