GES	554:	Exam	2
-----	------	------	---

Name:

4th Mar 2016 60 minutes 6 Pages Closed book, Closed notes, No calculator.

100 total points

Read, think, plan, and then write.

This exam is open between 3rd March 2016 and 11th March 2016.

Professor Contact: Dr. Charles O'Neill, croneill@eng.ua.edu, (617) 449-8206 (cell)

University of Alabama Academic Honor Pledge:

I promise or affirm that I will not at any time be involved with cheating, plagiarism, fabrication, or misrepresentation while enrolled as a student at The University of Alabama. I have read the Academic Honor Code, which explains disciplinary procedures that will result from the aforementioned. I understand that violation of this code will result in penalties as severe as indefinite suspension from the University.

Signature:_____

Date:			

1. [30 pts] What is the value of $u(42,\infty)$ when x=42 and time is infinity?

$$u_{tt} = u_{xx} \qquad -\infty < x < \infty$$
$$u(x,0) = \begin{cases} 1 & -1 < x < 1\\ 0 & \text{otherwise} \end{cases}$$
$$u_t(x,0) = \begin{cases} 1 & -1 < x < 1\\ 0 & \text{otherwise} \end{cases}$$

GES 554: Exam 2

2. Given the following hyperbolic PDE

$$u_{xx} + 4u_{xy} + u_{yy} = 0$$

- Determine the solution characteristics ζ and η . [20 pts]
- Determine the canonical PDE form $\,u_{\zeta\eta}=\Phi\,.\,$ [20 pts]

$$\overline{A} = A\zeta_x^2 + B\zeta_x\zeta_y + C\zeta_y^2 = 0$$

$$\overline{B} = 2A\zeta_x\eta_x + B(\zeta_x\eta_y + \zeta_y\eta_x) + 2C\zeta_y\eta_y$$

$$\overline{C} = A\eta_x^2 + B\eta_x\eta_y + C\eta_y^2 = 0$$

$$\overline{D} = A\zeta_{xx} + B\zeta_{xy} + C\zeta_{yy} + D\zeta_x + E\zeta_y$$

$$\overline{E} = A\eta_{xx} + B\eta_{xy} + C\eta_{yy} + D\eta_x + E\eta_y$$

$$\overline{F} = F$$

$$\overline{G} = G$$

3. [30 pts] Solve the following convection-diffusion problem with a coordinate transform and a Fourier transform. Tables are attached.

$$u_t = u_{xx} - 2u_x \qquad -\infty < x < \infty$$
$$u(x, 0) = \sin(x)$$

GES 554: Exam 2

Name:_____

	Able A exponential Fourier transform				
f(x)	= ℱ ⁻ เ[]	$F] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} F(\omega) e^{i\omega x} d\omega$	$F(\omega) = \mathcal{F}[f] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{-i\omega x} dx$		
1.	f'(x)		ίωF(ω)		
2.	f''(x)		$-\omega^2 F(\omega)$		
3.	$f^{n}(x)$	(nth derivative)	$(i\omega)^n F(\omega)$		
4.	f(ax)	a > 0	$\frac{1}{a}F\left(\frac{\omega}{a}\right)$		

TABLE A Exponential Fourier Transform

18.
$$\begin{aligned} 1 & -|x| & |x| < 1\\ 0 & |x| > 1 \end{aligned}$$
2.
$$\begin{aligned} 2\sqrt{\frac{2}{\pi}} \left[\frac{\sin(\omega/2)}{\omega} \right]^2 \\ \sqrt{\frac{\pi}{2}} \left[\delta(\omega + a) + \delta(\omega - a) \right] \\ i\sqrt{\frac{\pi}{2}} \left[\delta(\omega + a) - \delta(\omega - a) \right] \end{aligned}$$

6

...