\qquad

$4^{\text {th }}$ Mar 2016	60 minutes	6 Pages \quad Closed book, Closed notes, No calculator.
100 total points		Read, think, plan, and then write.

This exam is open between $3^{\text {rd }}$ March 2016 and $11^{\text {th }}$ March 2016.

Professor Contact: Dr. Charles O'Neill, croneill@eng.ua.edu, (617) 449-8206 (cell)

University of Alabama Academic Honor Pledge:
I promise or affirm that I will not at any time be involved with cheating, plagiarism, fabrication, or misrepresentation while enrolled as a student at The University of Alabama. I have read the Academic Honor Code, which explains disciplinary procedures that will result from the aforementioned. I understand that violation of this code will result in penalties as severe as indefinite suspension from the University.

Signature: \qquad

Date: \qquad

\qquad

1. [30 pts] What is the value of $u(42, \infty)$ when $x=42$ and time is infinity?

$$
\begin{aligned}
& u_{t t}=u_{x x} \quad-\infty<x<\infty
\end{aligned} \begin{aligned}
& -\infty(\mathrm{x}, 0)= \begin{cases}1 & -1<x<1 \\
0 & \text { otherwise }\end{cases} \\
& u_{t}(x, 0)= \begin{cases}1 & -1<x<1 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

\qquad
2. Given the following hyperbolic PDE

$$
u_{x x}+4 u_{x y}+u_{y y}=0
$$

- Determine the solution characteristics ζ and η. [20 pts]
- Determine the canonical PDE form $u_{\zeta \eta}=\Phi .[20 \mathrm{pts}]$

$$
\begin{aligned}
& \bar{A}=A \zeta_{x}^{2}+B \zeta_{x} \zeta_{y}+C \zeta_{y}^{2}=0 \\
& \bar{B}=2 A \zeta_{x} \eta_{x}+B\left(\zeta_{x} \eta_{y}+\zeta_{y} \eta_{x}\right)+2 C \zeta_{y} \eta_{y} \\
& \bar{C}=A \eta_{x}^{2}+B \eta_{x} \eta_{y}+C \eta_{y}^{2}=0 \\
& \bar{D}=A \zeta_{x x}+B \zeta_{x y}+C \zeta_{y y}+D \zeta_{x}+E \zeta_{y} \\
& \bar{E}=A \eta_{x x}+B \eta_{x y}+C \eta_{y y}+D \eta_{x}+E \eta_{y} \\
& \bar{F}=F \\
& \bar{G}=G
\end{aligned}
$$

\qquad
3. [30 pts] Solve the following convection-diffusion problem with a coordinate transform and a Fourier transform. Tables are attached.

$$
\begin{aligned}
& u_{t}=u_{x x}-2 u_{x} \quad-\infty<x<\infty \\
& u(\mathrm{x}, 0)=\sin (x)
\end{aligned}
$$

Name:

Name: \qquad

TABLE A Exponential Fourier Transform

$f(x)=F^{-1}[F]=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} F(\omega) e^{i \omega x} d \omega$	$F(\omega)=\mathscr{F}[f]=\frac{1}{\sqrt{2 \pi}} \int_{-x}^{x} f(x) e^{-\hbar \omega x} d x$
1. $f^{\prime}(x)$	$i \omega F(\omega)$
2. $f^{\prime \prime}(x)$	$-\omega^{2} F(\omega)$
3. $f^{\prime \prime}(x) \quad$ (nth derivative)	$(\mathrm{i} \omega)^{n} \mathrm{~F}(\omega)$
4. $f(a x) \quad a>0$	$\frac{1}{a} F\left(\frac{\omega}{a}\right)$

18. $\begin{array}{ll}1-|x| & |x|<1 \\ 0 & |x|>1\end{array}$
19. $\cos (a x)$
20. $\sin (a x)$
$2 \sqrt{\frac{2}{\pi}}\left[\frac{\sin (\omega / 2)}{\omega}\right]^{2}$
$\sqrt{\frac{\pi}{2}}[\delta(\omega+a)+\delta(\omega-a)]$
$i \sqrt{\frac{\pi}{2}}[\delta(\omega+a)-\delta(\omega-a)]$
