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Preface

This book is designed as an advanced undergraduate or a first-year graduate
course for students from various disciplines like applied mathematics, physics,
engineering. It has evolved while teaching courses on partial differential equa-
tions during the last decade at the Politecnico di Milano.

The main purpose of these courses was twofold: on the one hand, to train
the students to appreciate the interplay between theory and modelling in
problems arising in the applied sciences and on the other hand to give them a
solid background for numerical methods, such as finite differences and finite
elements, also through numerical simulations for selected problems. Accord-
ingly, this textbook is divided into two parts.

The first one, Chapters 2 to 6, has a rather elementary character with
the goal of developing and studying basic problems from the macro-areas of
diffusion, propagation and transport, waves and vibrations. A knowledge of
advanced calculus and ordinary differential equations is required to this part.
Also, the repeated use of the method of separation of variables assumes some
basic results from the theory of Fourier series. All this background material
is summarized in the introductory Chapter 1 and in the Appendices.

Chapter 2 is devoted to first order equations and in particular to first
order scalar conservation laws. Simple models from traffic dynamics are used
to introduce concepts as characteristics lines, rarefaction and shock waves.

Chapters 3 and 5 deal with diffusion/reaction diffusion models, respec-
tively. The heat and the Fisher-Kolmogoroff equations constitutes the refer-
ence models to illustrate the qualitative properties of the solutions and the
asymptotic behavior towards equilibria.

In Chapter 4, the main properties of solutions to the Laplace/Poisson
equation, Maximum principle, mean value properties, Green’s function and
Newtonian potential are the main topics.

In Chapter 6 the fundamental aspects of waves propagation are examined,
leading to the classical formulas of d’Alembert, Kirchhoff and Poisson.
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The second part, Chapters 7,8 and 9, develops the Hilbert spaces meth-
ods for the variational formulation and the analysis of linear boundary and
initial-boundary value problems.

The understanding of these topics requires some basic knowledge of
Lebesgue measure and integration, summarized in Chapter 7. This chapter
contains tools from functional analysis in Hilbert spaces. The main theme is
the solvability of abstract variational problems, leading to the Lax-Milgram
Theorem. Then, we present a brief introduction to the theory of distributions
of L. Schwarz and the most common Sobolev spaces, necessary for a correct
variational formulation of the most common boundary value problems.

Chapter 8 is devoted to the variational formulation of elliptic bound-
ary value problems and their solvability. The development starts with one-
dimensional problems, continues with Poisson’s equation and ends with gen-
eral second order equations in divergence form. The last section contains an
application to a simple control problem, with both distributed observation
and control.

The issue in Chapter 9 is the variational formulation of initial-boundary
value problems for second order parabolic operators in divergence form.

At the end of each chapter, a brief account of numerical methods is in-
cluded, with a discussion of some particular case study, to complete a model-
theory-simulation path.

Also a number of exercises is presented. Some of them can be solved by
a routine application of the theory or of the methods developed in the text.
Other problems are intended as a completion of some arguments or proofs in
the text. Also, there are problems in which the student is required to be more
autonomous. Most problems are supplied with answers or hints at the end of
the volume.

In the first part the exposition if flexible enough to allow substantial
changes in the order of presentation of the material, without compromising the
comprehension. All chapters are in practice mutually independent, with the
exception of Chapter 5, which presumes the knowledge of Chapters 3 and 4.

In the second part, which, in principle, may be presented independently
of the first one, more attention has to be paid to the order of the arguments.

A huge number of books on partial differential equation has been written.
At the end of this volume we have indicated some of the most popular ones, to
which the reader can refer for a more advanced comprehension of the subject.

Acknowledgments. While writing this book we benefitted from comments,
suggestions and criticisms of many colleagues. In particular, we express our
gratitude to Cristina Cerutti, Michele Di Cristo, Maurizio Grasselli, Alessan-
dro Veneziani and Gianmaria A. Verzini.

Milan, September 2012 Sandro Salsa
Federico M.G. Vegni
Anna Zaretti
Paolo Zunino
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1

Introduction

1.1 Mathematical Modelling

Mathematical modelling plays a big role in the description of a large part of
phenomena in the applied sciences and in several aspects of technical and
industrial activity.

By a “mathematical model” we mean a set of equations and/or other
mathematical relations capable of capturing the essential features of a com-
plex natural or artificial system, in order to describe, forecast and control its
evolution. The applied sciences are not confined to the classical ones; in addi-
tion to physics and chemistry, the practice of mathematical modelling heavily
affects disciplines like finance, biology, ecology, medicine, sociology.

In the industrial activity (e.g. for aerospace or naval projects, nuclear reac-
tors, combustion problems, production and distribution of electricity, traffic
control, etc...) the mathematical modelling, involving first the analysis and
the numerical simulation and followed by experimental tests, has become a
common procedure, necessary for innovation, and also motivated by economic
factors. It is clear that all of this is made possible by the enormous computa-
tional power now available.

In general, the construction of a mathematical model is based on two
main ingredients: general laws and constitutive relations. In this book we shall
deal with general laws coming from continuum mechanics and appearing as
conservation or balance laws (e.g. of mass, energy, linear momentum, etc...).

The constitutive relations are of an experimental nature and strongly de-
pend on the features of the phenomena under examination. Examples are the
Fourier law of heat conduction, the Fick law for the diffusion of a substance
or the way the speed of a driver depends on the density of cars ahead.

The outcome of the combination of the two ingredients is usually a partial
differential equation or a system of them.

Salsa S., Vegni F.M.G., Zaretti A., Zunino P.: A Primer on PDEs. Models, Methods, Simulations.
Unitext – La Matematica per il 3+2 65.
DOI 10.1007/978-88-470-2862-3 1, © Springer-Verlag Italia 2013



2 1 Introduction

1.2 Partial Differential Equations

A partial differential equation is a relation of the following type:

F (x1, ..., xn, u, ux1 , ..., uxn , ux1x1 , ux1x2 ..., uxnxn , ux1x1x1 , ...) = 0 (1.1)

where the unknown u = u (x1, ..., xn) is a function of n variables and uxj ,...,
uxixj ,... are its partial derivatives. The highest order of differentiation occur-
ring in the equation is the order of the equation.

A first important distinction is between linear and nonlinear equations.
Equation (1.1) is linear if F is linear with respect to u and all its deriva-

tives, otherwise it is nonlinear.
A second distinction concerns the types of nonlinearity. We distinguish:

• Semilinear equations where F is nonlinear only with respect to u but is
linear with respect to all its derivatives.

• Quasi-linear equations where F is linear with respect to the highest order
derivatives of u.

• Fully nonlinear equations where F is nonlinear with respect to the highest
order derivatives of u.

The theory of linear equations can be considered sufficiently well developed
and consolidated, at least for what concerns the most important questions.
On the contrary, the non linearities present such a rich variety of aspects and
complications that a general theory does not appear to be conceivable. The
existing results and the new investigations focus on more or less specific cases,
especially interesting in the applied sciences.

To give the reader an idea of the wide range of applications we present
a series of examples, suggesting one of the possible interpretations. Most of
them are considered at various level of deepness in this book. In the examples,
x represents a space variable (usually in dimension n = 1, 2, 3) and t is a time
variable.

We start with linear equations. In particular, equations (1.2)–(1.5) are
fundamental and their theory constitutes a starting point for many other
equations.

1. Transport equation (first order):

ut + v · ∇u = 0. (1.2)

It describes for instance the transport of a solid polluting substance along
a channel; here u is the concentration of the substance and v is the stream
speed. We consider the one-dimensional version of (1.2) in Section 2.2.

2. Diffusion or heat equation (second order):

ut −DΔu = 0, (1.3)

where Δ = ∂x1x1 +∂x2x2 + ...+∂xnxn is the Laplace operator. It describes
the conduction of heat through a homogeneous and isotropic medium; u
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is the temperature and D encodes the thermal properties of the material.
Chapter 3 is devoted to the heat equation and its variants.

3. Wave equation (second order):

utt − c2Δu = 0. (1.4)

It describes for instance the propagation of transversal waves of small
amplitude in a perfectly elastic chord (e.g. of a violin) if n = 1, or mem-
brane (e.g. of a drum) if n = 2. If n = 3 it governs the propagation
of electromagnetic waves in vacuum or of small amplitude sound waves
(Section 6.6.4). Here u may represent the wave amplitude and c is the
propagation speed.

4. Laplace’s or potential equation (second order):

Δu = 0, (1.5)

where u = u (x). The diffusion and the wave equations model evolu-
tion phenomena. The Laplace equation describes the corresponding steady
state, in which the solution does not depend on time anymore. Together
with its nonhomogeneous version

Δu = f ,

called Poisson’s equation, it plays an important role in electrostatics as
well. Chapter 4 is devoted to these equations.

5. Black-Scholes equation (second order):

ut +
1
2
σ2x2uxx + rxux − ru = 0.

Here u = u (x,t), x ≥ 0, t ≥ 0. Fundamental in mathematical finance, this
equation governs the evolution of the price u of a so called derivative (e.g.
an European option), based on an underlying asset (a stock, a currency,
etc.) whose price is x.

6. Vibrating plate (fourth order):

utt −Δ2u = 0,

where x ∈R2 and

Δ2u = Δ(Δu) =
∂4u

∂x4
1

+ 2
∂4u

∂x2
1∂x

2
2

+
∂4u

∂x4
2

is the biharmonic operator. In the theory of linear elasticity, it models the
transversal waves of small amplitude of a homogeneous isotropic plate.
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7. Schrödinger equation (second order):

−iut = Δu+ V (x)u

where i is the complex unit. This equation is fundamental in quantum
mechanics and governs the evolution of a particle subject to a potential
V . The function |u|2 represents a probability density.

Let us list now some examples of nonlinear equations.

8. Burgers’ equation (quasilinear, first order):

ut + cuux = 0 (x ∈ R) .

It governs a one-dimensional flux of a non viscous fluid but it is used to
model traffic dynamics as well. Its viscous variant

ut + cuux = εuxx (ε > 0)

constitutes a basic example of competition between dissipation (due to
the term εuxx) and steepening (shock formation due to the term cuux).
We will discuss these topics in Sections 2.5 and 2.6.1.

9. Fisher’s equation (semilinear, second order):

ut −DΔu = ru (M − u)
It governs the evolution of a population of density u, subject to diffusion
and logistic growth (represented by the right hand side).

10. Porous medium equation (quasilinear, second order):

ut = k div (uγ∇u)
where k > 0, γ > 1 are constant. This equation appears in the description
of filtration phenomena, e.g. of the motion of water through the ground.

11. Minimal surface equation (quasilinear, second order):

div

⎛
⎝ ∇u√

1 + |∇u|2

⎞
⎠ = 0 (x ∈R2)

The graph of a solution u minimizes the area among all surfaces z =
v (x1, x2) whose boundary is a given curve. For instance, soap balls are
minimal surfaces. We will not examine this equation (for deeper insights
see [9]).

12. Eikonal equation (fully nonlinear, first order):

|∇u| = c (x) .

It appears in geometrical optics: if u is a solution, its level surfaces u (x) =
t describe the position of a light wave front at time t.
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Let us now give some examples of systems.

13. Navier’s equation of linear elasticity (three scalar equations of second
order):

�utt = μΔu + (μ+ λ)grad div u

where u = (u1 (x,t) , u2 (x,t) , u3 (x,t)), x ∈R3. The vector u represents
the displacement from equilibrium of a deformable continuum body of
(constant) density � (see e.g. Dautray and Lions [22], Vol. 1,6).

14. Maxwell’s equations in vacuum (six scalar linear equations of first order):

Et − curl B = 0, Bt + curl E = 0 (Ampère and Faraday laws)

div E = 0 div B = 0 (Gauss’ law)

where E is the electric field and B is the magnetic induction field. The
unit measures are the “natural” ones, i.e. the light speed is c = 1 and the
magnetic permeability is μ0 = 1 (see e.g. Dautray and Lions [22], Vol. 1).

15. Navier-Stokes equations (three quasilinear scalar equations of second or-
der and one linear equation of first order):

{
ut + (u·∇)u = − 1

ρ∇p+ νΔu
div u = 0

where u = (u1 (x,t) , u2 (x,t) , u3 (x,t)), p = p (x,t), x ∈ R3. These equa-
tions governs the motion of a viscous, homogeneous and incompressible
fluid. Here u is the fluid speed, p its pressure, ρ its density (constant) and
ν is the kinematic viscosity, given by the ratio between the fluid viscosity
and its density. The term (u·∇)u represents the inertial acceleration due
to fluid transport.

1.3 Well Posed Problems

Usually, in the construction of a mathematical model, only some of the general
laws of continuum mechanics are relevant, while the others are eliminated
through the constitutive laws or suitably simplified according to the current
situation. In general, additional information is necessary to select or to predict
the existence of a unique solution. This information is commonly supplied in
the form of initial and/or boundary data, although other forms are possible.
For instance, typical boundary conditions prescribe the value of the solution or
of its normal derivative, or a combination of the two. A main goal of a theory
is to establish suitable conditions on the data in order to have a problem with
the following features:
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a) there exists at least one solution;
b) there exists at most one solution;
c) the solution depends continuously on the data.

This last condition requires some explanation. Roughly speaking, prop-
erty c) states that the correspondence

data→ solution (1.6)

is continuous or, in other words, that a small error on the data entails a small
error on the solution.

This property is extremely important and may be expressed as a local
stability of the solution with respect to the data. Think for instance of
using a computer to find an approximate solution: the insertion of the data
and the computation algorithms entail approximation errors of various type.
A significant sensitivity of the solution on small variations of the data would
produce an unacceptable result.

The notion of continuity and the error measurements, both in the data and
in the solution, are made precise by introducing a suitable notion of distance.
In dealing with a numerical or a finite-dimensional set of data, an appro-
priate distance may be the usual euclidean distance: if x = (x1, x2, ..., xn) ,y
= (y1, y2, ..., yn) then

dist (x,y) = ‖x− y‖ =

√√√√
n∑
k=1

(xk − yk)2 .

When dealing for instance with real functions, defined on a set A, common
distances are:

dist (f, g) = max
x∈A

|f (x)− g (x)|
which measures the maximum difference between f and g over A, or

dist (f, g) =

√∫

A

(f − g)2

which is the so called least square distance between f and g.
Once the notion of distance has been chosen, the continuity of the cor-

respondence (1.6) is easy to understand: if the distance of the data tends to
zero then the distance of the corresponding solutions tends to zero.

When a problem possesses the properties a), b) c) above it is said to
be well posed. When using a mathematical model, it is extremely useful,
sometimes essential, to deal with well posed problems: existence of the solution
indicates that the model is coherent, uniqueness and stability increase the
possibility of providing accurate numerical approximations.

As one can imagine, complex models lead to complicated problems which
require rather sophisticated techniques of theoretical analysis. Often, these
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problems become well posed and efficiently treatable by numerical methods
if suitably reformulated in the abstract framework of Functional Analysis, as
we will see in Chapter 7.

On the other hand, not only well posed problems are interesting for the
applications. There are problems that are intrinsically ill posed because of
the lack of uniqueness or of stability, but still of great interest for the modern
technology. We only mention an important class of ill posed problems, given by
the so called inverse problems, closely related to control theory (an example
of control problem is in Section 8.7).

1.4 Basic Notations and Facts

We specify some of the symbols we will constantly use throughout the book
and recall some basic notions about sets, topology and functions.

Sets and Topology

We denote by: N, Z, Q, R, C the sets of natural numbers, integers, rational,
real and complex numbers, respectively. Rn is the n-dimensional vector space
of the n−uples of real numbers. We denote by e1,. . . , en the unit vectors in
the canonical base in Rn. In R2 and R3 we may denote them by i, j and k.

The symbol Br (x) denotes the open ball in Rn, with radius r and center
at x, that is

Br (x) = {y ∈Rn; |x− y| < r} .
If there is no need to specify the radius, we write simply B (x). The volume
of Br (x) and the area of ∂Br (x) are given by

|Br| = ωn
n
rn and |∂Br| = ωnr

n−1

where ωn is the surface area of the unit sphere1 ∂B1 in Rn; in particular
ω2 = 2π and ω3 = 4π.

Let A ⊆ Rn. A point x ∈A is:

• an interior point if there exists a ball Br (x) ⊂ A;
• a boundary point if any ball Br (x) contains points of A and of its com-

plement Rn\A. The set of boundary points of A, the boundary of A, is
denoted by ∂A;

• a limit point of A if there exists a sequence {xk}k≥1 ⊂ A such that xk → x.

A is open if every point in A is an interior point; the set A = A ∪ ∂A is the
closure of A; A is closed if A = A. A set is closed if and only if it contains all
of its limit points.
1 In general, ωn= nπn/2/Γ

(
1
2
n+ 1

)
where Γ (s) =

∫ +∞
0

ts−1e−tdt is the Euler

gamma function.
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An open set is connected if for every couple of points x,y ∈A there exists
a regular curve joining them. By a domain we mean an open connected set.
Domains are usually denoted by the letter Ω.

If U ⊂ A, we say that U is dense in A if U = A. This means that any
point x ∈ A is a limit point of U . For instance, Q is dense in R.

A is bounded if it is contained in some ball Br (0); it is compact if it is
closed and bounded. If A0 is compact and contained in A, we write A0 ⊂⊂ A
and we say that A0 is compactly contained in A.

Infimum and supremum of a set of real numbers

A set A ⊂ R is bounded from below if there exists a number K such that

K ≤ x for every x∈A. (1.7)

The greatest among the numbers K with the property (1.7) is called the
infimum or the greatest lower bound of A and denoted by inf A.

More precisely, we say that λ = inf A if λ ≤ x for every x ∈ A and if, for
every ε > 0, we can find x̄ ∈ A such that x̄ < λ + ε. If inf A ∈ A, then inf A
is actually called the minimum of A, and may be denoted by minA.

Similarly, A ⊂ R is bounded from above if there exists a number K such
that

x ≤ K for every x∈A. (1.8)

The smallest among the numbers K with the property (1.8) is called the
supremum or the lowest upper bound of A and denoted by supA.

Precisely, we say that Λ = supA if Λ ≥ x for every x ∈ A and if, for every
ε > 0, we can find x̄ ∈ A such that x̄ > Λ − ε. If supA ∈ A, then supA is
actually called the maximum of A, and may be denoted by maxA.

Functions

Let A ⊆ R and u : A → R be a real valued function defined in A. We say
that u is continuous at x ∈A if u (y) → u (x) as y → x. If u is continuous at
any point of A we say that u is continuous in A. The set of such functions is
denoted by C (A).

The support of a continuous function is the closure of the set where it is
different from zero. A continuous function is compactly supported in A if it
vanishes outside a compact set contained in A.

We say that u is bounded from below (resp. above) in A if the image

u (A) = {y ∈ R, y = u (x) for some x ∈A}

is bounded by below (resp. above). The infimum (supremum) of u (A) is called
the infimum (supremum) of u and is denoted by

inf
x∈A

u (x) (resp. sup
x∈A

u (x)).
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We will denote by χA the characteristic function of A: χA = 1 on A and
χA = 0 in Rn\A.

We use one of the symbols uxj , ∂xju,
∂u
∂xj

for the first partial derivatives
of u, and ∇u or grad u for the gradient of u. Accordingly, for the higher order
derivatives we use the notations uxjxk

, ∂xjxk
u, ∂2u

∂xj∂xk
and so on.

We say that u is of class Ck (Ω), k ≥ 1, or that it is a Ck−function, if u
has continuous partials up to the order k (included) in the domain Ω. The
class of continuously differentiable functions of any order in Ω, is denoted by
C∞ (Ω).

If u ∈ C1 (Ω) then u is differentiable in Ω and we can write, for x ∈Ω and
h ∈Rn small:

u (x + h)− u (x) = ∇u (x) · h+o (h)

where the symbol o (h), “little o of h”, denotes a quantity such that o (h) / |h| →
0 as |h| → 0.

The symbol Ck
(
Ω
)

will denote the set of functions in Ck (Ω) whose deriva-
tives up to the order k included, can be extended continuously up to ∂Ω.

Integrals

Up to Chapter 6 included, the integrals can be considered in the Riemann
sense (proper or improper). A brief introduction to Lebesgue measure and
integral is provided in Section 7.1. Let 1 ≤ p < ∞ and q = p/(p − 1), the
conjugate exponent of p. The following Hölder’s inequality holds

∣∣∣∣
∫

Ω

uv

∣∣∣∣ ≤
(∫

Ω

|u|p
)1/p(∫

Ω

|v|q
)1/q

. (1.9)

The case p = q = 2 is known as the Schwarz inequality.

Uniform convergence

A series
∑∞
m=1 um, where um : Ω ⊆ Rn → R, is said to be uniformly conver-

gent in Ω, with sum u if, setting SN =
∑N
m=1 um, we have

sup
x∈Ω

|SN (x)− u (x)| → 0 as N →∞.

Weierstrass test. Let |um (x)| ≤ am, for every m ≥ 1 and x ∈ Ω. If the
numerical series

∑∞
m=1 am is convergent, then

∑∞
m=1 um converges absolutely

and uniformly in Ω.

Limit and series. Let
∑∞
m=1 um be uniformly convergent in Ω. If um is con-

tinuous at x0 for every m ≥ 1, then u is continuous at x0 and

lim
x→x0

∞∑
m=1

um (x) =
∞∑
m=1

um (x0) .
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Term by term integration. Let
∑∞
m=1 um be uniformly convergent in Ω. If Ω

is bounded and um is integrable in Ω for every m ≥ 1, then:

∫

Ω

∞∑
m=1

um =
∞∑
m=1

∫

Ω

um.

Term by term differentiation. Let Ω be bounded and um ∈ C1
(
Ω
)

for every
m ≥ 0. If the series

∑∞
m=1 um (x0) is convergent at some x0 ∈ A and the

series
∑∞
m=1 ∂xjum are uniformly convergent in Ω for every j = 1, ..., n, then∑∞

m=1 um converges uniformly in Ω, with sum in C1
(
Ω
)

and

∂xj

∞∑
m=1

um (x) =
∞∑
m=1

∂xjum (x) (j = 1, ..., n).

1.5 Integration by Parts Formulas

Let Ω ⊂ Rn, be a C1−domain. For vector fields

F = (F1, F2, ..., Fn) : Ω → R
n

with F ∈C1
(
Ω
)
, the Gauss divergence formula holds:

∫

Ω

divF dx =
∫

∂Ω

F · ν dσ (1.10)

where divF =
∑n
j=1 ∂xjFj , ν denotes the outward normal unit vector to ∂Ω,

and dσ is the “surface” measure on ∂Ω, locally given in terms of local charts
by

dσ =
√

1 + |∇ϕ (y′)|dy′.

A number of useful identities can be derived from (1.10). Applying (1.10) to
vF, with v ∈ C1

(
Ω
)
, and recalling the identity

div(vF) = v divF +∇v · F

we obtain the following integration by parts formula:
∫

Ω

v divF dx =
∫

∂Ω

vF · ν dσ −
∫

Ω

∇v · F dx. (1.11)

Choosing F = ∇u, u ∈ C2 (Ω)∩C1
(
Ω
)
, since div∇u = Δu and ∇u ·ν = ∂νu,

the following Green’s identity follows:
∫

Ω

vΔu dx =
∫

∂Ω

v∂νu dσ −
∫

Ω

∇v · ∇u dx. (1.12)
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In particular, the choice v ≡ 1 yields

∫

Ω

Δu dx =
∫

∂Ω

∂νu dσ. (1.13)

If also v ∈ C2 (Ω) ∩ C1
(
Ω
)
, interchanging the roles of u and v in (1.12) and

subtracting, we derive a second Green’s identity:

∫

Ω

(vΔu− uΔv) dx =
∫

∂Ω

(v∂νu− u∂νv) dσ. (1.14)

1.6 Abstract Methods and Variational Formulation

The abstract methods that we present and use in the second part of the book
combine either analytical and geometrical aspects. These techniques are the
core of the branch of Mathematics called Functional Analysis. In order to have
a rough understanding of the main ideas, it could be useful to examine in an
informal way how they come out, working on a specific example.

We consider the equilibrium position of a stretched membrane having the
shape of a square Ω, subject to an external load f (force per unit mass) and
kept at level zero on the boundary ∂Ω.

Since there is no time evolution, the position of the membrane may be
described by a function u = u (x), solution of the (Dirichlet) problem

{−Δu = f in Ω
u = 0 on ∂Ω. (1.15)

Suppose that we want to reformulate the problem (1.15) in order to have
also solution that are less “classical”, namely solutions which are not C2(Ω).
Proceeding formally, we multiply the equation −Δu = f by a smooth function
(that is called test function) vanishing on ∂Ω, and we integrate over Ω. Using
the Gauss’ formula, we obtain

∫

Ω

∇u · ∇v dx =
∫

Ω

fv dx ∀v test (1.16)

which is the variational formulation of the problem (1.15). Now, this equa-
tion has an interesting physical interpretation. The integral in the left hand
side represents the work done by the internal elastic forces, due to a virtual
displacement v. On the other hand,

∫
Ω
fv dx expresses the work done by the

external forces. The solution of (1.16) is the so called variational solution of
the problem (1.15).

Thus, the variational formulation (1.16) states that these two works bal-
ance, which constitutes a version of the principle of virtual work.
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There is more, if we bring into play the energy. In fact, the total potential
energy is proportional to

E (v) =
1
2

∫

Ω

|∇v|2 dx
︸ ︷︷ ︸

internal elastic energy

−
∫

Ω

fv dx
︸ ︷︷ ︸

.

external potential energy

(1.17)

Since nature likes to save energy, the equilibrium position u corresponds to
the minimizer of (1.17) among all the admissible configurations v. This fact
is closely connected with the principle of virtual work and, actually, it is
equivalent to it (see Section 7.4.2).

Thus, changing point of view, instead of looking for a variational solution
of (1.16) we may, equivalently, look for a minimizer of (1.17).

We remark that whenever you seek for the minimizer of a functional it is
important to “choose wisely” the set where you look for it. For instance, if we
are looking for the minimizer of the function

f (x) = (x− π)2

among the rational numbers, it is obvious that such a minimizer does not
exist, and that a wiser choice would have been to search for it among real
numbers. Analogously, for the functional (1.17), we see that it is natural to
require that the gradient of u is square integrable. The minimizer of (1.17)
belongs to the so called Sobolev space H1

0 (Ω), whose elements are exactly the
square integrable functions with square integrable first derivatives, vanishing
on ∂Ω. In view of the physical meaning of E (v), representing energy, we could
call them functions of finite energy!

Furthermore, even theoretically the space H1
0 (Ω) is special and the con-

junction between geometrical and analytical aspects comes here into play. In
fact, for instance, although it is an infinite-dimensional vector space, we may
endow H1

0 (Ω) with a structure which reflects as much as possible the struc-
ture of a finite-dimensional vector space like Rn, where life is obviously easier:
in particular an inner product is introduced (See Section 7.2).

These concepts of Functional Analysis are presented in the Chapter 7,
while the variational formulations of several problems are in the Chapters 8
and 9.

1.7 Numerical approximation methods

Each chapter ends with a brief introduction to numerical approximation tech-
niques for the specific problem at hand, with the double purpose of com-
plementing the theory and extending the range of applications that can be
addressed.

From the theoretical standpoint, numerical simulations help to put into
action and visualize the theoretical properties of the models that will be anal-
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ysed. The presentation of numerical methods is limited to the simplest classes
of methods and the description of the schemes is complemented with a brief
discussion of their fundamental properties, such as stability and convergence.

We believe that this minimal knowledge on numerical approximation
schemes represents an useful tool for training on model applications. Some
case studies are proposed at the end of each chapter, complementing the so-
lution of theoretical exercises. We mention for instance the study of traffic
flow on Chapter 2, of mass transfer on Chapter 3, of elastic deformation of
membranes in Chapter 4 and of pattern formation in biology in Chapter 5.

Among the many different techniques for the approximation of partial dif-
ferential equations, we will focus on finite difference and finite element meth-
ods. Finite difference schemes are more appropriate for the approximation of
problems that are formulated within the classical theory of partial differen-
tial equations, which focuses on the properties of classical solutions. Indeed,
this family of schemes will be applied to the discretization of problems ad-
dressed in the first six chapters. Along Chapters 7, 8, and 9 we will introduce
the Galerkin method for the numerical approximation of variational problems
and in particular we will address the finite element method for the approx-
imation of second order (elliptic) problems. Anyway, we point out that this
material is not sufficient for a complete course on numerical approximation
of partial differential equations, because fundamental topics such as a rigor-
ous approach to approximation theory, error analysis (partially addressed for
finite difference methods in Appendix C) and efficient algorithms for the solu-
tion of large systems of algebraic equations are not properly developed here.
For further studies, we refer the interested reader to the selected bibliography.



Part I

Differential Models



2

Scalar Conservation Laws

2.1 Introduction

In this chapter we consider equations of the form

ut + q (u)x = 0, x ∈ R, t > 0. (2.1)

In general, u = u (x, t) represents the density or the concentration of a physi-
cal quantity Q and q (u) is its flux function1. Equation (2.1) constitutes a link
between density and flux and expresses a (scalar) conservation law for the
following reason. If we consider a control interval [x1, x2], the integral

∫ x2

x1

u (x, t) dx

gives the amount of Q between x1 and x2 at time t. A conservation law states
that, without sources or sinks, the rate of change of Q in the interior of [x1, x2]
is determined by the net flux through the end points of the interval. If the
flux is modeled by a function q = q (u) , the law translates into the equation

d

dt

∫ x2

x1

u (x, t) dx = −q (u (x2, t)) + q (u (x1, t)) , (2.2)

where we assume that q > 0 (q < 0) for a flux along the positive (negative)
direction of the x axes. If u and q are smooth functions, equation (2.2) can
be rewritten in the form

∫ x2

x1

[ut (x, t) + q (u (x, t))x] dx = 0

which implies (2.1), due to the arbitrariness of the interval [x1, x2].

1 The dimensions of q are [mass] × [time]−1.

Salsa S., Vegni F.M.G., Zaretti A., Zunino P.: A Primer on PDEs. Models, Methods, Simulations.
Unitext – La Matematica per il 3+2 65.
DOI 10.1007/978-88-470-2862-3 2, © Springer-Verlag Italia 2013
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The conservation law (2.1) occurs, for instance, in one-dimensional fluid
dynamics where it often describes the formation and propagation of the so
called shock waves. Along a shock curve a solution undergoes a jump disconti-
nuity and an important question is how to reinterpret the differential equation
(2.1) in order to admit discontinuous solutions.

A typical problem associated with equation (2.1) is the initial value prob-
lem: {

ut + q (u)x = 0
u (x, 0) = g (x) (2.3)

where x ∈ R. Sometimes x varies in a half-line or in a finite interval; in these
cases some other conditions have to be added to obtain a well posed problem.

To proceed into the analysis of the model we must decide which type of
flux function we are dealing with, or, in other words, we have to establish a
constitutive relation for q.

Let us use introduce a simple example.

Pollution in a channel

We examine a convection-diffusion model of a pollutant on the surface of a
narrow channel. A water stream of constant speed v transports the pollutant
along the positive direction of the x axis. We can neglect the depth of the water
(thinking to a floating pollutant) and the transverse dimension (thinking of a
very narrow channel).

Our purpose is to derive a mathematical model capable of describing the
evolution of the concentration2 c = c (x, t) of the pollutant. Accordingly, the
integral ∫ x+Δx

x

c (y, t) dy (2.4)

gives the mass inside the interval [x, x+Δx] at time t (Fig. 2.1). In the present
case there are neither sources nor sinks of pollutant, therefore to construct a
model we use the law of mass conservation: the growth rate of the mass

time t

0time speed v x

x x dx+time t

0time speed v x

x x dx+

Fig. 2.1. Pollution in a narrow channel

2 [c] = [mass] × [length]−1.
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contained in an interval [x, x+Δx] equals the net mass flux into [x, x+Δx]
through the end points.

From (2.4), the growth rate of the mass contained in an interval [x, x+Δx]
is given by 3

d

dt

∫ x+Δx

x

c (y, t) dy =
∫ x+Δx

x

ct (y, t) dy. (2.5)

Denote by q = q (x, t) the mass flux4 entering the interval [x, x+Δx], through
the point x at time t. The net mass flux into [x, x+Δx] through the end
points is

q (x, t)− q (x+Δx, t) . (2.6)

Equating (2.5) and (2.6), the law of mass conservation reads
∫ x+Δx

x

ct (y, t) dy = q (x, t)− q (x+Δx, t) .

Dividing by Δx and letting Δx→ 0, we find the basic law

ct = −qx. (2.7)

At this point we have to decide a constitutive relation for q. There are several
possibilities, for instance:

Convection (drift). The flux is determined by the water stream only. This
case corresponds to a bulk of pollutant that is driven by the stream, without
deformation or expansion. Translating into mathematical terms we find

q (x, t) = vc (x, t)

where, we recall, v denotes the stream speed.

Diffusion. The pollutant expands from higher concentration regions to lower
ones. Here we can adopt the so called Fick’s law which reads

q (x, t) = −Dcx (x, t)

where the constant D depends on the pollutant and has physical dimensions
([D] = [length]2 × [time]−1).

In our case, convection and diffusion are both present and therefore we
superpose the two effects, by writing

q (x, t) = vc (x, t)−Dcx (x, t) .

From (2.7) we deduce
ct = Dcxx − vcx (2.8)

which constitutes our mathematical model.
3 Assuming we can take the derivative inside the integral.
4 [q] = [mass] × [time]−1.
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Remark 2.1. Notice that if v and D were non constant, we would get an
equation of the form

ct = (Dcx)x − (vc)x.

2.2 Linear transport equation

We discuss here the case of the pure transport equation

ct + vcx = 0 (2.9)

that is when D = 0 in (2.8). We want to determine the evolution of the
concentration c, by knowing its initial profile

c (x, 0) = g (x) . (2.10)

Introducing the vector
v = vi + j

equation (2.9) can be written in the form

vcx + ct = ∇c · v =0,

pointing out the orthogonality of ∇c and v. But ∇c is orthogonal to the level
lines of c, along which c is constant. Therefore the level lines of c are the
straight lines parallel to v with equation

x = vt+ x0.

These straight lines are called characteristics.
To compute the solution of (2.9), (2.10) at a point (x̄, t̄), t > 0, is now very

simple. Let x = vt+ x0 be the equation of the characteristic passing through
(x̄, t̄). and go back in time along this characteristic from (x̄, t̄) until the point
(x0, 0), of intersection with the x−axes (see Fig. 2.2).

Since c is constant along the characteristic and c (x0, 0) = g (x0), it must be

c (x̄, t̄) = g (x0) = g (x̄− vt̄) .

( ),x t

0x x vt= +

( )0 , 0x x

t ( ),x t

0x x vt= +

( )0 , 0x x

t

Fig. 2.2. Characteristic line for the linear transport problem
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Fig. 2.3. Travelling wave solution of the linear transport equation

Thus, if g ∈ C1 (R), the solution of the initial value problem (2.9), (2.10) is
given by

c (x, t) = g (x− vt) . (2.11)

The solution (2.11) represents a travelling wave, moving with speed v in
the positive x−direction. In Fig. 2.3 an initial profile g (x) = sin (πx)χ[0,1] (x)
is transported in the plane (x, t) along the straight-lines x− t = constant, i.e.
with speed v = 1.

2.2.1 Distributed source

Suppose now we take into account the effect of an external distributed source
of pollutant along the channel, of intensity f = f (x, t), measured in concen-
tration per unit time. Instead of equation (2.2) we have

d

dt

∫ x2

x1

c (x, t) dx = −q (c (x2, t)) + q (c (x1, t)) +
∫ x2

x1

f (x, t) dx, (2.12)

which leads to the nonhomogeneous differential equation

ct + vcx = f (x, t) , (2.13)

since q = v c, with the initial condition

c (x, 0) = g (x) . (2.14)

Again, to compute the value of the solution u at a point (x̄, t̄) is not
difficult. Let x = x0 + vt be the characteristic passing through (x̄, t̄) and
compute u along this characteristic, setting w (t) = c (x0 + vt, t). From (2.13),
w satisfies the ordinary differential equation

dw

dt
= vcx (x0 + vt, t) + ct(x0 + vt, t) = f (x0 + vt, t)

with the initial condition
w (0) = g (x0) .
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Thus

w (t) = g (x0) +
∫ t

0

f (x0 + vs, s) ds.

Letting t = t̄ and recalling that x0 = x̄− vt̄, we get

c (x̄, t̄) = w (t̄) = g (x̄− vt̄) +
∫ t

0

f (x̄− v(t̄− s), s) ds. (2.15)

Since (x̄, t̄) is arbitrary, if g and f are reasonably smooth functions, (2.15) is
our solution.

Proposition 2.1. Let g ∈ C1 (R) and f, fx ∈ C (R× R+). The solution of
the initial value problem

{
ct + vcx = f (x, t) x ∈ R, t > 0

c(x, 0) = g (x) x ∈ R

is given by the formula

c (x, t) = g (x− vt) +
∫ t

0

f (x− v(t− s), s) ds. (2.16)

Example 2.1. The solution of the problem
{
ct + vcx = e−t sinx x ∈ R, t > 0
c (x, 0) = 0 x ∈ R

is given by

c (x, t) =
∫ t

0

e−s sin (x− v(t− s)) ds

=
1

1 + v2

{−e−t (sinx+ v cosx) + [sin(x− vt) + v cos(x− vt)]} .

2.2.2 Extinction and localized source

Suppose that, due to biological decomposition, the pollutant decays at the rate

r (x, t) = −γc (x, t) γ > 0.

Without external sources and diffusion, the mathematical model is

ct + vcx = −γc,

with the initial condition
c (x, 0) = g (x) .
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Setting
u (x, t) = c (x, t) e

γ
v x, (2.17)

we have
ux =

(
cx +

γ

v
c
)
e

γ
v x and ut = cte

γ
v x

and therefore the equation for u is

ut + vux = 0

with the initial condition

u (x, 0) = g (x) e
γ
v x.

From Proposition 2.1, we get

u (x, t) = g (x− vt) e γ
v (x−vt)

and from (2.17)
c (x, t) = g (x− vt) e−γt

which is a damped travelling wave.
We now examine the effect of a source of pollutant placed at a certain

point of the channel, e.g. at x = 0. Typically, one can think of waste material
from industrial machineries. Before the machines start working, for instance
before time t = 0, we assume that the channel is clean. We want to determine
the pollutant concentration, supposing that at x = 0 it is kept at a constant
level β > 0, for t > 0.

To model this source we introduce the Heaviside function

H (t) =
{

1 t ≥ 0
0 t < 0,

and we consider the boundary condition

c (0, t) = βH (t) (2.18)

and the initial condition

c (x, 0) = 0 for x > 0. (2.19)

As before, let u (x, t) = c (x, t) e
γ
v x, which is a solution of ut + vux = 0. Then:

u (x, 0) = c (x, 0) e
γ
v x = 0 x > 0

u (0, t) = c (0, t) = βH (t) .

Since u is constant along the characteristics it must be of the form

u (x, t) = u0 (x− vt) (2.20)
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Fig. 2.4. Propagation of a discontinuity

where u0 is to be determined from the boundary condition (2.18) and the
initial condition (2.19).

To compute u for x < vt, observe that a characteristic leaving the t−axis
from a point (0, t) carries the data βH (t). Therefore, we must have

u0 (−vt) = βH (t) .

Letting s = −vt we get
u0 (s) = βH

(
− s
v

)

and from (2.20),
u (x, t) = βH

(
t− x

v

)
.

This formula gives the solution also in the sector

x > vt, t > 0,

since the characteristics leaving the x−axis carry zero data and hence we
deduce u = c = 0 there. This means that the pollutant has not yet reached
the point x at time t, if x > vt.

Finally, recalling (2.17), we find

c (x, t) = βH
(
t− x

v

)
e−

γ
v x.

Observe that in (0, 0) there is a jump discontinuity which is transported along
the characteristic x = vt. The Fig. 2.4 shows the solution for β = 3, γ = 0.7,
v = 2.

2.2.3 Inflow and outflow characteristics. A stability estimate

The domain in the localized source problem is the quadrant x > 0, t > 0. To
uniquely determine the solution we have used the initial data on the x−axis,
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Fig. 2.5. The arrows indicate where the data should be assigned

x > 0, and the boundary data on the t−axis, t > 0. The problem is therefore
well posed. This is due to the fact that, since v > 0, when time increases,
all the characteristics carry the information (the data) towards the interior
of the quadrant x > 0, t > 0. In other words the characteristics are inflow
characteristics.

More generally, consider the equation

ut + aux = f (x, t)

in the domain x > 0, t > 0, where a is a constant (a �= 0). The characteristics
are the lines

x− at = constant

as shown in Fig. 2.5. If a > 0, we are in the case of the pollutant model: all
the characteristics are inflow and the data must be assigned on both
semi-axes.

If a < 0, the characteristics leaving the x−axis are inflow, while those
leaving the t−axis are outflow. In this case the initial data alone are sufficient
to uniquely determine the solution, while no data has to be assigned on
the semi-axis x = 0, t > 0.

Coherently, a problem in the half-strip 0 < x < R, t > 0, besides the
initial data, requires a data assignment on the inflow boundary, namely

{
u (0, t) = h0 (t) if a > 0

u (R, t) = hR (t) if a < 0.

The resulting initial-boundary value problem is well posed, since the solution
is uniquely determined at every point in the strip by its values along the char-
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acteristics. Moreover, a stability estimate can be proved as follows. Consider,
for instance, the case a > 0 and the problem

⎧⎪⎨
⎪⎩

ut + aux = 0 0 < x < R, t > 0

u (0, t) = h (t) t > 0

u (x, 0) = g (x) 0 < x < R.

(2.21)

Multiply the differential equation by u and write

uut + auux =
1
2
d

dt
u2 +

a

2
d

dx
u2 = 0.

Integrating in x over (0, R) we get:

d

dt

∫ R

0

u2 (x, t) dx+ a
[
u2 (R, t)− u2 (0, t)

]
= 0.

Now use the data u (0, t) = h (t) and the positivity of a to obtain

d

dt

∫ R

0

u2 (x, t) dx ≤ ah2 (t) .

Integrating in t we have, using the initial condition u (x, 0) = g (x),
∫ R

0

u2 (x, t) dx ≤
∫ R

0

g2 (x) dx+ a

∫ t

0

h2 (s) ds. (2.22)

Now, let u1 and u2 be solutions of problem (2.21) with initial data g1, g2 and
boundary data h1, h2 on x = 0. Then, by linearity, w = u1−u2 is a solution of
problem (2.21) with initial data g1− g2 and boundary data h1− h2 on x = 0.
Applying the inequality (2.22) to w we have
∫ R

0

[u1 (x, t)−u2 (x, t)]2dx ≤
∫ R

0

[g1 (x)−g2 (x)]2dx+a
∫ t

0

[h1 (s)−h2 (s)]2ds.

Thus, a least-squares approximation of the data controls a least-squares ap-
proximation of the corresponding solutions. In this sense, the solution of prob-
lem (2.21) depends continuously on the initial data and on the boundary data
on x = 0.We point out that the values of u on x = R do not appear in (2.22).

2.3 Traffic Dynamics

2.3.1 A macroscopic model

From far away, an intense traffic on a highway can be considered as a fluid flow
and described by means of macroscopic variables such as the density of cars5

5 Number of cars per unit length.
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ρ, their average speed v and their flux6 q. The three (more or less regular)
functions ρ, v and q are linked by the simple convection relation

q = vρ.

To construct a model for the evolution of ρ we assume the following hypothe-
ses.
1. There is only one lane and overtaking is not allowed. This is realistic for

instance for traffic in a tunnel. Multi-lanes models with overtaking are
beyond the scope of this introduction. However the model we will present
is often in agreement with observations also in this case.

2. No car “sources” or “sinks”. We consider a road section without exit/
entrance gates.

3. The average speed is not constant and depends on the density alone, that
is

v = v (ρ) .

This rather controversial assumption means that at a certain density the speed
is uniquely determined and that a density change causes an immediate speed
variation. Clearly

v′ (ρ) =
dv

dρ
≤ 0

since we expect the speed to decrease as the density increases.
As in Section 1.1, from hypotheses 2 and 3 we derive the conservation law:

ρt + q(ρ)x = 0 (2.23)

where
q(ρ) = v (ρ) ρ.

We need a constitutive relation for v = v (ρ). When ρ is small, it is reason-
able to assume that the average speed v is more or less equal to the maximal
velocity vm, given by the speed limit. When ρ increases, traffic slows down
and stops at the maximum density ρm (bumper-to-bumper traffic). We adopt
the simplest model consistent with the above considerations, namely

v (ρ) = vm

(
1− ρ

ρm

)
,

so that

q (ρ) = vmρ

(
1− ρ

ρm

)
. (2.24)

Since

q(ρ)x = q′ (ρ) ρx = vm

(
1− 2ρ

ρm

)
�x

6 Cars per unit time.
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equation (2.23) becomes

ρt + vm

(
1− 2ρ

ρm

)

︸ ︷︷ ︸
q′(ρ)

ρx = 0. (2.25)

According to the terminology in Section 1.1, this is quasilinear equation. We
also point out that

q′′ (ρ) = −2vm
ρm

< 0

so that q is strictly concave. We couple the equation (2.25) with the initial
condition

ρ (x, 0) = g (x) . (2.26)

2.3.2 The method of characteristics

We want to solve the initial value problem (2.25), (2.26). To compute the
density ρ at a point (x, t) we follow the idea we used in the homogeneous
linear transport case: to connect the point (x, t) with a point (x0, 0) on the
x−axis, through a curve along which ρis constant (Fig. 2.6).

Clearly, if we manage to find such a curve, that we call characteristic
based at (x0, 0), the value of ρ at (x, t) is given by ρ (x0, 0) = g (x0). More-
over, if this procedure can be repeated for every point (x, t), x ∈ R, t > 0,
then we can compute ρ at every point and the problem is completely solved.
This is the method of characteristics.

Adopting a slightly different point of view, we can implement the above
idea as follows: assume that x = x (t) is the equation of the characteristic
based at the point (x0, 0); along x = x (t) we observe always the same initial
density g (x0) . In other words

ρ (x (t) , t) = g (x0) (2.27)

for every t > 0. If we differentiate the identity (2.27), we get

d

dt
ρ (x (t) , t) = ρx (x (t) , t)x′ (t) + ρt (x (t) , t) = 0 (t > 0). (2.28)

t

x

( ),x t

( )0 , 0x

co n s tan tρ =

t

x

( ),x t

( )0 , 0x

co n s tan tρ =

Fig. 2.6. Characteristic curve
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Fig. 2.7. Characteristic straight line (g0 = g (x0))

On the other hand, (2.25) yields

ρt (x (t) , t) + q′ (g0) ρx (x (t) , t) = 0 (2.29)

so that, subtracting (2.29) from (2.28), we obtain

ρx (x (t) , t)
[
dx

dt
− q′ (g (x0))

]
= 0.

Assuming ρx (x (t) , t) �= 0, we deduce

dx

dt
= q′ (g (x0)) .

Since x (0) = x0 we find

x (t) = q′ (g (x0)) t+ x0. (2.30)

Thus, the characteristics are straight lines with slope q′ (g (x0)) (Fig. 2.7).
Different values of x0 give, in general, different values of the slope.

We can now derive a formula for ρ. To compute ρ (x, t), t > 0, we go back
in time along the characteristic through (x, t) until we reach its base point
(x0, 0). Then ρ (x, t) = g (x0). From (2.30) we have, since x (t) = x,

x0 = x− q′ (g (x0)) t

and finally
ρ (x, t) = g (x− q′ (g (x0)) t) . (2.31)

Formula (2.31) represents a travelling wave propagating with speed
q′ (g (x0)) along the positive x−direction.

We emphasize that q′ (g (x0)) is the local wave speed and it must not be
confused with the traffic velocity. In fact, in general,

dq

dρ
=
d (ρv)
dρ

= v + ρ
dv

dρ
≤ v

since ρ ≥ 0 and dv
dρ ≤ 0.
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Fig. 2.8. Intersection of characteristics

The different nature of the two speeds becomes more evident if we observe
that the wave speed may be negative as well. This means that, while the
traffic advances along the positive x−direction, the disturbance given by the
travelling wave may propagate in the opposite direction. Indeed, in our model
(2.24), dqdρ < 0 when ρ > ρm

2 .

Formula (2.31) seems to be rather satisfactory, since, apparently, it gives
the solution of the initial value problem (2.25), (2.26) at every point. Actually,
a more accurate analysis shows that, even if the initial data g are smooth, the
solution may develop a singularity in finite time (e.g. a jump discontinuity).
When this occurs, the method of characteristics does not work anymore and
formula (2.31) is not effective. A typical case is described in Fig. 2.8: two
characteristics based at different points (x1, 0) e (x2, 0) intersect at the point
(x, t) and the value u (x, t) is not uniquely determined as soon as g (x1) �=
g (x2).

In this case we have to weaken the concept of solution and the computation
technique. We will come back on these questions later. For the moment, we
analyze the method of characteristics in some particularly significant cases.

2.3.3 The green light problem. Rarefaction waves

Suppose that bumper-to-bumper traffic is standing at a red light, placed at
x = 0, while the road ahead is empty. Accordingly, the initial density profile
is

g (x) =

{
ρm for x ≤ 0

0 for x > 0.
(2.32)

At time t = 0 the traffic light turns green and we want to describe the car
flow evolution for t > 0. At the beginning, only the cars nearer to the light
start moving while most remain standing.

Since q′ (ρ) = vm

(
1− 2ρ

ρm

)
, the local wave speed is given by

q′ (g (x0)) =
{−vm for x0 ≤ 0

vm for x0 > 0
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Fig. 2.9. Characteristic for the green light problem

and the characteristics are the straight lines

x = −vmt+ x0 if x0 < 0
x = vmt+ x0 if x0 > 0.

The lines x = vmt and x = −vmt partition the upper half-plane in the three
regions R, S and T , shown in Fig. 2.9.

Inside R we have ρ (x, t) = ρm, while inside T we have ρ (x, t) = 0. Consider
the points on the horizontal line t = t. At the points

(
x, t
) ∈ T the density is

zero: the traffic has not yet arrived in x at time t = t. The front car is located
at the point

x = vmt

which moves at the maximum speed, since ahead the road is empty.
The cars placed at the points

(
x, t
) ∈ R are still standing. The first car

that starts moving at time t = t is at the point

x = −vmt.

In particular, it follows that the green light signal propagates back through the
traffic at the speed vm.

What is the value of the density inside the sector S? No characteristic
extends into S due to the discontinuity of the initial data at the origin, and
the method as it stands does not give any information on the value of ρ
inside S.

A strategy that may give a reasonable answer is the following:

a) approximate the initial data by a continuous function gε, which converges
to g as ε→ 0 at every point x, except 0;

b) construct the solution ρε of the ε−problem by the method of characteris-
tics;

c) let ε→ 0 and check that the limit of ρε is a solution of the original problem.

Clearly we run the risk of constructing many solutions, each one depending
on the way we regularize the initial data, but for the moment we are satisfied
if we construct at least one solution.
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 0
0gε =

x ε=
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Fig. 2.10. Smoothing of the initial data in the green light problem

a) Let us choose as gε the function (Fig. 2.10)

gε (x) =

⎧⎪⎨
⎪⎩

ρm x ≤ 0
ρm(1− x

ε
) 0 < x < ε

0 x ≥ ε.

When ε→ 0, gε (x)→ g (x) for every x �= 0.
b) The characteristics for the ε−problem are:

x = −vmt+ x0 if x0 < 0

x = −vm
(
1− 2

x0

ε

)
t+ x0 if 0 ≤ x0 < ε

x = vmt+ x0 if x0 ≥ ε

since, for 0 ≤ x0 < ε,

q′ (gε (x0)) = vm

(
1− 2gε (x0)

ρm

)
= −vm

(
1− 2

x0

ε

)
.

The characteristics in the region −vmt < x < vmt + ε form a rarefaction
fan (Fig. 2.11). Clearly, ρε (x, t) = 0 for x ≥ vmt +ε and ρε (x, t) = ρm for
x ≤ −vmt. Let now (x, t) belong to the region

−vmt < x < vmt+ ε.

Solving for x0 in the equation of the characteristic x = −vm
(
1− 2

x0

ε

)
t+x0,

we find
x0 = ε

x+ vmt

2vmt+ ε
.

x

mερ ρ= 0ερ =

mx v t= − mx v t ε= +

0 ε x

mερ ρ= 0ερ =

mx v t= − mx v t ε= +

0 ε
Fig. 2.11. Fanlike characteristics
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Fig. 2.12. Characteristics in a rarefaction wave

Fig. 2.13. Profile of a rarefaction wave at time t

Then

ρε (x, t) = gε (x0) = ρm(1− x0

ε
) = ρm

(
1− x+ vmt

2vmt+ ε

)
. (2.33)

c) Letting ε→ 0 in (2.33) we obtain

ρ (x, t) =

⎧⎪⎪⎨
⎪⎪⎩

ρm for x ≤ −vmt
ρm
2

(
1− x

vmt

)
for − vmt < x < vmt

0 for x ≥ vmt

. (2.34)

It is easy to check that ρ is a solution of the equation (2.25) in the regions R,
S, T . For fixed t, the function ρ decreases linearly from ρm to 0 as x varies
from −vmt to vmt. Moreover, ρ is constant on the fan of straight lines

x = ht − vm < h < vm.

These type of solutions are called rarefaction or simple waves (centered
at the origin).

The formula for ρ (x, t) in the sector S can be obtained, a posteriori, by a
formal procedure that emphasizes its structure. The equation of the charac-
teristics can be written in the form

x = vm

(
1− 2g (x0)

ρm

)
t+ x0 = vm

(
1− 2ρ (x, t)

ρm

)
t+ x0.
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because ρ (x, t) = g (x0). Inserting x0 = 0 we obtain

x = vm

(
1− 2ρ (x, t)

ρm

)
t.

Solving for ρ we find exactly

ρ (x, t) =
ρm
2

(
1− x

vmt

)
(t > 0). (2.35)

Since vm
(
1− 2ρ

ρm

)
= q′ (ρ), we see that (2.35) is equivalent to

ρ (x, t) = r
(x
t

)

where r = (q′)−1 is the inverse function of q′. Indeed this is the general form
of a rarefaction wave (centered at the origin) for a conservation law.

We have constructed a continuous solution ρ of the green light problem,
connecting the two constant states ρm and 0 by a rarefaction wave. However,
it is not clear in which sense ρ is a solution across the lines x = ±vmt, since,
there, its derivatives undergo a jump discontinuity. Also, it is not clear whether
or not (2.34) is the only solution. We will return later on these important
points.

2.3.4 Traffic jam ahead. Shock waves. Rankine–Hugoniot condition

Suppose that the initial density profile is

g (x) =

{
1
8ρm for x < 0
ρm for x > 0.

For x > 0, the density is maximal and therefore the traffic is bumper-to-
bumper. The cars on the left move with speed v = 7

8vm so that we expect
congestion propagating back into the traffic. We have

q′ (g (x0)) =

{
3
4vm if x0 < 0
−vm if x0 > 0

and therefore the characteristics are

x =
3
4
vmt+ x0 if x0 < 0

x = −vmt+ x0 if x0 > 0.

The characteristics configuration (Fig. 2.14) shows that the latter intersect
somewhere in finite time and the theory predicts that ρ becomes a “multival-
ued” function of the position. In other words, ρ should assume two different
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Fig. 2.14. Expecting a shock

values at the same point, which clearly makes no sense in our situation. There-
fore we have to admit solutions with jump discontinuities (shocks), but then
we have to reexamine the derivation of the conservation law, because the
smoothness assumption for ρ does not hold anymore.

Thus, let us go back to the conservation of cars in integral form (see (2.2)):

d

dt

∫ x2

x1

ρ (x, t) dx = −q (ρ (x2, t)) + q (ρ (x1, t)) , (2.36)

valid in any control interval [x1, x2]. Suppose now that ρ is a smooth function
except along a curve

x = s (t) t ∈ [t1, t2] ,

that we call shock curve, on which ρ undergoes a jump discontinuity.
For fixed t, let [x1, x2] be an interval containing the discontinuity point

x = s (t) .

From (2.36) we have

d

dt

{∫ s(t)

x1

ρ (y, t) dy +
∫ x2

s(t)

ρ (y, t) dy

}
+ q [ρ (x2, t)]− q [ρ (x1, t)] = 0. (2.37)

The fundamental theorem of calculus gives

d

dt

∫ s(t)

x1

ρ (y, t) dy =
∫ s(t)

x1

ρt (y, t) dy + ρ− (s (t) , t)
ds

dt

and
d

dt

∫ x2

s(t)

ρ (y, t) dy =
∫ x2

s(t)

ρt (y, t) dy − ρ+ (s (t) , t)
ds

dt
,

where

ρ− (s (t) , t) = lim
y↑s(t)

ρ (y, t) , ρ+ (s (t) , t) = lim
y↓s(t)

ρ (y, t) .
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Hence, equation (2.37) becomes
∫ x2

x1

ρt (y, t) dy +
[
ρ− (s (t) , t)− ρ+ (s (t) , t)

] ds
dt

= q [ρ (x1, t)]− q [ρ (x2, t)] .

Letting x2 ↓ s (t) and x1 ↑ s (t) we obtain

[
ρ− (s (t) , t)− ρ+ (s (t) , t)

] ds
dt

= q
[
ρ− (s (t) , t)

]− q [ρ+ (s (t) , t)
]

that is:
ds

dt
=
q [ρ+ (s, t)]− q [ρ− (s, t)]
ρ+ (s, t)− ρ− (s, t)

(2.38)

which is often written in the concise form

ds

dt
=

[q (ρ)]+−
[ρ]+−

where [z]+− denotes the jump of z from left to right.
The relation (2.38) is an ordinary differential equation for s and it is known

as Rankine-Hugoniot condition. The discontinuity propagating along the
shock curve is called shock wave.

The Rankine-Hugoniot condition gives the shock speed ds
dt as the quotient

of the flux jump over the density jump. To determine the shock curve we need
to know its initial point and the values of ρ from both sides of the curve.

Let us apply the above considerations to our traffic problem7. We have

ρ+ = ρm, ρ− =
ρm
8

while
q
[
ρ+
]

= 0 q
[
ρ−
]

=
7
64
vmρm

and (2.38) gives
ds

dt
=
q [ρ+]− q [ρ−]
ρ+ − ρ− = −1

8
vm.

Since clearly s (0) = 0, the shock curve is the straight line

x = −1
8
vmt.

Note that the slope is negative: the shock propagates back with speed − 1
8vm,

as it is revealed by the braking of the cars, slowing down because of a traffic
jam ahead.
7 In the present case the following simple formula holds:

q (w) − q (z)

w − z
= vm

(
1 − w + z

ρm

)
.
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Fig. 2.15. Shock wave

As a consequence, the solution of our problem is given by the following
formula (Fig. 2.15)

ρ (x, t) =

{
1
8ρm x < −1

8vmt

ρm x > −1
8vmt.

The two constant values 1
8ρm and ρm are connected by a shock wave.

2.4 The method of characteristics revisited

The method of characteristics applied to the problem
{
ut + q (u)x = 0
u (x, 0) = g (x)

(2.39)

gives the travelling wave (see (2.31) with x0 = ξ)

u(x, t) = g [x− q′ (g (ξ)) t]
(
q′ =

dq

du

)
(2.40)

with local speed q′ (g (ξ)), in the positive x−direction.
Since u (x, t) ≡ g (ξ) along the characteristic x = q′ (g (ξ)) t + ξ, based at

(ξ, 0), from (2.40) we obtain that u is implicitly defined by the equation

G (x, t, u) ≡ u− g [x− q′ (u) t] = 0. (2.41)

If g and q′ are smooth, the Implicit Function Theorem, implies that equation
(2.41) defines u as a function of (x, t), as long as the condition

Gu (x, t, u) = 1 + tq′′(u)g′ [x− q′ (u) t] �= 0 (2.42)

holds. An immediate consequence is that if

q′′(u) = q′′ (g (ξ)) and g′ [x− q′ (u) t] = g′ (ξ)



38 2 Scalar Conservation Laws

have the same sign, the solution given by the method of characteristics is well
defined and smooth for all times t ≥ 0. This is not surprising, since

g′ (ξ) q′′ (g (ξ)) =
d

dξ
g′ (ξ)

and the condition g′ (ξ) q′′ (g (ξ)) ≥ 0 implies that the characteristic slopes
are nondecreasing, hence they cannot intersect each other.

Precisely, we have:

Proposition 2.2. Suppose that q ∈ C2 (R), g ∈ C1 (R) and g′ (ξ) q′′ (g (ξ)) ≥
0 in R. Then formula (2.41) defines the unique solution u of problem (2.39)
in the half-plane t ≥ 0. Moreover, u (x, t) ∈ C1 (R× [0,∞)).

Thus, if q′′◦g and g′ have the same sign, the characteristics do not intersect.
Note that in the ε−approximation of the green light problem, q is concave
and gε is decreasing. Although gε is not smooth, the characteristics do not
intersect and ρε is well defined for all times t > 0. In the limit as ε → 0,
the discontinuity of g reappears and the fan of characteristics produces a
rarefaction wave.

What happens if q′′ (g (ξ)) and g′ (ξ) have a different sign in some interval
[a, b]? Proposition 2.2 still holds for small times, since Gu ∼ 1 if t ∼ 0, but
when time goes on we expect the formation of a shock. Indeed, suppose, for
instance, that q is concave and g is increasing. The family of characteristics
based on a point in the interval [a, b] is

x = q′ (g (ξ)) t+ ξ ξ ∈ [a, b] . (2.43)

When ξ increases, g increases as well, while q′ (g (ξ)) decreases so that we
expect intersection of characteristics along a shock curve. The main question
is to find the positive time ts (breaking time) and the location xs of first
appearance of the shock.

According to the above discussion, the breaking time must coincide with
the first time t at which the expression

Gu (x, t, u) = 1 + tq′′(u)g′ [x− q′ (u) t]
becomes zero. Computing Gu along the characteristic (2.43), we have u = g (ξ)
and

Gu (x, t, u) = 1 + tq′′(g (ξ))g′(ξ).

Assume that the nonnegative function

z (ξ) = −q′′(g(ξ))g′(ξ)
attains its positive maximum z (ξM ) only at the point ξM ∈ [a, b]. Then

ts = min
ξ∈[a,b]

1
z (ξ)

=
1

z (ξM )
. (2.44)
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Since xs belongs to the characteristics x = q′ (g (ξM )) t+ ξM , we find

xs =
q′ (g (ξM ))
z (ξM )

+ ξM . (2.45)

Remark 2.2. The point (xs, ts) has an interesting geometrical meaning. In
fact, it turns out that if q′′(g(ξ))g′(ξ) < 0, the family of characteristics (2.43)
admits an envelope and (xs, ts) is the point on the envelope with minimum
time coordinate. To find the envelope8 it is enough to eliminate the parameter
ξ from equations (2.43) and

0 = q′′(g(ξ))g′(ξ)t+ 1,

obtained by differentiation of (2.43) with respect to ξ. Clearly, the envelope
has not to be confused with the shock curve.

Example 2.2. Consider the initial value problem
{
ut + (1− 2u)ux = 0
u (x, 0) = arctanx.

(2.46)

We have q (u) = u − u2, q′ (u) = 1 − 2u, q′′ (u) = −2, and g (ξ) = arctan ξ,
g′ (ξ) = 1/

(
1 + ξ2

)
. Therefore, the function

z (ξ) = −q′′(g(ξ))g′(ξ) =
2(

1 + ξ2
)

has a maximum at ξM = 0 and z (0) = 2. The breaking-time is tS = 1/2 and
xS = 1/2. Thus, the shock curve starts from (1/2, 1/2) . For 0 ≤ t < 1/2 the
solution u is smooth and implicitly defined by the equation

u− arctan [x− (1− 2u) t] = 0. (2.47)

After t = 1/2, equation (2.47) defines u as a multivalued function of (x, t) and
does not define a solution anymore. Fig. 2.16 shows what happens for t = 1/4,
1/2 and 1. Note that the common point of intersection is (1/2, tan 1/2) which
is not the first shock point.

How does the solution evolve after t = 1/2? We have to insert a shock wave
into the multivalued graph in Fig. 2.16 in such a way the conservation law is
8 Recall that the envelope of a family of curves φ (x, t, ξ) = 0, depending on the

parameter ξ, is a curve ψ (x, t) = 0 tangent at each one of its points to a curve of
the family. If the family of curves φ (x, t, ξ) = 0 has an envelope, its parametric
equations are obtained by solving the system

{
φ (x, t, ξ) = 0
φξ (x, t, ξ) = 0

with respect to x and t.
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Fig. 2.16. Breaking time for problem (2.46)
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Fig. 2.17. Inserting a shock wave by the Whitham equal-area rule

preserved. The correct insertion point is prescribed exactly by the Rankine–
Hugoniot condition. It turns out that this corresponds to cutting off from the
multivalued profile two equal area lobes A and B as described in Fig. 2.17
(G.B. Whitham equal area rule9).

2.5 Generalized solutions. Uniqueness and entropy
condition

We have seen that the method of characteristics is not sufficient, in general,
to determine the solution of an initial value problem for all times t > 0. In
the green light problem a rarefaction wave was used to construct the solution
in a region not covered by characteristics. In the traffic jam case the solution
undergoes a shock, propagating according to the Rankine-Hugoniot condition.

9 The equal-area rule holds for a general conservation law (see [27]).
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We will call rarefaction waves and shock waves obeying the Rankine-
Hugoniot condition generalized solutions.

Some questions arise naturally.

• Is there always a unique generalized solution?
• If uniqueness fails, is there a criterion to select the “physically correct”

solution?

These questions require a deeper analysis as the following example shows.

Example 2.3 (Non uniqueness). Imagine a flux of particles along the
x−axis, each one moving with constant speed. Suppose that u = u (x, t) rep-
resents the velocity field, which gives the speed of the particle located at x at
time t. If x = x (t) is the path of a particle, its velocity at time t is given by

ẋ (t) = u (x (t) , t) ≡ constant.

Thus, we have

0 =
d

dt
u (x (t) , t) = ut (x (t) , t) + ux (x (t) , t) ẋ (t)

= ut (x (t) , t) + ux (x (t) , t) u (x (t) , t) .

Therefore u = u (x, t) satisfies Burgers’ equation

ut + uux = ut +
(
u2

2

)

x

= 0 (2.48)

which is a conservation law with q (u) = u2/2. Note that q is strictly convex:
q′ (u) = u and q′′ (u) = 1. We couple (2.48) with the initial condition u (x, 0) =
g (x), where

g (x) =

{
0 x < 0
1 x > 0.

The characteristics are the straight lines

x = g (x0) t+ x0. (2.49)

t

x

( ), 0u x t =

( ), 1u x t =

( ), /u x t x t=t

x

( ), 0u x t =

( ), 1u x t =

( ), /u x t x t=

Fig. 2.18. The rarefaction wave of Example 2.3
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Therefore, u = 0 if x < 0 and u = 1 if x > t. The region S = {0 < x < t}
is not covered by characteristics. As in the green light problem, we connect
the states 0 and 1 through a rarefaction wave. Since q′ (u) = u, we have
r (s) = (q′)−1 (s) = s, so that we construct the weak solution.

u (x, t) =

⎧⎪⎪⎨
⎪⎪⎩

0 x ≤ 0
x

t
0 < x < t

1 x ≥ t.

(2.50)

However, u is not the unique weak solution! There exists also a shock
wave solution. In fact, since

u− = 0, u+ = 1, q (u−) = 0, q (u+) =
1
2
,

the Rankine–Hugoniot condition yields

ṡ (t) =
q(u+)− q(u−)
u+ − u− =

1
2
.

Given the discontinuity at x = 0 of the initial data, the shock curve starts at
s (0) = 0 and it is the straight line

x =
t

2
.

Hence, the function

w (x, t) =

{
0 x < t

2

1 x > t
2

is another weak solution (Fig. 2.19). As we shall see, this shock wave has to
be considered not physically acceptable.

The above example shows that the answer to the first question is negative.
Thus, we need a criterion to establish which one is the physically correct
solution.

t

x

( ), 0u x t =

( ), 1u x t =

/ 2x t=t

x

( ), 0u x t =

( ), 1u x t =

/ 2x t=

Fig. 2.19. A non physical shock
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The answer is not elementary and comes from an analogy with gas dy-
namics, according to which the entropy increases across a shock curve. In
fact, there are a few selection criteria, called entropy criteria, that in some
generalized sense translate the same idea. A rarefaction wave, being contin-
uous satisfies automatically these criteria. For a shock wave the following
condition is known as Lax entropy condition.

Definition 2.1. Let u be a shock wave, generalized solution of the conserva-
tion law ut+ q (u)x = 0, with q convex or concave. We say that u satisfies the
Lax entropy condition if, across the shock curve:

q′
(
u+
)
<
ds

dt
< q′

(
u−
)
. (2.51)

A shock wave satisfying (2.51) is said to be an entropy solution.
The geometrical meaning of (2.51) is remarkable: the slope of a shock curve

is less than the slope of the left-characteristics and greater than the slope of
the right-characteristics. Roughly, the characteristics hit forward in time the
shock line, so that it is not possible to go back in time along characteristics
and hit a shock line, expressing a sort of irreversibility after a shock.

The above considerations lead us to select the entropy solutions as the only
physically meaningful shocks. On the other hand, if the characteristics hit a
shock curve backward in time, the shock wave is to be considered non-physical.

Thus, in the non-uniqueness Example 2.3, the solution w represents a non-
physical shock since it does not satisfy the entropy condition. The correct
solution is therefore the simple wave (2.50). The following important result
holds (see e.g. Smoller [16]).

Theorem 2.1. If q ∈ C2 (R) is convex (or concave) and g is bounded, there
exists a unique entropy solution of the problem

{
ut + q (u)x = 0 x ∈ R, t > 0
u (x, 0) = g (x) x ∈ R.

(2.52)

Example 2.4. We apply Theorem 2.1 to solve explicitly problem (2.52) with
initial data

g (x) =

{
u+ x > 0
u− x < 0,

(2.53)

where u+and u− are constants, u+ �= u− and q ∈ C2 (R), and q′′ ≥ h > 0.
This problem is known as Riemann problem, and it is particularly im-

portant for the numerical approximation of more complex problems.
Now, we claim and prove the following:

a) If u+ < u−, the unique entropy solution is the shock wave

u (x, t) =

{
u+

x
t >

ds
dt

u− x
t <

ds
dt

(2.54)
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where
ds

dt
=
q(u+)− q(u−)
u+ − u− .

b) If u+ > u−, the unique entropy solution is the rarefaction wave

u (x, t) =

⎧⎪⎪⎨
⎪⎪⎩

u− x
t < q′ (u−)

r
(
x
t

)
q′ (u−) < x

t < q′ (u+)

u+
x
t > q′ (u+)

where r = (q′)−1, is the inverse function of q′.

Proof (a). The shock wave (2.54) satisfies the Rankine Hugoniot condition
and therefore it is clearly a generalized solution. Moreover, since u+ < u− the
Lax entropy condition holds as well, and u is the unique entropy solution of
problem (2.53) by Theorem 2.1.

Proof (b). Since

r (q′ (u+)) = u+ and r (q′ (u−)) = u−,

u is continuous in the half-plane t > 0 and we have only to check that u
satisfies the equation ut + q (u)x = 0 in the region

S =
{

(x, t) : q′ (u−) <
x

t
< q′ (u+)

}
.

Let u (x, t) = r
(
x
t

)
.We have:

ut + q (u)x = −r′
(x
t

) x
t2

+ q′ (r) r′
(x
t

) 1
t

= r′
(x
t

) 1
t

[
q′ (r)− x

t

]
≡ 0.

Thus, u is a generalized solution in the upper half-plane. �

2.6 The Vanishing Viscosity Method

There is another instructive and perhaps more natural way to construct dis-
continuous solutions of the conservation law

ut + q (u)x = 0, (2.55)

the so called vanishing viscosity method. This method consists in viewing
equation (2.55) as the limit for ε→ 0+ of the equation

ut + q (u)x = εuxx, (2.56)

that corresponds to choosing the flux function

q̃ (u, ux) = q (u)− εux, (2.57)
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where ε is a small positive number. Although we recognize εuxx as a diffusion
term, this kind of model arises mostly in fluid dynamics where u is the fluid
velocity and ε its viscosity, from which comes the name of the method.

There are several good reasons in favor of this approach. First of all, a
small amount of diffusion or viscosity makes the mathematical model more
realistic in most applications. Note that εuxx becomes relevant only when uxx
is large, that is in a region where ux changes rapidly and a shock occurs. For
instance in our model of traffic dynamics, it is natural to assume that drivers
would slow down when they see increased (relative) density ahead. Thus, an
appropriate model for their velocity is

ṽ (ρ) = v (ρ)− ερx
ρ

which corresponds to q̃ (ρ) = ρv (ρ)− ερx for the flow-rate of cars.
Another reason comes from the fact that shocks constructed by the van-

ishing viscosity method are physical shocks, since they satisfy the entropy
inequality.

As for the heat equation, in principle we expect to obtain smooth solutions
even with discontinuous initial data. On the other hand, the nonlinear term
may force the evolution towards a shock wave.

Here we are interested in solutions of (2.56) connecting two constant states
uL and uR, that is, satisfying the conditions

lim
x→−∞u (x, t) = uL, lim

x→+∞u (x, t) = uR. (2.58)

Since we are looking for shock waves, it is reasonable to seek a solution de-
pending only on a coordinate ξ = x − vt moving with the (unknown) shock
speed v. Thus, let us look for bounded travelling waves solution of (2.56) of
the form

u (x, t) = U (x− vt) ≡ U (ξ)

with
U (−∞) = uL and U (+∞) = uR (2.59)

and uL �= uR. We have

ut = −v dU
dξ

, ux =
dU

dξ
, uxx =

d2U

dξ2

so that we obtain for U the ordinary differential equation

(q′ (U)− v) dU
dξ

= ε
d2U

dξ2

which can be integrated to yield

q (U)− vU +A = ε
dU

dξ
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where A is an arbitrary constant. Assuming that
dU

dξ
→ 0 as ξ → ±∞ and

using (2.59) we get

q (uL)− vuL +A = 0 and q (uR)− vuR +A = 0. (2.60)

Subtracting these two equations we find

v =
q (uR)− q (uL)

uR − uL ≡ v̄. (2.61)

and then A =
−q (uR)uL + q (uL)uR

uR − uL ≡ Ā.

Thus, if there exists a travelling wave solution satisfying conditions (2.58),
it moves with a speed v̄ predicted by the Rankine–Hugoniot formula. Still it
is not clear whether such travelling wave solution exists. In order to verify
this fact, examine the equation

ε
dU

dξ
= q (U)− v̄U + Ā. (2.62)

From (2.60), equation (2.62) has the two equilibria U = uR and U = uL.
A bounded travelling wave connecting uR and uL corresponds to a solution
of (2.62) starting from a point ξ0 between uR and uL. On the other hand,
conditions (2.59) require uR to be asymptotically stable and uL unstable. At
this point, we need to have information on the shape of q.

Assume q′′ < 0. Then the phase diagram for equation (2.62) is described
in Fig. (2.20) for the two cases uL > uR and uL < uR. Between uL and
uR, q (U) − v̄U + Ā > 0 and, as the arrows indicate, U is increasing. We see
that only the case uL < uR is compatible with conditions (2.59) and this
corresponds precisely to a shock formation for the non diffusive conservation
law. Thus,

q′ (uL)− v̄ > 0 and q′ (uR)− v̄ < 0

or
q′ (uR) < v̄ < q′ (uL) (2.63)

which is the entropy inequality.

Ru
Lu

)a

U RuLu

)b

U

( )z q U vU A= − +

Fig. 2.20. Case b) only is compatible with conditions (2.58)
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Similarly, if q′′ > 0, a travelling wave solution connecting the two states
uR and uL exists only if uL > uR and (2.63) holds.

Let us see what happens when ε → 0. Assume q′′ < 0. For ε small, we
expect that our travelling wave increases abruptly from a value U (ξ1) close to
uL to a value U (ξ2) close to uR within a narrow region called the transition
layer. For instance we may choose ξ1 and ξ2 such that

U (ξ2)− U (ξ1) ≥ (1− β)(uR − uL)

with a positive β, very close to 0. We call the number κ = ξ2 − ξ1 thickness
of the transition layer. To compute it, we separate the variables U and ξ in
(2.62) and integrate over (ξ1, ξ2); this yields

ξ2 − ξ1 = ε

∫ U(ξ2)

U(ξ1)

ds

q (s)− vs+ Ā
.

Thus, the thickness of the transition layer is proportional to ε. As ε→ 0, the
transition region becomes more and more narrow and eventually a shock wave
that satisfies the entropy inequality is obtained.

This phenomenon is clearly seen in the important case of viscous Burgers’
equation that we examine in more details in the next subsection.

Example 2.5. Burgers’ shock solution. Let us determine a travelling wave
solution of the viscous Burgers’ equation

ut + uux = εuxx (2.64)

connecting the states uL = 1 and uR = 0. Note that q (u) = u2/2 is convex.
Then v̄ = 1/2 and Ā = 0. Equation (2.62) becomes

2ε
dU

dξ
= U2 − U

0

0.5

x

t

Fig. 2.21. The travelling wave in Example 2.5
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that can be easily integrated to give

U (ξ) =
1

1 + exp
(
ξ

2ε

) .

Thus the travelling wave is given by

u (x, t) = U

(
x− t

2

)
=

1

1 + exp
(

2x− t
4ε

) . (2.65)

When ε→ 0,

u (x, t) → w (x, t) =
{

0 x > t/2
1 x < t/2

which is the entropy shock solution for the non viscous Burgers’ equation with
initial data 1 if x < 0 and 0 if x > 0.

2.6.1 The viscous Burgers’ equation

The viscous Burgers’ equation is one of the most celebrated examples of non-
linear diffusion equation. It arose (Burger, 1948) as a simplified form of the
Navier-Stokes equation, in an attempt to study some aspects of turbulence.
It appears also in gas dynamics, in the theory of sound waves and in traffic
flow modelling and it constitutes a basic example of competition between dis-
sipation (due to linear diffusion) and steepening (shock formation due to the
nonlinear transport term uux).

The success of Burgers’ equation is also due to the rather surprising fact
that the initial value problem can be solved analytically. In fact, via the so
called Hopf-Cole transformation, Burgers’ equation is converted into the heat
equation. Let us see how this can be done. Write the equation in the form

∂u

∂t
+

∂

∂x

(
1
2
u2 − εux

)
= 0.

Then, the planar vector field (−u, 1
2u

2 − εux) is curl-free and therefore there
exists a potential ψ = ψ (x, t) such that

ψx = −u and ψt =
1
2
u2 − εux.

Thus, ψ solves the equation

ψt =
1
2
ψ2
x + εψxx. (2.66)

Now we try to get rid of the quadratic term letting ψ = g (ϕ), with g to be
chosen. We have

ψt = g′ (ϕ)ϕt, ψx = g′ (ϕ)ϕx, ψxx = g′′ (ϕ) (ϕx)
2 + g′ (ϕ)ϕxx.
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Substituting into (2.66) we find

g′ (ϕ) [ϕt − εϕxx] = [
1
2
(g′ (ϕ))2 + εg′′ (ϕ)](ϕx)

2.

Hence, if we choose g (s) = 2ε log s, then the right hand side vanishes and we
are left with

ϕt − εϕxx = 0. (2.67)

Thus
ψ = 2ε logϕ

and from u = −ψx we obtain

u = −2ε
ϕx
ϕ

(2.68)

which is the Hopf-Cole transformation. An initial data

u (x, 0) = u0 (x) (2.69)

is transformed into an initial data of the form10

ϕ0 (x) = exp
{
−
∫ x

a

u0 (z)
2ε

dz

}
(a ∈ R). (2.70)

As we will see in the next chapter, using formula (3.72), if

1
x2

∫ x

a

u0 (z) dz → 0 as |x| → ∞,

the initial value problem (2.67), (2.70) has a unique smooth solution in the
half-plane t > 0, given by formula

ϕ (x, t) =
1√
4πεt

∫ +∞

−∞
ϕ0 (y) exp

(
− (x− y)2

4εt

)
dy.

This solution is continuous with its x−derivative up to t = 0 at any continuity
point of u0. Consequently, using (2.68), problem (2.64) has a unique smooth
solution in the half-plane t > 0, continuous up to t = 0 at any continuity
point of u0, given by

u (x, t) =

∫
+∞
−∞

x− y
t

ϕ0 (y) exp

(
− (x− y)2

4εt

)
dy

∫
+∞
−∞ϕ0 (y) exp

(
− (x− y)2

4εt

)
dy

. (2.71)

We use formula (2.71) to solve an initial pulse problem.
10 The choice of a is arbitrary and does not affect the value of u.
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Example 2.6. Initial pulse. Consider problem (2.64) with the initial condi-
tion

u0 (x) = Mδ (x)

where δ denotes the Dirac density at the origin. We have, choosing a = 1,

ϕ0 (x) = exp
{
−
∫ x

1

u0 (y)
2ε

dy

}
=

⎧⎨
⎩

1 x > 0

exp
(
M

2ε

)
x < 0.

Formula (2.71), gives, after some routine calculations,

u (x, t) =

√
4ε
πt

exp
(
− x2

4εt

)

2
exp (M/2ε)− 1

+
√
π

2

[
1− erf

(
x√
4εt

)]

where
erf(x) =

∫ x

0

e−z
2
dz

is the error function.

0

x

( ) ( )0

1

0.08
u x xδ=

t

Fig. 2.22. Evolution of an initial pulse for the viscous Burgers’ equation (M =
1, ε = 0.04)
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2.7 Numerical methods

2.7.1 Finite difference approximation of scalar conservation laws

Let us consider equation (2.21) on a domain x ∈ (0, R), t > 0. The basic idea
of the finite difference method consists in building up an approximation of the
problem by replacing the derivatives in the differential equation by a difference
quotient. For the scalar conservation law ut+aux = 0 this approximation has
to be carried out for both time and space derivatives.

First, let us define a discretization of the physical domain into computa-
tional nodes or cells. For the particular case at hand, it is more convenient to
look for an approximation of u(x, t) in the nodes (xi, tn) defined as (see also
Fig. 2.23)

xi = i h with h =
R

N
and i,N ∈ N, tn = n τ with n ∈ N

corresponding to a uniform partition of the time and space domains. The
collection of the nodes is called computational grid or mesh.

Second, let us use the computational nodes to define suitable difference
quotients for the approximation of time and space derivatives of u, respec-
tively,

ut(xi, tn) =
1
τ

(
u(xi, tn+1)− u(xi, tn)

)
+O(τ ) (2.72)

ux(xi, tn) =

⎧⎨
⎩

1
h

(
u(xi, tn)− u(xi−1, t

n)
)

+O(h)

1
h

(
u(xi+1, t

n)− u(xi, tn)
)

+O(h).
(2.73)

x

t

(xi, tn+1)

(xi−1, t
n) (xi, tn)

physical
characteristic line

numerical
characteristic line

x

t

h

|aτ |

Fig. 2.23. On the left we show the computational grid for the approximation of
ut+aux = 0, where the nodes involved to build up the upwind scheme with a > 0 are
highlighted. On the right we provide a graphical interpretation of the CFL condition
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Let uni be an approximation of u(xi, tn), solution of problem (2.21). Rewriting
the above difference quotients for uni and replacing the corresponding expres-
sions into ut + aux = 0, we obtain the following approximation scheme for
problem (2.21) in the particular case a > 0,

1
τ

(
un+1
i − uni

)
+
a

h

(
uni − uni−1

)
= 0

un+1
i − uni + aλ

(
uni − uni−1

)
= 0, where λ =

τ

h
.

According to the difference quotients adopted in (2.72), we have obtained a
one-sided scheme referring to space approximation, because the scheme only
involves the nodes xi and xi−1, forward in time, because the time discretiza-
tion is performed moving forward with respect to the reference time level tn.
Similarly to the continuum model, by this way the numerical scheme propa-
gates the information in the same direction of the characteristic lines, when
a > 0. Then, the scheme has to be modified to maintain this good property
when a < 0. To this purpose, we take the following difference quotient for the
space approximation,

aux(xi, tn) �
⎧⎨
⎩
a
h

(
uni − uni−1

)
if a > 0

a
h

(
uni+1 − uni

)
if a < 0

�1
2
a

h

(
uni+1 − uni−1

)− 1
2
|a|
h

(
uni+1 − 2uni + uni−1

)
,

such that the so called upwind scheme is obtained,

un+1
i = uni −

1
2
aλ
(
uni+1 − uni−1

)
+

1
2
|a|λ(uni+1 − 2uni + uni−1

)
. (2.74)

Expressions (2.72) and (2.73) show that the upwind scheme is obtained by
combining difference quotients that are first order accurate with respect to
both space and time derivatives. As a result of that, we conclude that the
scheme is first order accurate. We refer to Appendix C for a precise definition
of accuracy and local truncation error.

We conclude this minimal introduction to finite difference approximation
of scalar conservation laws by addressing some considerations about stabil-
ity, which clarify the behavior of the approximate solution compared to the
original model and represent a necessary requirement to make sure that the
numerical approximation converges to the exact solution u. We briefly ad-
dress the CFL condition (from Courant-Friedrichs-Lewy). It requires that
the speed at which the scheme propagates the initial state must not be smaller
than the characteristic speed of the model, namely |a| for the case ut+aux = 0.
As shown in Fig. 2.23, for any interval (tn, tn+1) on the computational mesh,
such condition is equivalent to

|aτ | ≤ h that is |aλ| ≤ 1.
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The importance of the CFL condition could be summarized as follows. We
notice that we could affect the exact solution of the model in (xi, tn+1) by
suitably modifying the initial state in a point x0 = xi−atn+1. If this condition
is not satisfied, the point x0 falls far enough from xi such that the numerical
solution remains unchanged, namely, x0 falls outside the domain of depen-
dence of the numerical scheme relative to the node (xi, tn+1). As a result of
that, we conclude that the numerical scheme can not converge to the exact
solution for τ , h→ 0 outside the range of space and time discretization steps,
τ , h respectively, that satisfy the CFL condition.

In Appendix C we present a more rigorous, yet incomplete analysis of finite
difference methods for scalar and linear initial value problems.11

2.8 Exercises

2.1. Consider the Green light problem described in equation (2.25), with the
initial condition ρ(x, 0) = g(x), where g is assigned in (2.32) and calculate the
car density at the light for t > 0. Then, find the time that a car located at t0
in the position x0 = −vmt0 takes to reach the light.

2.2. Use the traffic dynamics introduced in equation (2.25) to describe the
density ρ = ρ(x, t) of cars on a straight highway supposing that the initial
density is

ρ0 =
{
a ρm x < 0
ρm/2 x > 0.

Describe, with respect to the parameter a ∈ [0, 1], the evolution of ρ as t > 0:
find the characteristics, the shock curve and find a solution in the half plane
(x, t), for t > 0. Give an interpretation of the result.

2.3. Study the problem (Burgers equation)
{
ut + uux = 0 x ∈ R, t > 0
u (x, 0) = g (x) x ∈ R

when the initial data g(x), respectively, is:

a)

⎧⎨
⎩

0 if x < 0
1 if 0 < x < 1
0 if x > 1

b)

⎧⎨
⎩

1 if x < 0
2 if 0 < x < 1
0 if x > 1

c)

⎧⎨
⎩

1 if x ≤ 0
1− x if 0 < x < 1
0 if x ≥ 1.

2.4. The conservation law

ut + u3ux = 0 x ∈ R, t > 0
11 We refer the reader to Quarteroni [43] and Le Veque [40] for a detailed treatment

of this matter.
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is given. Find the solution using the characteristics technique (highlighting
rarefaction or shock waves) associated to the initial condition

u(x, 0) = g(x) =

⎧⎨
⎩

0 if x < 0
1 if 0 < x < 1
0 if x > 1.

2.5. Draw the characteristics and describe the evolution as t → +∞ of the
solution of the initial value problem

⎧⎨
⎩
ut + uux = 0 t > 0, x ∈ R
u (x, 0) =

{
sinx
0

0 < x < π
x ≤ 0 or x ≥ π.

2.6. Consider the following problem (a > 0)
⎧⎨
⎩
ut + aux = f(x, t) 0 < x < R, t > 0
u(0, t) = 0 t > 0
u(x, 0) = 0 0 < x < R.

Prove the stability estimate
∫ R

0

u2(x, t)dx ≤ et
∫ t

0

∫ R

0

f2(x, s)dx ds, t > 0.

2.7 (Traffic in a tunnel). A rather realistic model for the car speed in a
very long tunnel is the following:

v(ρ) =

{
vm 0 ≤ ρ ≤ ρc

λ log
(
ρm

ρ

)
ρc ≤ ρ ≤ ρm

where
λ =

vm
log(ρm/ρc)

.

Observe that v is continuous also at ρc = ρme
−vm/λ, which represents a critical

density : if ρ ≤ ρc, the drivers are free to reach the speed limit. Typical values
are: ρc = 7car/Km, vm = 90 KM/h, ρm = 110 car/Km, vm/λ = 2.75.

Assume that the entrance is placed at x = 0 and that the cars are waiting
(with the maximum density) the tunnel is open to the traffic at time t = 0.
Thus, the initial density is

ρ =
{
ρm x < 0
0 x > 0.

a) Determine density and car speed; draw their graphs as a function of time.
b) Determine and draw in the x, t plane the trajectory of a car initially at

x = x0, and compute the time it takes to enter the tunnel.
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2.8. Consider the conservation law

ut + u5ux = 0

in R× (0,+∞). Find an explicit solution of the problem associated with the
initial data

g1(x) =
{

0 x ≤ 0
1 x > 0 g2(x) =

{
1 x ≤ 0
0 x > 0.

Then, represent the solutions at time t = 1.

2.9. Show that, for every α > 1, the function

uα(x, t) =

⎧⎪⎪⎨
⎪⎪⎩

−1 2x < (1− α)t
−α (1− α)t < 2x < 0
α 0 < 2x < (α− 1)t
1 (α− 1)t < 2x

is a generalized solution of the problem
⎧⎨
⎩
ut + uux = 0 t > 0, x ∈ R
u(x, 0) =

{−1 x < 0
1 x > 0.

Is it also an entropy solution, at least for some α?

2.10. Using the Hopf-Cole transformation, solve the following problem for the
viscous Burgers equation

{
ut + uux = εuxx t > 0, x ∈ R
u(0, x) = H x ∈ R

where H is the Heavyside function. Show that, as t→ +∞, u(x, t) converges
to a traveling wave similar to (2.65).

2.8.1 Numerical approximation of a constant coefficient scalar
conservation law

We apply the upwind scheme to the discretization of the following problem,
where periodic boundary conditions are equivalent to consider a periodic ini-
tial state over the real line,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ut + ux = 0 for − 1 < x < 15, t > 0

u(−1, t) = u(15, t) for t > 0

u(x, 0) =

{
sin(x) 0 < x < π

0 elsewhere.
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Fig. 2.24. A constant coefficient scalar conservation law approximated by means
of the upwind scheme. The numerical solution is represented on the (x, t) plane at
the top and at times t = 0, 2, 4, 8 on the bottom panels

Fig. 2.24 shows the initial state and the numerical solution at times t =
0, 2, 4, 8, obtained on a computational mesh characterized by the discretization
steps h = τ = 0.2.

These results show that the scheme correctly captures the propagation of
the initial state from left to right, when a > 0. However, the peak of the
numerical solution progressively decreases, in contrast with the fact that the
initial state should simply propagate by translation. This is put into evidence
by the plots in Fig. 2.24. We say that the upwind method features a diffusive
behavior, which can be justified by means of a straightforward manipulation
of the scheme. Let us assume that the exact solution is regular enough to
perform a Taylor expansion of u(xi, tn). It is easily proved that

1
2
a

h

(
u(xi+1, t

n)− u(xi−1, t
n)
)− 1

2
|a|
h

(
u(xi+1, t

n)− 2u(xi, tn) + u(xi−1, t
n)
)

= aux(xi, tn)− |a|h2 uxx(xi, tn) +O(h2).
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Then, we observe that the upwind method can be reinterpreted as an approx-
imation scheme for the model ut + aux − 1

2 |a|λuxx = 0. However, the upwind
method turns out to be more accurate with respect to the new equation than
to the original model. This shows that the upwind scheme naturally embeds
into the approximation an artificial diffusion term with diffusivity proportional
to 1

2 |a|λ. Although such effect is at the basis of the good stability properties
of the scheme, it is not desirable for the approximation of steep gradients or
discontinuous solutions, as it will be put into evidence by the forthcoming
examples.

2.8.2 Numerical approximation of Burgers equation

Let us apply upwind method to the following problem governed by Burgers
equation, ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ut + uux = 0 for − 1 < x < 15, t > 0

u(−1, t) = u(15, t) for t > 0

u(x, 0) =

{
sin(x) 0 < x < π

0 elsewhere

(2.75)

whose solution, explored in Exercise 2.5 by means of the method of charac-
teristics, is given by a combination of a rarefaction fan with a compression,
the latter giving rise to a shock wave. For this example of nonlinear scalar
conservation law, computing numerical approximation is by far more inter-
esting than for the linear case. In particular, focusing on the approximation
of the shock wave, from Fig. 2.25 (lower left panel) we notice that the up-
wind scheme tends to smooth out the discontinuous exact solution. In order
to obtain a more accurate approximation, advanced high-resolution methods
should be applied (see Le Veque [40], Cap. 16). They consist on second order
accurate schemes suitably modified to minimize the spurious oscillations that
may appear when approximating very steep gradients. Fig. 2.25 (right) shows
the improvement obtained using these methods instead of the upwind scheme
for the Burgers equation.

2.8.3 Numerical approximation of traffic dynamics

Let us consider the model for traffic flow summarized in (2.24). By applying
for simplicity unit coefficients vm = ρm = 1, we get

⎧⎪⎨
⎪⎩

ρt + (1− 2ρ)ρx = 0 for − 5 < x < 5, t > 0
ρ(−3, t) = ρ(3, t) for t > 0
ρ(x, 0) = 0.2 exp

(− x2
)

for − 5 ≤ x ≤ 5.
(2.76)

The initial state of the system features a localized higher vehicle density be-
cause of an obstacle to flow. The numerical simulations reported in Fig. 2.26
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Fig. 2.25. High-resolution numerical approximation of Burgers problem (2.75) rep-
resented on the (x, t) plane. The bottom panels highlight the comparison between
the upwind method (left) and the high-resolution scheme (right) in the approxima-
tion of steep solution gradients obtained at t = 6
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Fig. 2.26. High-resolution numerical approximation of the problem (2.76) reported
on the (x, t) plane

confirm that the traffic evolves towards a more dangerous situation where
drivers observe a sudden significant change of vehicle density combined with
a corresponding decrease in flow velocity. The converging characteristics give
rise to a compression fan evolving into a shock wave after a finite time, pre-
cisely at t = 2. Conversely, once the obstacle has been overtaken, the flow
accelerates to normal conditions.
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Diffusion

3.1 The Diffusion Equation

3.1.1 Introduction

The one-dimensional diffusion equation is the linear second order partial
differential equation

ut −Duxx = f

where u = u (x, t) , x is a real space variable, t a time variable and D a
positive constant, called diffusion coefficient. In space dimension n > 1,
that is when x ∈ Rn, the diffusion equation reads

ut −DΔu = f (3.1)

where Δ denotes the Laplace operator:

Δ =
n∑
k=1

∂2

∂x2
k

.

When f ≡ 0 the equation is said to be homogeneous and in this case the
superposition principle holds: if u and v are solutions of (3.1) and a, b are
real (or complex) numbers, au+ bv also is a solution of (3.1). More generally,
if uk (x,t) is a family of solutions depending on the parameter k (integer or
real) and g = g (k) is a function rapidly vanishing at infinity, then

∞∑
k=1

uk (x,t) g (k) and
∫ +∞

−∞
uk (x,t) g (k) dk

are still solutions.
A common example of diffusion is given by heat conduction in a solid

body. Conduction comes from molecular collision, transferring heat by kinetic
energy, without macroscopic material movement. If the medium is homoge-
neous and isotropic with respect to the heat propagation, the evolution of the

Salsa S., Vegni F.M.G., Zaretti A., Zunino P.: A Primer on PDEs. Models, Methods, Simulations.
Unitext – La Matematica per il 3+2 65.
DOI 10.1007/978-88-470-2862-3 3, © Springer-Verlag Italia 2013
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temperature is described by equation (3.1); f represents the intensity of an
external distributed source. For this reason equation (3.1) is also known as
the heat equation.

On the other hand equation (3.1) constitutes a much more general diffusion
model, where by diffusion we mean, for instance, the transport of a substance
due to the molecular motion of the surrounding medium. In this case, u could
represent the concentration of a polluting material or of a solute in a liquid or
a gas (dye in a liquid, smoke in the atmosphere) or even a probability density.
We may say that the diffusion equation unifies at a macroscopic scale a variety
of phenomena, that look quite different when observed at a microscopic scale.

Through equation (3.1) and some of its variants we will explore the
deep connection between probabilistic and deterministic models, according
(roughly) to the scheme

diffusion processes ↔ probability density↔ differential equations.

The star in this field is Brownian motion, derived from the name of the
botanist Brown, who observed in the middle of the 19th century, the ap-
parently chaotic behavior of certain particles on a water surface, due to the
molecular motion. This irregular motion is now modeled as a stochastic process
under the terminology of Wiener process or Brownian motion. The operator

1
2
Δ

is strictly related to Brownian motion1 and indeed it captures and synthesizes
the microscopic features of that process.

Under equilibrium conditions, that is when there is no time evolution,
the solution u depends only on the space variable and satisfies the stationary
version of the diffusion equation (letting D = 1)

−Δu = f (3.2)

(−uxx = f, in dimension n = 1). Equation (3.2) is known as the Poisson
equation. When f = 0, it is called Laplace’s equation and its solutions are
so important in so many fields that they have deserved the special name of
harmonic functions. This equation will be considered in the next chapter.

3.1.2 The conduction of heat

Heat is a form of energy which it is frequently convenient to consider as
separated from other forms. For historical reasons, calories instead of Joules
are used as units of measurement, each calorie corresponding to 4.182 Joules.

We want to derive a mathematical model for the heat conduction in a solid
body. We assume that the body is homogeneous and isotropic, with constant
1 In the theory of stochastic processes, 1

2
Δ represents the infinitesimal generator

of the Brownian motion.
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mass density ρ, and that it can receive energy from an external source (for
instance, from an electrical current or a chemical reaction or from external
absorption/radiation). Denote by r the time rate per unit mass at which heat
is supplied2 by the external source.

Since heat is a form of energy, it is natural to use the law of conservation
of energy, that we can formulate in the following way:

Let V be an arbitrary control volume inside the body. The time rate
of change of thermal energy in V equals the net flux of heat through the
boundary ∂V of V , due to the conduction, plus the time rate at which heat
is supplied by the external sources.

If we denote by e=e (x, t) the thermal energy per unit mass, the total
quantity of thermal energy inside V is given by

∫

V

eρ dx

so that its time rate of change is3

d

dt

∫

V

eρ dx =
∫

V

etρ dx.

Denote by q the heat flux vector4, which specifies the heat flow direction and
the magnitude of the rate of flow across a unit area. More precisely, if d is an
area element contained in ∂V with outer unit normal ν, then q · νdσ is the
energy flow rate through dσ and therefore the total inner heat flux through
∂V is given by

−
∫

∂V

q · ν dσ =
(divergence theorem)

−
∫

V

divq dx.

Finally, the contribution due to the external source is given by
∫

V

rρ dx.

Thus, conservation of energy requires:
∫

V

etρ dx =−
∫

V

divq dx+
∫

V

rρ dx. (3.3)

The arbitrariness of V allows us to convert the integral equation (3.3) into
the pointwise relation

etρ =− divq+rρ (3.4)

2 Dimensions of r: [r] = [cal] × [time]−1 × [mass]−1 .
3 Assuming that the time derivative can be carried inside the integral.
4 [q] = [cal] × [lenght]−2 × [time]−1 .
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that constitutes a basic law of heat conduction. However, e and q are unknown
and we need additional information through constitutive relations for these
quantities. We assume the following:

• Fourier law of heat conduction. Under “normal” conditions, for many solid
materials, the heat flux is a linear function of the temperature gradient, that
is:

q = −κ∇u (3.5)

where u is the absolute temperature and κ > 0, the thermal conductivity5,
depends on the properties of the material. In general, κ may depend on u,
x and t, but often varies so little in cases of interest that it is reasonable to
neglect its variation. Here we consider κ constant so that

divq = −κΔu. (3.6)

The minus sign in the law (3.5) reflects the tendency of heat to flow from
hotter to cooler regions.

• The thermal energy is a linear function of the absolute temperature:

e = cvu (3.7)

where cv denotes the specific heat6 (at constant volume) of the material. In
many cases of interest cv can be considered constant. The relation (3.7) is
reasonably true over not too wide ranges of temperature.

Using (3.6) and (3.7), equation (3.4) becomes

ut =
κ

cv�
Δu+

1
cv
r (3.8)

which is the diffusion equation with D = κ/ (cv�) and f = r/cv. As we will
see, the coefficient D, called thermal diffusivity, encodes the thermal response
time of the material.

3.1.3 Well posed problems (n = 1)

The governing equations in a mathematical model have to be supplemented by
additional information in order to obtain a well posed problem, i.e. a problem
that has exactly one solution, depending continuously on the data.

On physical grounds, it is not difficult to outline some typical well posed
problems for the heat equation. Consider the evolution of the temperature u
inside a cylindrical bar, whose lateral surface is perfectly insulated and whose
length L is much larger than its cross-sectional area A. Although the bar is
three dimensional, we may assume that heat moves only down the length of
5 [κ] = [cal] × [deg]−1 × [time]−1 × [length]−1 (deg stays for degree, Celsius or

Kelvin).
6 [cv] = [cal] × [deg]−1 × [mass]−1 .
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the bar and that the heat transfer intensity is uniformly distributed in each
section of the bar. Thus we may assume that e = e (x, t) , r = r (x, t), with
0 ≤ x ≤ L. Accordingly, the constitutive relations (3.5) and (3.7) read

e (x, t) = cvu (x, t) , q = −κuxi.
By choosing V = A × [x, x+Δx] as the control volume in (3.3), the cross-
sectional area A cancels out, and we obtain

∫ x+Δx

x

cvρut dx =
∫ x+Δx

x

κuxx dx+
∫ x+Δx

x

rρ dx

that yields for u the one-dimensional heat equation

ut −Duxx = f.

We want to study the temperature evolution during an interval of time, say,
from t = 0 until t = T . It is then reasonable to prescribe its initial distribu-
tion inside the bar: different initial configurations will correspond to different
evolutions of the temperature along the bar. Thus we need to prescribe the
initial condition

u (x, 0) = g (x)

where g models the initial temperature profile.
This is not enough to determine a unique evolution; it is necessary to

know how the bar interacts with the surroundings. Indeed, starting with a
given initial temperature distribution, we can change the evolution of u by
controlling the temperature or the heat flux at the two ends of the bar7; for
instance, we could keep the temperature at a certain fixed level or let it vary
in a certain way, depending on time. This amounts to prescribing

u (0, t) = h1 (t) , u (L, t) = h2 (t) (3.9)

at any time t ∈ (0, T ]. The (3.9) are called Dirichlet boundary conditions.
We could also prescribe the heat flux at the end points. Since from Fourier

law we have
inward heat flow at x = 0 : −κux (0, t)

inward heat flow at x = L : κux (L, t)

the heat flux is assigned through the Neumann boundary conditions

−ux (0, t) = h1 (t) , ux (L, t) = h2 (t)

at any time t ∈ (0, T ].
Another type of boundary condition is the Robin or radiation condi-

tion. Let the surroundings be kept at temperature U and assume that the
7 Remember that the bar has perfect lateral thermal insulation.
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inward heat flux from one end of the bar, say x = L, depends linearly on the
difference U − u, that is8

κux = γ(U − u) (γ > 0). (3.10)

Letting α = γ/κ > 0 e h = γU/κ, the Robin condition at x = L reads

ux + αu = h.

Clearly, it is possible to assign mixed conditions: for instance, at one end
a Dirichlet condition and at the other one a Neumann condition.

The problems associated with the above boundary conditions have a cor-
responding nomenclature. Summarizing, we can state the most common prob-
lems for the one-dimensional heat equation as follows: given f = f (x, t) (ex-
ternal source) and g = g (x) (initial or Cauchy data), determine u = u (x, t)
such that:

⎧⎪⎨
⎪⎩

ut −Duxx = f 0 < x < L, 0 < t < T

u (x, 0) = g (x) 0 ≤ x ≤ L

+ boundary conditions 0 < t ≤ T

where the boundary conditions may be:

• Dirichlet:
u (0, t) = h1 (t) , u (L, t) = h2 (t) .

• Neumann:
−ux (0, t) = h1 (t) , ux (L, t) = h2 (t) .

• Robin or radiation:

−ux (0, t) + αu (0, t) = h1 (t) , ux (L, t) + αu (L, t) = h2 (t) (α > 0),

or mixed conditions. Accordingly, we have the initial-Dirichlet problem, the
initial-Neumann problem and so on. When h1 = h2 = 0, we say that the
boundary conditions are homogeneous.

Remark 3.1. Observe that only a special part of the boundary of the rect-
angle

QT = (0, L)× (0, T ) ,

called the parabolic boundary of QT , carries the data (see Fig. 3.1). No final
condition (for t = T, 0 < x < L) is required.

8 Formula (3.10) is based on Newton’s law of cooling : the heat loss from the surface
of a body is a linear function of the temperature drop U−u from the surroudings
to the surface. It represents a good approximation to the radiative loss from a
body when |U − u| /u� 1.
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Fig. 3.1. The parabolic boundary of QT

In important applications, for instance in financial mathematics, x varies
over unbounded intervals, typically (0,∞) or R. In these cases one has to
require that the solution does not grow too much at infinity. We will later
consider the global Cauchy problem

⎧⎪⎨
⎪⎩

ut −Duxx = f x ∈ R, 0 < t < T

u (x, 0) = g (x) x ∈ R
+ conditions as x→ ±∞.

3.1.4 A solution by separation of variables

We will prove that under reasonable hypotheses the initial Dirichlet, Neu-
mann or Robin problems are well posed. Sometimes this can be shown using
elementary techniques like the separation of variables method that we describe
below through a simple example of heat conduction.

As in the previous section, consider a bar (that we can consider one-
dimensional) of length L, initially (at time t = 0) at constant temperature
u0. Thereafter, the end point x = 0 is kept at the same temperature while
the other end x = L is kept at a constant temperature u1 > u0. We want to
know how the temperature evolves inside the bar.

Before making any computations, let us try to conjecture what could hap-
pen. Given that u1 > u0, heat starts flowing from the hotter end, raising the
temperature inside the bar and causing a heat outflow into the cold boundary.
On the other hand, the interior increase of temperature causes the hot inflow
to decrease in time, while the outflow increases. We expect that sooner or
later the two fluxes balance each other and that the temperature eventually
reaches a steady state distribution. It would also be interesting to know how
fast the steady state is reached.

We show that this is exactly the behavior predicted by our mathematical
model, given by the heat equation

ut −Duxx = 0 t > 0, 0 < x < L
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with the initial-Dirichlet conditions

u (x, 0) = g (x) 0 ≤ x ≤ L
u (0, t) = u0, u (L, t) = u1 t > 0.

Since we are interested in the long term behavior of our solution, we leave t
unlimited. Notice the jump discontinuity between the initial and the boundary
data at x = L; we will take care of this little difficulty later.

• Dimensionless variables. First of all we introduce dimensionless variables,
that is variables independent of the units of measurement. To do that we
rescale space, time and temperature with respect to quantities that are char-
acteristic of our problem. For the space variable we can use the length L of
the bar as rescaling factor, setting

y =
x

L

which is clearly dimensionless, being a ratio of lengths. Notice that

0 ≤ y ≤ 1.

How can we rescale time? Observe that the dimensions of the diffusion coef-
ficient D are

[length]2 × [time]−1.

Thus the constant τ = L2/D gives a characteristic time scale for our diffusion
problem. Therefore we introduce the dimensionless time

s =
t

τ
. (3.11)

Finally, we rescale the temperature by setting

z (y, s) =
u (Ly, τs)− u0

u1 − u0
.

For the dimensionless temperature z we have:

z (y, 0) =
u (Ly, 0)− u0

u1 − u0
= 0, 0 ≤ y ≤ 1

z (0, s) =
u (0, τs)− u0

u1 − u0
= 0, z (1, s) =

u (L, τs)− u0

u1 − u0
= 1.

Moreover

(u1 − u0)zs =
∂t

∂s
ut = τut =

L2

D
ut

(u1 − u0)zyy =
(
∂x

∂y

)2

uxx = L2uxx.



3.1 The Diffusion Equation 67

Hence, since ut = Duxx,

(u1 − u0)(zs − zyy) =
L2

D
ut − L2uxx =

L2

D
Duxx − L2uxx = 0.

In conclusion, we find
zs − zyy = 0 (3.12)

with the initial condition
z (y, 0) = 0 (3.13)

and the boundary conditions

z (0, s) = 0, z (1, s) = 1. (3.14)

We see that in the dimensionless formulation the parameters L and D have
disappeared, emphasizing the mathematical essence of the problem. On the
other hand, we will show later the relevance of the dimensionless variables in
test modelling.

• The steady state solution. We start solving problem (3.12), (3.13), (3.14)
by first determining the steady state solution zSt, that satisfies the equation
zyy = 0 and the boundary conditions (3.14). An elementary computation gives

zSt (y) = y.

In terms of the original variables the steady state solution is

uSt (x) = u0 + (u1 − u0)
x

L

corresponding to a uniform heat flux along the bar given by the Fourier law:

heat flux = −κux = −κ (u1 − u0)
L

.

• The transient regime. Knowing the steady state solution, it is convenient to
introduce the function

U (y, s) = zSt (y, s)− z (y, s) = y − z (y, s) .

Since we expect our solution to eventually reach the steady state, U represents
a transient regime that should converge to zero as s →∞. Furthermore, the
rate of convergence to zero of U gives information on how fast the temperature
reaches its equilibrium distribution. U satisfies (3.12) with initial condition

U (y, 0) = y (3.15)

and homogeneous boundary conditions

U (0, s) = 0 and U (1, s) = 0. (3.16)
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• The method of separation of variables. We are now in a position to find an
explicit formula for U using the method of separation of variables. The main
idea is to exploit the linear nature of the problem constructing the solution by
superposition of simpler solutions of the form w (s) v (y) in which the variables
s and y appear in separated form.

Step 1. We look for non-trivial solutions of (3.12) of the form

U (y, s) = w (s) v (y)

with v (0) = v (1) = 0. By substitution in (3.12) we find

0 = Us − Uyy = w′ (s) v (y)− w (s) v′′ (y)

from which, separating the variables,

w′ (s)
w (s)

=
v′′ (y)
v (y)

. (3.17)

Now, the left hand side in (3.17) is a function of s only, while the right hand
side is a function of y only and the equality must hold for every s > 0 and
every y ∈ (0, L) . This is possible only when both sides are equal to a common
constant λ, say. Hence we have

v′′ (y)− λv (y) = 0 (3.18)

with

v (0) = v (1) = 0 (3.19)

and

w′ (s)− λw (s) = 0. (3.20)

Step 2. We first solve problem (3.18), (3.19). There are three different possi-
bilities for the general solution of (3.18):

a) If λ = 0,

v (y) = A+By (A,B arbitrary constants)

and the conditions (3.19) imply A = B = 0.

b) If λ is a positive real number, say λ = μ2 > 0, then

v (y) = Ae−μy +Beμy

and again it is easy to check that the conditions (3.19) imply A = B = 0.
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c) Finally, if λ = −μ2 < 0, then

v (y) = A sinμy +B cosμy.

From (3.19) we get

v (0) = B = 0
v (1) = A sinμ+B cosμ = 0

from which
A arbitrary, B = 0, μm = mπ, m = 1, 2, ... .

Thus, only in case c) we find non-trivial solutions

vm (y) = A sinmπy. (3.21)

In this context, (3.18), (3.19) is called an eigenvalue problem; the special
values λm are the eigenvalues and the solutions vm are the corresponding
eigenfunctions.

With λm = −μ2
m = −m2π2, the general solution of (3.20) is

wm (s) = Ce−m
2π2s (C arbitrary constant). (3.22)

From (3.21) and (3.22) we obtain damped sinusoidal waves of the form

Um (y, s) = Ame
−m2π2s sinmπy.

Step 3. Although the solutions Um satisfy the homogeneous Dirichlet condi-
tions, they do not match, in general, the initial condition U (y, 0) = y. As we
already mentioned, we try to construct the correct solution superposing the
Um by setting

U (y, s) =
∞∑
m=1

Ame
−m2π2s sinmπy. (3.23)

Some questions arise:

Q1. The initial condition requires

U (y, 0) =
∞∑
m=1

Am sinmπy = y for 0 ≤ y ≤ 1. (3.24)

Is it possible to choose the coefficients Am in order to satisfy (3.24)? In which
sense does U attain the initial data? For instance, is it true that

U (z, s) → y if (z, s) → (y, 0)?
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Q2. Any finite linear combination of the Um is a solution of the heat equation;
can we make sure that the same is true for U? The answer is positive if we
could differentiate term by term the infinite sum and get

(∂s − ∂2
yy)U (y, s) =

∞∑
m=1

(∂s − ∂2
yy)Um (y, s) = 0. (3.25)

What about the boundary conditions?

Q3. Even if we have a positive answer to questions 1 and 2, are we confident
that U is the unique solution of our problem and therefore that it describes
the correct evolution of the temperature?

Q1. Question 1 is rather general and concerns the Fourier series expansion9 of
a function, in particular of the initial data f (y) = y, in the interval (0, 1). Due
to the homogeneous Dirichlet conditions it is convenient to expand f (y) = y
in a sine Fourier series, whose coefficients are given by the formulas

Am = 2
∫ 1

0

y sinmπy dy = − 2
mπ

[y cosmπy]10 +
2
mπ

∫ 1

0

cosmπy dy =

= −2
cosmπ
mπ

= (−1)m+1 2
mπ

.

The sine Fourier expansion of f (y) = y is therefore

y =
∞∑
m=1

(−1)m+1 2
mπ

sinmπy. (3.26)

Where is the expansion (3.26) valid? It cannot be true at y = 1 since sinmπ =
0 for every m and we would obtain 1 = 0. This clearly reflects the jump
discontinuity of the data at y = 1.

The theory of Fourier series implies that (3.26) is true at every point
y ∈ [0, 1) and that the series converges uniformly in every interval [0, a],
a < 1. Moreover, equality (3.26) holds in the least square sense (or L2 (0, 1)
sense), that is

∫ 1

0

[y −
N∑
m=1

(−1)m+1 2
mπ

sinmπy]2dy → 0 as N →∞.

From (3.23) and the expression of Am, we obtain the formal solution

U (y, s) =
∞∑
m=1

(−1)m+1 2
mπ

e−m
2π2s sinmπy (3.27)

9 Appendix A.
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that attains the initial data in the least squares sense, i.e.10.

lim
s→0+

∫ 1

0

[U (y, s)− y]2dy = 0. (3.28)

In fact, from Parseval’s equality11, we can write

∫ 1

0

[U (y, s)− y]2 dy =
4
π2

∞∑
m=1

(
e−m

2π2s − 1
)2

m2
. (3.29)

Since for s ≥ 0 (
e−m

2π2s − 1
)2

m2
≤ 1
m2

and the series
∑

1/m2 converges, then the series (3.29) converges uniformly
by Weierstrass criterion in [0,∞) and we can take the limit under the sum,
obtaining (3.28).

Q2. The analytical expression of U is rather reassuring: it is a superposition
of sinusoids of increasing frequency m and of strongly damped amplitude
because of the negative exponential, at least when s > 0. Indeed, for s > 0,
the rapid convergence to zero of each term and its derivatives in the series
(3.27) allows us to differentiate term by term. Precisely, we have

∂Um
∂s

= (−1)m+2 2mπe−m
2π2s sinmπy,

∂2Um
∂y2

= (−1)m+2 2e−m
2π2s sinmπy

so that, if s ≥ s0 > 0,
∣∣∣∣
∂Um
∂s

∣∣∣∣ ≤ 2mπe−m
2π2s0 ,

∣∣∣∣
∂2Um
∂y2

∣∣∣∣ ≤ 2mπe−m
2π2s0 .

Since the numerical series ∞∑
m=1

me−m
2π2s0

is convergent, we conclude by the Weierstrass test that the series

∞∑
m=1

∂Um
∂s

and
∞∑
m=1

∂2Um
∂y2

converge uniformly in [0, 1]× [s0,∞) so that (3.25) is true and therefore U is
a solution of (3.12).

10 It is also true that U (z, s) → y in the pointwise sense, when y �= 1 and (z, s) →
(y, 0). We omit the proof.

11 Appendix A.
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It remains to check the Dirichlet conditions: if s0 > 0,

U (z, s)→ 0 as (z, s) → (0, s0) or (z, s) → (L, s0) .

This is true because we can take the two limits under the sum, due to the
uniform convergence of the series (3.27) in any region [0, L] × (b,+∞) with
b > 0. For the same reason, U has continuous derivatives of any order, up to
the lateral boundary of the strip [0, L]× (b,+∞) .

Note, in particular, that U immediately forgets the initial discontinuity
and becomes smooth at any positive time.

Q3. To show that U is indeed the unique solution, we use the so-called energy
method, that we will develop later in greater generality. Suppose W is another
solution of problem (3.12), (3.15), (3.16). Then, by linearity,

v = U −W
satisfies

vs − vyy = 0 (3.30)

and has zero initial-boundary data. Multiplying (3.30) by v, integrating in y
over the interval [0, 1] and keeping s > 0, fixed, we get

∫ 1

0

vvs dy −
∫ 1

0

vvyy dy = 0. (3.31)

Observe that
∫ 1

0

vvs dy =
1
2

∫ 1

0

∂s
(
v2
)
dy =

1
2
d

ds

∫ 1

0

v2dy. (3.32)

Moreover, integrating by parts we can write
∫ 1

0

vvyy dy = [v (1, s) vy (1, s)− v (0, s) vy (0, s)]−
∫ 1

0

(vy)
2
dy (3.33)

= −
∫ 1

0

(vy)
2
dy

since v (1, s) = v (0, s) = 0. From (3.31), (3.32) and (3.33) we get

1
2
d

ds

∫ 1

0

v2dy = −
∫ 1

0

(vy)
2
dy ≤ 0 (3.34)

and therefore, the nonnegative function

E (s) =
∫ 1

0

v2 (y, s) dy

is non-increasing. On the other hand, using (3.28) for v instead of U , we get

E (s)→ 0 as s→ 0
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which forces E (s) = 0, for every s > 0. But v2 (y, s) is nonnegative and
continuous in [0, 1] if s > 0, so that it must be v (y, s) = 0 for every s > 0 or,
equivalently, U = W.

• Back to the original variables. In terms of the original variables, our solution
is expressed as

u (x, t) = u0 + (u1 − u0)
x

L
−

∞∑
m=1

(−1)m+1 2
mπ

e
−m2π2D

L2 t sin
mπ

L
x.

This formula confirms our initial guess about the evolution of the temperature
towards the steady state. Indeed, each term of the series converges to zero
exponentially as t→ +∞ and it is not difficult to show12 that

u (x, t) → u0 + (u1 − u0)
x

L
as t→ +∞.

Moreover, among the various terms of the series, the first one (m = 1) decays
much more slowly than the others and very soon it determines the main
deviation of u from the equilibrium, independently of the initial condition.
This leading term is the damped sinusoid

2
π
e

−π2D

L2 t sin
π

L
x.

In this mode there is a concentration of heat at x = L/2 where the tempera-
ture reaches its maximum amplitude 2 exp(−π2Dt/L2)/π. At time t = L2/D
the amplitude decays to 2 exp(−π2)/π � 3.3× 10−5, about 0.005 per cent of
its initial value. This simple calculation shows that to reach the steady state
a time of order L2/D is required, a fundamental fact in heat diffusion.

Not surprisingly, the scaling factor in (3.11) was exactly τ = L2/D. The
dimensionless formulation is extremely useful in experimental modelling tests.
To achieve reliable results, these models must reproduce the same character-
istics at different scales. For instance, if our bar were an experimental model
of a much bigger beam of length L0 and diffusion coefficient D0, to reproduce
the same heat diffusion effects, we must choose material (D) and length (L)
for our model bar such that

L2

D
=
L2

0

D0
.

Fig. 3.2 shows the solution of the dimensionless problem (3.12) associated to
the initial conditions (3.15), (3.16) for 0 < t ≤ 1.

3.1.5 Problems in dimension n > 1

The formulation of the well posed problems in Section 3.1.3 can be easily
generalized to any spatial dimension n > 1, in particular to n = 2 or n = 3.
12 The Weierstrass test works here for t ≥ t0 > 0.
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Fig. 3.2. The solution to the dimensionless problem (3.12), (3.13), (3.14)

Suppose we want to determine the evolution of the temperature in a heat
conducting body that occupies a bounded domain13 Ω ⊂ R

n, during an in-
terval of time [0, T ]. Under the hypotheses of Section 3.1.2, the temperature
is a function u = u (x,t) that satisfies the heat equation ut−DΔu = f , in the
space-time cylinder

QT = Ω × (0, T ) .

To select a unique solution we have to prescribe first of all the initial distri-
bution

u (x, 0) = g (x) x ∈Ω,
where Ω = Ω ∪ ∂Ω denotes the closure of Ω.

The control of the interaction of the body with the surroundings is modeled
through suitable conditions on ∂Ω. The most common ones are:

Dirichlet condition. The temperature is kept at a prescribed level on ∂Ω;
this amounts to assigning

u (σ, t) = h (σ,t) σ ∈ ∂Ω and t ∈ (0, T ].

Neumann condition. The heat flux through ∂Ω is assigned. To model this
condition, we assume that the boundary ∂Ω is a smooth curve or surface,
having a tangent line or plane at every point14 with outward unit vector ν.
From Fourier law we have

q = heat flux = −κ∇u

so that the inward heat flux is

−q · ν =κ∇u · ν =κ∂νu.

13 Recall that by domain we mean an open connected set in Rn.
14 We can also allow boundaries with corner points, like squares, cones, or edges,

like cubes. It is enough that the set of points where the tangent plane does not
exist has zero surface measure (zero length in two dimensions). Lipschitz domains
have this property.
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Thus the Neumann condition reads

∂νu (σ, t) = h (σ,t) σ ∈ ∂Ω and t ∈ (0, T ].

Radiation or Robin condition. The inward (say) heat flux through ∂Ω
depends linearly on the difference15 U − u:

−q · ν =γ (U − u) (γ > 0)

where U is the ambient temperature. From the Fourier law we obtain

∂νu+ αu = h on ∂Ω × (0, T ]

with α = γ/κ > 0, h = γU/κ.

Mixed conditions. The boundary of Ω is decomposed into various parts
where different boundary conditions are prescribed. For instance, a formula-
tion of a mixed Dirichlet-Neumann problem is obtained by writing

∂Ω = ∂DΩ ∪ ∂NΩ with ∂DΩ ∩ ∂NΩ = ∅

with ∂DΩ and ∂NΩ “reasonable” subsets of ∂Ω. Typically ∂NΩ = ∂Ω ∩ A,
where A is open in Rn. In this case we say that ∂NΩ is a relatively open set
in ∂Ω. Then we assign

u = h1 on ∂DΩ × (0, T ]
∂νu = h2 on ∂NΩ × (0, T ].

Summarizing, we have the following typical problems: given f = f (x, t)
and g = g (x), determine u = u (x, t) such that:

⎧⎪⎨
⎪⎩

ut −DΔu = f in QT
u (x, 0) = g (x) in Ω
+ boundary conditions on ∂Ω × (0, T ]

where the boundary conditions are:

• Dirichlet:
u = h.

• Neumann:
∂νu = h.

• radiation or Robin:

∂νu+ αu = h (α > 0) .

• mixed:
u = h1 on ∂DΩ, ∂νu = h2 on ∂NΩ.
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Fig. 3.3. The space-time cylinder QT

Also in dimension n > 1, the global Cauchy problem is important:
⎧⎪⎨
⎪⎩

ut −DΔu = f x ∈Rn, 0 < t < T

u (x, 0) = g (x) x ∈Rn
+ condition as |x| → ∞.

Remark 3.2. We again emphasize that no final condition (for t = T,x ∈Ω)
is required. The data is assigned on the parabolic boundary ∂pQT of QT , given
by the union of the bottom points Ω̄×{t = 0} and the side points ∂Ω×(0, T ]:

∂pQT =
(
V̄ × {t = 0}) ∪ (∂Ω × (0, T ]) .

3.2 Uniqueness

3.2.1 Integral method

Generalizing the energy method used in Section 3.1.4, it is easy to show that
all the problems we have formulated in the previous section have at most
one solution under reasonable conditions on the data. Suppose u and v are
solutions of one of those problems, sharing the same boundary conditions, and
let w = u−v; we want to show that w ≡ 0. For the time being we do not worry
about the precise hypotheses on u e v; we assume they are sufficiently smooth
in QT up to ∂pQT and observe that w satisfies the homogeneous equation

wt −DΔw = 0 (3.35)

in QT = Ω × (0, T ), with initial condition

w (x,0) = 0
15 Linear Newton law of cooling.
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in Ω, and one of the following conditions on ∂Ω × (0, T ]:

w = 0 (Dirichlet) (3.36)

or
∂νw = 0 (Neumann) (3.37)

or
∂νw + αw = 0 α > 0, (Robin) (3.38)

or
w = 0 on ∂DΩ, ∂νw = 0 on ∂NΩ (mixed). (3.39)

Multiply equation (3.35) by w and integrate on Ω; we find
∫

Ω

wwt dx = D

∫

Ω

wΔw dx.

Now, ∫

Ω

wwt dx =
1
2
d

dt

∫

Ω

w2dx (3.40)

and from Green’s identity (1.12) with u = v = w,
∫

Ω

wΔw dx =
∫

∂Ω

w∂νw dσ −
∫

Ω

|∇w|2 dx. (3.41)

Then, letting

E (t) =
∫

Ω

w2dx,

(3.40) and (3.41) give

1
2
E′ (t) = D

∫

∂Ω

w∂νw dσ −D
∫

Ω

|∇w|2 dx.

If Robin condition (3.38) holds,
∫

∂Ω

w∂νw dσ = −α
∫

Ω

w2dx ≤ 0.

If one of the (3.36), (3.37), (3.39) holds, then
∫

∂Ω

w∂νw dσ = 0.

In any case it follows that
E′ (t) ≤ 0

and therefore E is a nonincreasing function. Since

E (0) =
∫

Ω

w2 (x,0) dx =0,



78 3 Diffusion

we must have E (t) = 0 for every t ≥ 0 and this implies w (x,t) ≡ 0 in Ω for
every t > 0. Thus u = v.

The above calculations are completely justified if Ω is a sufficiently smooth
domain (C1 or even Lipschitz domains) and, for instance, we require that u and
v are continuous inQT = Ω×[0, T ], together with their first and second spatial
derivatives and their first order time derivatives. We denote the set of these
functions by the symbol (not too appealing . . . )

C2,1
(
QT
)

and synthesize everything in the following statement.

Theorem 3.1. The initial-Dirichlet, Neumann, Robin and mixed problems
have at most one solution belonging to C2,1

(
QT
)
.

3.2.2 Maximum principles

The fact that heat flows from higher to lower temperature regions implies
that a solution of the homogeneous heat equation attains its maximum and
minimum values on ∂pQT . This result is known as the maximum principle.
Moreover the equation reflects the time irreversibility of the phenomena that
it describes, in the sense that the future cannot have an influence on the past
(causality principle). In other words, the value of a solution u at time t is
independent of any change of the data after t.

The following simple theorem translates these principles and holds for
functions in the class C2,1 (QT )∩C (QT

)
. These functions are continuous up

to the boundary of QT , with derivatives continuous in the interior of QT .

Theorem 3.2. Let w ∈ C2,1 (QT ) ∩ C (QT
)

such that

wt −DΔw = q ≤ 0 in QT . (3.42)

Then w attains its maximum on ∂pQT :

max
QT

w = max
∂pQT

w. (3.43)

In particular, if w is negative on ∂pQT , then is negative in all QT .

Proof. We recall that ∂pQT is the union of base and lateral boundary of QT
(Remark 3.1). Let M ′ be the maximum of w on ∂pQT and assume that (3.43)
is not true. Then there is a point (x0, t0), x0 ∈ Ω, 0 < t0 ≤ T , such that

w (x0, t0) = max
QT

w = M >M ′.

We want to reach a contradiction. We break the proof into two steps.
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Step 1. Let ε > 0 such that T − ε > 0. We prove that

max
QT−ε

w ≤ max
∂pQT

w + εT . (3.44)

Introduce the auxiliary function

v (x,t) = w (x,t)− εt.

Then
ut −DΔu = q − ε < 0. (3.45)

Let us show that the maximum of u in QT−ε is attained at a point on ∂pQT−ε.
Suppose not. Then there exists a point (x0, t0), x0 ∈ Ω, 0 < t0 ≤ T − ε, at
which u attains its maximum in QT−ε.

Since uxjxj (x0, t0) ≤ 0 for each j = 1, ..., n, we have

Δu (x0, t0) ≤ 0

and
ut (x0, t0) = 0 if t0 < T − ε

while
ut (x0, t0) ≥ 0 if t0 = T − ε.

In both cases
wt (x0, t0)−Δw (x0, t0) ≥ 0,

contradicting (3.45). Thus

max
QT−ε

u ≤ max
∂pQT−ε

u ≤ max
∂pQT

w

since u ≤ w. On the other hand, w ≤ u+ εT, so that

max
QT−ε

w ≤ max
∂pQT−ε

u+ εT ≤ max
∂pQT

w + εT (3.46)

which is (3.44).

Step 2. Since w is continuous in QT , we deduce that

max
QT−ε

w → max
QT

w as ε→ 0.

By taking limits as ε→ 0 of both sides in (3.44) we get

max
QT

w ≤ max
∂pQT

w

which ends the proof. �
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As an immediate consequence of Theorem 3.2 we have that if

wt −DΔw = 0 in QT

then w attains its maximum and its minimum on ∂pQT . In particular

min
∂pQT

w ≤ w (x,t) ≤ max
∂pQT

w for every (x,t) ∈ QT .

Moreover:

Corollary 3.1 (Comparison and stability). Let v and w satisfy

vt −DΔv = f1 and wt −DΔw = f2.

Then:

1. If v ≥ w on ∂pQT and f1 ≥ f2 in QT then v ≥ w in all QT .

2. The following stability estimate holds

max
QT

|v − w| ≤ max
∂pQT

|v − w|+ T max
QT

|f1 − f2| . (3.47)

In particular the initial-Dirichlet problem has at most one solution that, more-
over, depends continuously on the data.

Remark 3.3. Corollary 3.1 gives uniqueness for the initial-Dirichlet problem
under much less restrictive hypotheses than Theorem 3.1: indeed it does not
require the continuity of any derivatives of the solution up to ∂pQT .

Inequality (3.47) is a uniform pointwise stability estimate, extremely useful
in several applications. In fact if v = g1, w = g2 on ∂pQT and

max
∂pQT

|g1 − g2| ≤ ε and max
QT

|f1 − f2| ≤ ε,

we deduce
max
QT

|v − w| ≤ ε (1 + T ) .

Thus, in finite time, a small uniform distance between the data implies small
uniform distance between the corresponding solutions.

Remark 3.4 (Strong maximum principle). Theorem 3.2 is a version of
the so called weak maximum principle, weak because this result says nothing
about the possibility that a solution achieves its maximum or minimum at
an interior point as well. Actually a more precise result is known as strong
maximum principle and states16 that if a solution of ut −DΔu = 0 achieves
its maximum M (minimum) at a point (x1, t1) with x1 ∈ V , 0 < t1 ≤ T , then
u = M in V̄ × [0, t1] (Fig. 3.4).

16 We omit the rather long proof.
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Fig. 3.4. The strong maximum principle

3.3 The Fundamental Solution

There are privileged solutions of the diffusion equation that can be used to
construct many other solutions. In this section we are going to discover one
of these special building blocks, the most important one.

3.3.1 Invariant transformations

The homogeneous diffusion equation has simple but important properties. Let
u = u (x, t) be a solution of

ut −DΔu = 0. (3.48)

• Time reversal. The function

v(x,t) = u (x,−t) ,

obtained by the change of variable t �−→ −t, is a solution of the adjoint or
backward equation.

vt +DΔv = 0.

Coherently, the (3.48) is sometimes called the forward equation. The non-
invariance of (3.48) with respect to a change of sign in time is another aspect
of time irreversibility.

• Space and time translations invariance. For y,s fixed, the function

v(x,t) = u (x− y, t− s) ,

is still a solution of (3.48). Clearly, for x, t fixed the function u (x− y, t− s)
is a solution of the backward equation with respect to y and s.
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• Parabolic dilations The transformation

x �−→ ax, t �−→ bt, u �−→ cu (a, b, c > 0)

represents a dilation (or contraction) of the graph of u. Let us check for which
values of a, b, c the function

u∗ (x,t) = cu (ax,bt)

is still a solution of (3.48). We have:

u∗t (x,t)−DΔu∗ (x,t) = cbut (ax,bt)− ca2DΔu (ax,bt)

and so u∗ is a solution of (3.48) if

b = a2. (3.49)

The relation (3.49) suggests the name of parabolic dilation for the transfor-
mation

x �−→ ax t �−→ a2t (a, b > 0).

Under this transformation the expressions

|x|2
Dt

or
x√
Dt

are left unchanged. Moreover, we already observed that they are a dimension-
less group. Thus it is not surprising that these combinations of the indepen-
dent variables occur frequently in the study of diffusion phenomena.

• Dilations and conservation of mass (or energy). Let u = u (x, t) be a solution
of (3.48) in the half-space Rn × (0,+∞) . Then we just checked that the
function

u∗ (x,t) = cu
(
ax,a2t

)
(a > 0)

is also a solution in the same set. Suppose u satisfies the condition
∫

Rn

u (x, t) dx =q for every t > 0. (3.50)

If, for instance, u represents the concentration of a substance (density of
mass), equation (3.50) states that the total mass is q at every time t. If u is a
temperature, (3.50) says that the total internal energy is constant (= qρcv).
We ask for which a, c the solution u∗ still satisfies (3.50). We have

∫

Rn

u∗ (x, t) dx =c
∫

Rn

u
(
ax, a2t

)
dx.

Letting y =ax, so that dy =andx, we find
∫

Rn

u∗ (x, t) dx =ca−n
∫

Rn

u
(
y, a2t

)
dy =ca−n
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and for (3.50) to be satisfied we must have:

c = qan.

In conclusion, if u = u (x,t) is a solution of (3.48) in the half-space Rn ×
(0,+∞) satisfying (3.50), the same is true for

u∗ (x,t) = qanu
(
ax,a2t

)
. (3.51)

3.3.2 Fundamental solution (n = 1)

We are now in position to construct our special solution, starting with di-
mension n = 1. To help intuition, think for instance of our solution as the
concentration of a substance of total mass q and suppose we want to keep the
total mass equal to q at any time.

We have seen that the combination of variables x/
√
Dt is not only invariant

with respect to parabolic dilations but also dimensionless. It is then natural
to check if there are solutions of (3.48) involving such dimensionless group.
Since

√
Dt has the dimension of a length, the quantity q/

√
Dt is a typical

order of magnitude for the concentration, so that it makes sense to look for
solutions of the form

u∗ (x,t) =
q√
Dt

U

(
x√
Dt

)
(3.52)

where U is a (dimensionless) function of a single variable.
Here is the main question: is it possible to determine U = U (ξ) such that

u∗ is a solution of (3.48)? Solutions of the form (3.52) are called similarity
solutions17.

Moreover, since we are interpreting u∗ as a concentration, we require U ≥ 0
and the total mass condition yields

1 =
1√
Dt

∫

R

U

(
x√
Dt

)
dx =

ξ=x/
√
Dt

∫

R

U (ξ) dξ

so that we require that ∫

R

U (ξ) dξ = 1. (3.53)

Let us check if u∗ is a solution to (3.48). We have

u∗t =
q√
D

[
−1

2
t−

3
2U (ξ)− 1

2
√
D
xt−2U ′ (ξ)

]
= − q

2t
√
Dt

[U (ξ) + ξU ′ (ξ)]

u∗xx =
q

(Dt)3/2
U ′′ (ξ) ,

17 A solution of a particular evolution problem is a similarity or self-similar solution
if its spatial configuration (graph) remains similar to itself at all times during the
evolution. In one space dimension, self-similar solutions have the general form

u (x, t) = a (t)F (x/b (t))

where, preferably, u/a and x/b are dimensionless quantity.
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hence

u∗t −Du∗xx = − q

t
√
Dt

{
U ′′ (ξ) +

1
2
ξU ′ (ξ) +

1
2
U (ξ)

}
.

We see that for u∗ to be a solution of (3.48), U must be a solution in R of the
ordinary differential equation

U ′′ (ξ) +
1
2
ξU ′ (ξ) +

1
2
U (ξ) = 0. (3.54)

Since U ≥ 0, (3.53) implies18:

U (−∞) = U (+∞) = 0.

On the other hand, (3.54) is invariant with respect to the change of variables

ξ �→ −ξ
and therefore we look for even solutions: U (−ξ) = U (ξ). Then we can restrict
ourselves to ξ ≥ 0, asking

U ′ (0) = 0 e U (+∞) = 0. (3.55)

To solve (3.54) observe that it can be written in the form

d

dξ

{
U ′ (ξ) +

1
2
ξU (ξ)

}
= 0

that yields

U ′ (ξ) +
1
2
ξU (ξ) = C (C ∈ R). (3.56)

Letting ξ = 0 in (3.56) and recalling (3.55) we deduce that C = 0 and therefore

U ′ (ξ) +
1
2
ξU (ξ) = 0. (3.57)

The general integral of (3.57) is

U (ξ) = c0e
− ξ2

4 (c0 ∈ R).

This function is even, positive, integrable and vanishes at infinity. It only
remains to choose c0 in order to ensure (3.53). Since19

∫

R

e−
ξ2

4 dξ =
ξ=2z

2
∫

R

e−z
2
dz = 2

√
π

the choice is c0 = (4π)−1/2.
18 Rigorously, the precise conditions are:

lim inf
x→±∞

U (x) = 0.

19 Recall that ∫

R

e−z2
dz =

√
π.
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Going back to the original variables, we have found the following solution
of (3.48)

u∗ (x, t) =
q√

4πDt
e−

x2
4Dt , x ∈ R, t > 0

positive, even in x, and such that
∫

R

u∗ (x, t) dx = q for every t > 0. (3.58)

The choice q = 1 gives a family of Gaussians, parametrized with time, and it
is natural to think of a normal probability density.

Definition 3.1. The function

ΓD (x, t) =
1√

4πDt
e−

x2
4Dt , x ∈ R, t > 0 (3.59)

is called the fundamental solution of equation (3.48).

3.3.3 The Dirac distribution

It is worthwhile to examine the behavior of the fundamental solution. For
every fixed x �= 0,

lim
t→0+

ΓD (x, t) = lim
t→0+

1√
4πDt

e−
x2
4Dt = 0 (3.60)

while
lim
t→0+

ΓD (0, t) = lim
t→0+

1√
4πDt

= +∞. (3.61)

If we interpret ΓD as a probability density, equations (3.60), (3.61) and
(3.58) imply that when t→ 0+ the fundamental solution tends to concentrate
mass around the origin; eventually, the whole probability mass is concentrated
at x = 0 (see Fig. 3.5).

Fig. 3.5. The fundamental solution Γ1 for −4 < x < 4, 0 < t < 1
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The limiting density distribution can be mathematically modeled by the
so called Dirac distribution (or measure) at the origin, denoted by the symbol
δ0 or simply by δ. The Dirac distribution is not a function in the usual sense
of Analysis; if it were, it should have the following properties:

• δ (0) = ∞, δ (x) = 0 for x �= 0;
•
∫
R
δ (x) dx = 1,

clearly incompatible with any concept of classical function or integral. A rigor-
ous definition of the Dirac measure requires the theory of generalized functions
or distributions of L. Schwartz, that we will consider in Chapter 7. Here we
restrict ourselves to some heuristic considerations.

Let

H (x) =

{
1 if x ≥ 0
0 if x < 0,

be the characteristic function of the interval [0,∞), known as the Heaviside
function. Observe that

H (x+ ε)−H (x− ε)
2ε

=

{
1
2ε if − ε ≤ x < ε

0 otherwise.
(3.62)

Denote by Iε (x) the quotient (3.62); the following properties hold:

i) For every ε > 0, ∫

R

Iε (x) dx =
1
2ε
× 2ε = 1.

We can interpret Iε as a unit impulse of extent 2ε (Fig. 3.6).

ii)

lim
ε↓0

Iε (x) =
{

0 if x �= 0
∞ if x = 0.

iii) If ϕ = ϕ (x) is a smooth function, vanishing outside a bounded interval,
(a test function), we have

∫

R

Iε (x)ϕ (x) dx =
1
2ε

∫ ε

−ε
ϕ (x) dx −→

ε−→0
ϕ (0) .

0ε →1/ 2ε

εε−

Unit impulse

0ε →1/ 2ε

εε−

Unit impulse

Fig. 3.6. Approximation of the Dirac measure
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Properties i) e ii) say that Iε tends to a mathematical object that has pre-
cisely the formal features of the Dirac distribution at the origin. In particular
iii) suggests how to identify this object, that is through its action on test
functions.

Definition 3.2. We call Dirac measure at the origin the generalized function,
denoted by δ, that acts on a test function ϕ as follows

δ [ϕ] = ϕ (0) . (3.63)

Equation (3.63) is often written in the form 〈δ, ϕ〉 = ϕ (0) or even
∫
δ (x)ϕ (x) dx = ϕ (0)

where the integral symbol is purely formal. Observe that property ii) shows
that

H′ = δ

whose meaning is given in the following computations, where an integration
by parts is used and ϕ is a test function

∫

R

ϕdH = −
∫

R

Hϕ′ = −
∫ ∞

0

ϕ′ = ϕ (0) , (3.64)

since ϕ vanishes for large20 x.
With the notion of Dirac measure at hand, we can say that ΓD satisfies

the initial conditions
ΓD (x, 0) = δ.

If the unit mass is concentrated at a point y �= 0, we denote by δy or δ (x− y)
the Dirac measure at y, defined through the formula

∫
δ (x− y)ϕ (x) dx = ϕ (y) .

Then, by translation invariance, the fundamental solution ΓD (x− y, t) is a
solution of the diffusion equation, that satisfies the initial condition

ΓD (x− y, 0) = δ (x− y) .

Indeed it is the unique solution satisfying the total mass condition (3.58) with
q = 1.
20 The first integral in (3.64) is a Riemann-Stieltjes integral, that formally can be

written as ∫
ϕ (x)H′ (x) dx

and interpreted as the action of the generalized function H′ on the test function ϕ.
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As any solution u of (3.48) has several interpretations (concentration of
a substance, probability density, temperature in a bar) so the fundamental
solution can have several meanings.

We can think of it as a unit source solution: ΓD (x, t) gives the con-
centration at the point x at time t, generated by the diffusion of a unit
mass initially (t = 0) concentrated at the origin. From another point of
view, if we imagine a unit mass composed of a large number N of particles,
ΓD (x, t) dx gives the probability that a single particle is placed between x and
x+dx at time t or equivalently, the percentage of particles inside the interval
(x, x+ dx) at time t.

Initially ΓD is zero outside the origin. As soon as t > 0, ΓD becomes posi-
tive everywhere: this amounts to saying that the unit mass diffuses instanta-
neously all over the x−axis and therefore with infinite speed of propagation.
This could be a problem in using (3.48) as a realistic model, although (see
Fig. 3.5) for t > 0, small, ΓD is practically zero outside an interval centered
at the origin of length 4D.

3.3.4 Pollution in a channel. Diffusion, drift and reaction

Let us go back to the simple model of pollution on the surface of a narrow
channel, considered in Section 2.1. If c denotes the pollutant concentration
the law of mass conservation leads to the equation

ct = −qx. (3.65)

Let us examine the combination of diffusion and drift. If we adopt the
Fick law of diffusion: we get for q the constitutive law

q (x, t) = vc (x, t)−Dcx (x, t) .

From (3.65) we infer that

ct = Dcxx − vcx. (3.66)

Since D and v are constant, it is easy to determine the evolution of a mass
Q of pollutant, initially located at the origin (say). Its concentration is the
solution of (3.66) with initial condition

c (x, 0) = Qδ (x)

where δ is the Dirac measure at the origin. To find an explicit formula, we
can get rid of the drift term −vcx by setting

w (x, t) = c (x, t) ehx+kt

with h, k to be chosen suitably. We have:

wt = [ct + kc]ehx+kt

wx = [cx + hc]ehx+kt, wxx = [cxx + 2hcx + h2c]ehx+kt.
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Using the equation ct = Duxx − vcx, we can write

wt −Dwxx = ehx+kt[ct −Dcxx − 2Dhcx + (k −Dh2)c] =
= ehx+kt[(−v − 2Dh)cx + (k −Dh2)c].

Thus if we choose

h = − v

2D
and k =

v2

4D
,

w is a solution of the diffusion equation wt − Dwxx = 0, with the initial
condition

w (x, 0) = c (x, 0) e−
v

2D x = Qδ (x) e−
v

2D x.

In Chapter 7 we show that δ (x) e−
v

2D x = δ (x), so that w (x, t) = QΓD (x, t)
and finally

c (x, t) = Qe
v

2D (x− v
2 t)ΓD (x, t) . (3.67)

The concentration c is thus given by the fundamental solution ΓD, “carried”
by the travelling wave exp

{
v

2D

(
x− v

2 t
)}

, in motion to the right with speed
v/2.

In realistic situations, the pollutant undergoes some sort of decay, due for
instance to biological decomposition. The resulting equation for the concen-
tration becomes

ct = Dcxx − vcx − γc (3.68)

where γ is a rate of decay21.
It is useful to look separately at the effect of the three terms in the right

hand side of (3.68).

• ct = Dcxx models pure diffusion. The typical effects are spreading and
smoothing, as shown by the typical behavior of the fundamental solution
ΓD.

• ct = bcx is a transport equation, that we have considered in detail in
Chapter 2. The solutions are travelling waves of the form g (x+ bt).

• ct = −γc models linear reaction. The solutions are multiples of e−γt,
exponentially decaying (increasing) if γ > 0 (γ < 0).

3.3.5 Fundamental solution (n > 1)

In space dimension greater than 1, we can more or less repeat the same ar-
guments. We look for positive, radial, self-similar solutions u∗ to (3.48), with
total mass equal to q at every time, that is

∫

Rn

u∗ (x,t) dx = q for every t > 0. (3.69)

21 [γ] = [time]−1 .
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Since q/ (Dt)n/2 is a concentration per unit volume, we set

u∗ (x, t) =
q

(Dt)n/2
U (ξ) , ξ = |x| /

√
Dt.

Arguing as in the one-dimensional case we have obtain solutions of the form

u∗ (x, t) =
q

(4πDt)n/2
exp

(
− |x|

2

4Dt

)
, (t > 0) .

Once more, the choice q = 1 is special.

Definition 3.3. The function

ΓD (x, t) =
1

(4πDt)n/2
exp

(
− |x|

2

4Dt

)
(t > 0)

is called the fundamental solution of the diffusion equation (3.48).

It is also possible to define the n-dimensional Dirac measure at a point y
through the formula22

∫
δ (x− y)ϕ (x) dx = ϕ (y) (3.70)

that expresses the action on the test function ϕ, smooth in Rn and vanishing
outside a compact set. For fixed y, the fundamental solution ΓD (x− y,t) is
the unique solution of the global Cauchy problem

{
ut −DΔxu = 0 x ∈Rn, t > 0
u (x, 0) = δ (x− y) x ∈ Rn

which satisfies (3.69) with q = 1.

3.4 The Global Cauchy Problem (n = 1)

3.4.1 The homogeneous case

In this section we consider the global Cauchy problem
{
ut −Duxx = 0 in R× (0,∞)
u (x, 0) = g (x) in R

(3.71)

where g, the initial data, is given. We will limit ourselves to the one-dimen-
sional case; techniques, ideas and formulas can be extended without too much
effort to the n-dimensional case.
22 As in dimension n = 1, in (3.70) the integral has a symbolic meaning only.
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The problem (3.71) models the evolution of the temperature or of the
concentration of a substance along a very long (infinite) bar or channel, re-
spectively, given the initial (t = 0) distribution.

By heuristic considerations, we can guess what could be a candidate solu-
tion. Consider a unit mass composed of a large number M � 1 of particles
and interpret the solution u as their concentration (or percentage). Then,
u (x, t) dx gives the mass inside the interval (x, x+ dx) at time t.

We want to determine the concentration u (x, y), due to the diffusion of a
mass whose initial concentration is given by g.

Thus, the quantity g (y) dy represents the mass concentrated in the interval
(y, y + dy) at time t = 0. As we have seen, Γ (x− y, t) is a unit source solution,
representing the concentration at x at time t, due to the diffusion of a unit
mass, initially concentrated in the same interval. Accordingly,

ΓD (x− y, t) g (y) dy

gives the concentration at x at time t, due to the diffusion of the mass g (y) dy.
Thanks to the linearity of the diffusion equation, we can use the superpo-

sition principle and compute the solution as the sum of all contributions. In
this way, we get the formula

u (x, t) =
∫

R

g (y)ΓD (x− y, t) dy =
1√

4πDt

∫

R

g (y) e−
(x−y)2

4Dt dy. (3.72)

Clearly, one has to check rigorously that, under reasonable hypotheses on the
initial data g, formula (3.72) really gives the unique solution of the Cauchy
problem. This is not a negligible question. First of all, if g grows too much at
infinity, more than an exponential of the type eax

2
, a > 0, in spite of the rapid

convergence to zero of the Gaussian, the integral in (3.72) could be divergent
and formula (3.72) loses any meaning. Even more delicate is the question of
the uniqueness of the solution, as we will see later.

3.4.2 Existence of a solution

The following theorem states that (3.72) is indeed a solution of the global
Cauchy problem under rather general hypotheses on g, satisfied in most of
the interesting applications23.

Theorem 3.3. Assume that g is a bounded function with a finite number of
jump discontinuities in R. Then:

i) the function (3.72) is well-defined, belongs to C∞(R× (0,+∞)) and

ut−Duxx= 0;

ii) if x0 is a point of continuity for g, then:

u (y, t) → g (x0) if (y, t) → (x0, 0) , t > 0;
23 We omit the long and technical proof.
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Fig. 3.7. Smoothing effect of the diffusion equation

iii)
|u (x, t)| ≤ max

R

|g| ∀(x, t) ∈ R× (0,∞) .

Remark 3.5. The property i) shows a typical and important phenomenon
connected with the diffusion equation: even if the initial data is discontinu-
ous at some point, immediately after the solution is smooth. The diffusion is
therefore a smoothing process. In Fig. 3.7, this phenomenon is shown for
the initial data g (x) = χ(−2,0) (x)+χ(1,4) (x), where χ(a,b) denotes the charac-
teristic function of the interval (a, b). By ii), if the initial data g is continuous
in all R, then the solution is continuous up to t = 0, that is in R×[0, T ).

3.4.3 The non homogeneous case. Duhamel’s method

Consider now the non homogeneous Cauchy problem
{
vt −Dvxx = f (x, t) in R× (0, T )
v (x, 0) = 0 in R

(3.73)

where f models a distributed source on the half-plane t > 0, capable to
produce mass density at the time rate f (x, t). Precisely, f (x, t) dxdt is the
mass produced24 between x and x + dx, over the time interval (t, t + dt). If
initially no mass is present,we motivate the form of the solution at the point
(x, t) using heuristic considerations. Let us compute the contribution dv to
v (x, t) of a mass f (y, s) dyds. It is like having a source term of the form

f∗ (x, t) = f (x, t) δ (x− y, t− s)
and therefore, we have

dv (x, t) = ΓD (x− y, t− s) f (y, s) dyds. (3.74)
24 Negative production (f < 0) means removal.
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We obtain the solution v (x, t) by superposition, summing all the contributions
(3.74). We split it into the following two steps:

• we sum over y the contributions for fixed s, to get the total density at (x, t) ,
due to the diffusion of mass produced at time s. The result is w (x, t, s) ds,
where

w (x, t, s) =
∫

R

ΓD (x− y, t− s) f (y, s) dy; (3.75)

• we sum the above contributions for s ranging from 0 to t:

v (x, t) =
∫ t

0

∫

R

ΓD (x− y, t− s) f (y, s) dyds.

The above construction is an example of application of the Duhamel method,
that we state below:

Duhamel’s method. The procedure to solve problem (3.73) consists in the
following two steps:

1. Construct a family of solutions of homogeneous Cauchy problems, with
variable initial time s > 0, and initial data f (x, s).

2. Integrate the above family with respect to s, over (0, t).

Indeed, let us examine the two steps.

1. Consider the homogeneous Cauchy problems{
wt −Dwxx = 0 x ∈ R, t > s

w (x, s, s) = f (x, s) x ∈ R (3.76)

where the initial time s plays the role of a parameter.
The function Γ y,s (x, t) = ΓD (x− y, t− s) is the fundamental solution of

the diffusion equation that satisfies for t = s, the initial condition

Γ y,s (x, s) = δ (x− y) .
Hence, the solution of (3.76) is given by the function (3.75)

w (x, t, s) =
∫

R

ΓD (x− y, t− s) f (y, s) dy.

Thus, w (x, t, s) is the required family.

2. Integrating w over (0, t) with respect to s, we find

v (x, t) =
∫ t

0

w (x, t, s) ds =
∫ t

0

∫

R

ΓD (x− y, t− s) f (y, s) dyds. (3.77)

Using (3.76) we have

vt −Dvxx = w (x, t, t) +
∫ t

0

[wt (x, t, s)−Dwxx (x, t, s)] ds = f (x, t) .

Moreover, v (x, 0) = 0 and therefore v is a solution to (3.73).
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Everything works under rather mild hypotheses on f . More precisely:

Theorem 3.4. If f and its derivatives ft, fx, fxx are continuous and bounded
in R×[0, T ), then (3.77) gives a solution v of problem (3.73) in R × (0, T ),
continuous up to t = 0, with derivatives vt, vx, vxx continuous in R× (0, T ).

The formula for the general Cauchy problem
{
ut −Duxx = f (x, t) in R× (0, T )
u (x, 0) = g (x) in R

(3.78)

is obtained by superposition of (3.72) and (3.77)

u (x, t) =
∫

R

ΓD (x− y, t) g (y) dy+
∫ t

0

∫

R

Γ (x− y, t− s) f (y, s) dyds. (3.79)

Under the hypotheses on f and g stated in Theorems 3.3 and 3.4, (3.79) is a
solution of (3.78) in R× (0,∞) continuous with its derivatives ut, ux, uxx.

The initial condition means that u (x, t) → g (x0) as (x, t) → (x0, 0) at
any point x0 of continuity of g. In particular, if g is continuous in R then u is
continuous in R×[0,T ).

Moreover, if f is as in Theorem 3.4 and

v (x, t) =
∫ t

0

∫

R

ΓD (x− y, t− s) f (y, s) dyds,

we easily get the estimate

t inf
R

f ≤ v (x, t) ≤ t sup
R

f, (3.80)

for every x ∈ R, 0 ≤ t ≤ T. In fact:

v (x, t) ≤ sup
R

f

∫ t

0

∫

R

ΓD (x− y, t− s) dyds = t sup
R

f

since ∫

R

ΓD (x− y, t− s) dy = 1

for every x, t, s, t > s. In the same way it can be shown that v (x, t) ≥ t infR f .
As a consequence, we have:

Corollary 3.2 (Uniqueness). Let g be continuous and bounded in R and let
f be as in Theorem 3.4. Then the Cauchy problem (3.78) has a unique bounded
solution u in R× (0, T ). This solution is given by (3.79) and moreover

inf
R

g + t inf
R

f ≤ u (x, t) ≤ sup
R

g + t sup
R

f. (3.81)
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Proof. If u and v are solutions of the same Cauchy problem (3.78), then
w = u− v is a solution of (3.78) with f = g = 0 and satisfies the hypotheses
of Corollary 3.2. It follows that w (x, t) ≡ 0. �

• Stability and comparison. The inequality (3.81) is a stability estimate for
the correspondence

data �−→ solution.

Indeed, let u1 and u2 be solutions of (3.78) with data g1, f1 and g2, f2, respec-
tively. Under the hypotheses of Corollary 3.2, from (3.81) we can write

sup
R×[0,T ]

|u1 − u2| ≤ sup
R

|g1 − g2|+ T sup
R×[0,T ]

|f1 − f2| .

Therefore if
sup

R×[0,T ]

|f1 − f2| ≤ ε, sup
R

|g1 − g2| ≤ ε

also
sup

R×[0,T ]

|u1 − u2| ≤ ε (1 + T )

that means uniform pointwise stability.
This is not the only consequence of (3.81). We can use it to compare two

solutions. For instance, from the left inequality we immediately deduce that
if f ≥ 0 and g ≥ 0, also u ≥ 0.

Similarly, if f1 ≥ f2 and g1 ≥ g2, then

u1 ≥ u2.

• Backward equations arise in several applied contexts, from control theory
and dynamic programming to probability and finance. An example is the cel-
ebrated Black–Scholes equation.

Due to the time irreversibility, to have a well posed problem for the back-
ward equation in the time interval [0, T ] we must prescribe a final condition,
that is for t = T , rather than an initial one. On the other hand, the change
of variable t �−→ T − t transforms the backward into the forward equation, so
that, from the mathematical point of view, the two equations are equivalent.
Except for this remark the theory we have developed so far remains valid.

3.5 An example of Nonlinear diffusion. The porous
medium equation

All the mathematical models we have examined so far are linear . On the other
hand, the nature of most real problems is nonlinear. For example, nonlinear
diffusion has to be taken into account in filtration problems, non linear drift
terms are quite important in fluid dynamics while nonlinear reaction terms
occur frequently in population dynamics and kinetics chemistry.
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The presence of a nonlinearity in a mathematical model gives rise to many
interesting phenomena that cannot occur in the linear case; typical instances
are finite speed of diffusion, finite time blow-up or existence of travelling
wave solutions of certain special profiles, each one with its own characteristic
velocity.

In this section we try to convey some intuition of what could happen in a
typical and important example from filtration through a porous medium and
population dynamics.

Consider a gas of density ρ = ρ (x, t) flowing through a porous medium.
Denote by v = v (x, t) the velocity of the gas and by κ the porosity of the
medium, representing the volume fraction filled with gas. Conservation of
mass reads, in this case:

κρt + div (ρv) = 0. (3.82)

Besides (3.82), the flow is governed by the two following constitutive (empir-
ical) laws.

• Darcy’s law:

v = −μ
ν
∇p (3.83)

where p = p (x, t) is the pressure, μ is the permeability of the medium and ν

is the viscosity of the gas. We assume μ and ν are positive constants.

• Equation of state:

p = p0ρ
α p0 > 0, α > 0. (3.84)

From (3.83) and (3.84) we have, since p1/α∇p = (1 + 1/α)−1Δ(p1+1/α),

div (ρv) = − μ

(1 + 1/α)νp1/α
0

Δ(p1+1/α) = − (m− 1)μp0

mν
Δ (ρm)

where m = 1 + α > 1. From (3.82) we obtain

ρt =
(m− 1)μp0

κmν
Δ(ρm).

Rescaling time (t �→ (m− 1)μp0

κmν
t) we finally get the porous medium equa-

tion
ρt = Δ(ρm). (3.85)

Since
Δ(ρm) = div

(
mρm−1∇ρ)

we see that the diffusion coefficient is D (ρ) = mρm−1, showing that the
diffusive effect increases with the density.
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The porous medium equation can be written in terms of the pressure
variable

u = p/p0 = ρm−1.

It is not difficult to check that the equation for u is given by

ut = uΔu+
m

m− 1
|∇u|2 (3.86)

showing once more the dependence on u of the diffusion coefficient.
One of the basic questions related to the equation (3.85) or (3.86) is to

understand how an initial data ρ0, confined in a small region Ω, evolves with
time. The key object to examine is therefore the unknown boundary ∂Ω (the
free boundary) of the gas, whose speed of expansion we expect to be pro-
portional to |∇p| (from (3.83)). This means that we expect a finite speed of
propagation, in contrast with the classical case m = 1.

The porous media equation cannot be treated by elementary means, since
at very low density the diffusion has a very low effect and the equation de-
generates. However we can get some clue of what happens by examining a
sort of fundamental solutions, the so called Barenblatt solutions, in spatial
dimension 1.

The equation is
ρt = (ρm)xx . (3.87)

We look for nonnegative self-similar solutions of the form

ρ (x, t) = t−αU
(
xt−β

) ≡ t−αU (ξ)

satisfying ∫ +∞

−∞
ρ (x, t) dx = 1.

This condition requires

1 =
∫ +∞

−∞
t−αU

(
xt−β

)
dx = tβ−α

∫ +∞

−∞
U (ξ) dξ

so that we must have α = β and
∫ +∞
−∞ U (ξ) dξ = 1. Substituting into (3.87),

we find
αt−α−1(−U − ξU ′) = t−mα−2α(Um)′′.

Thus, if we choose α = 1/ (m+ 1), we get for U the differential equation

(m+ 1) (Um)′′ + ξU ′ + U = 0

that can be written in the form

d

dξ

[
(m+ 1) (Um)′ + ξU

]
= 0.
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Thus, we have
(m+ 1) (Um)′ + ξU = constant.

Choosing the constant equal to zero, we get

(m+ 1) (Um)′ = (m+ 1)mUm−1U ′ = −ξU

or
(m+ 1)mUm−2U ′ = −ξ.

This in turn is equivalent to

(m+ 1)m
m− 1

(
Um−1

)′
= −ξ

whose solution is
U (ξ) =

[
A−Bmξ2

]1/(m−1)

where A is an arbitrary constant and Bm = (m− 1) /2m (m+ 1) . Clearly, to
have a physical meaning, we must have A > 0 and A−Bmξ2 ≥ 0.

In conclusion we have found solutions of the porous medium equation of
the form

ρ (x, t) =

⎧⎪⎨
⎪⎩

1
tα

[
A−Bm x2

t2α

]1/(m−1)

if x2 ≤ At2α/Bm

0 if x2 > At2α/Bm

(α = 1/ (m+ 1))

known as Barenblatt solutions. The points

x = ±
√
A/Bmt

α ≡ ±r (t)

represent the gas interface between the part filled by gas and the empty part.
Its speed of propagation is therefore

ṙ (t) = α
√
A/Bmt

α−1.

1t =

30t =
x

ρ

1t =

30t =
x

ρ

Fig. 3.8. The Barenblatt solution ρ (x, t) = t−1/5
[
1−x2t−2/5

]1/3

+
for t = 1, 4, 10, 30
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3.6 Numerical methods

3.6.1 Finite difference approximation of the heat equation

Let us consider the heat equation in x ∈ (0, 1), t ∈ R+ complemented with
mixed type boundary conditions,

⎧⎪⎨
⎪⎩

ut − uxx = f 0 < x < 1, t > 0
u(0, t) = 0, ux(1, t) = 0 t > 0
u(x, 0) = u0(x) 0 ≤ x ≤ 1.

(3.88)

To build up a finite difference approximation scheme we proceed as in
Chapter 2. After defining a uniform partition of the domain, characterized by
spatial nodes xi and time levels tn,

xi = i h with h =
1
N

ed i,N ∈ N, tn = n τ with n ∈ N,

we introduce the following centered approximation for the second derivative
of u on a generic node xi,

uxx(xi, t) =
1
h2

(
u(xi+1, t)− 2u(xi, t) + u(xi−1, t)

)
+O(h2). (3.89)

For the discretization of the Neumann boundary condition on xN = 1, it is
convenient to use a one-sided approximation. More precisely, to be coherent
with the accuracy of (3.89), we use the following second order approximation

ux(xN , t) =
1
2h
(− 3u(xN−2, t) + 2u(xN−1, t)− u(xN , t)

)
+O(h2). (3.90)

Both (3.89) and (3.90) could be easily verified by means of Taylor expansions.
Now, let ui(t) be a discrete function in space approximating u(xi, t). By

rewriting (3.89) and (3.90) in terms of ui(t) and replacing into (3.88), we
obtain,
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u̇i(t)− 1
h2

(
ui−1(t)− 2ui(t) + ui−1(t)

)
= f(xi, t), i = 1, N − 1

u0(t) = 0,
1
2h

(− 3uN−2(t) + 2uN−1(t)− uN (t)
)

= 0,
ui(0) = u0(xi), i = 1, N + 1

(3.91)

which is a system of ordinary differential equations for ui(t), also known
as semi-discrete problem, because it represents an intermediate step where
only the space variable has been discretized. We notice that problem (3.91) can
be equivalently formulated in matrix form. Precisely, let U(t) = {ui(t)}Ni=1 ∈
R
N be the vector of the nodal unknowns (from which we have subtracted

the node x0, because the value u(t, x0) is known), let AM
h be the discrete
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counterpart of the operator −∂xx (where the apex M reminds that we address
a problem with mixed Dirichlet/Neumann boundary conditions) and F(t) be
the discrete right hand side, defined respectively as follows

AM
h =

1
h2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0 . . . . . . 0
−1 2 −1 0 . . . . . . 0
0 −1 2 −1 0 . . . . . . 0
...

. . . . . . . . .
...

...
. . . . . . . . .

...
0 . . . . . . −1 2 −1 0
0 . . . . . . −1 2 −1
0 . . . . . . −3

2 2 −1
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, F(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f(x1, t)
...

...
f(xN−1, t)

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.92)

Then, problem (3.91) can be easily rewritten as

U̇(t) + AM
h U(t) = F(t), U(0) = {ui(0)}Ni=1. (3.93)

From (3.93), to end up with a fully discrete scheme we address Euler
type discretization in time. It consists in combining the following first order
approximation of the time derivative at a reference time t∗ ∈ [tn, tn+1],

ut(xi, t∗) =
1
τ

(
u(xi, tn+1)−u(xi, tn)

)
+O(τ ), U̇(t∗) =

1
τ

(
U(tn+1)−U(tn)

)

(3.94)
with the aforementioned space discretization of uxx(xi, t∗). If the reference
time is selected as t∗ = tn, then the difference quotient (3.94) can be seen as
a forward approximation of ut(xi, t∗), while choosing t∗ = tn+1 leads to a

t

(xi↪ tn+1)

(xi−1↪ t
n) (xi↪ tn) (xi+1↪ t

n)

x

Fig. 3.9. Finite difference computational grid for the heat equation, where the nodes
involved in the forward Euler (• marker) and backward Euler schemes (� marker)
have been put into evidence
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backward approximation scheme. By this way, we obtain the forward and
backward Euler schemes, respectively given by

1
τ

(
Un+1 −Un

)
+ AM

h

(
Un

Un+1

)
=
(

F(tn)
F(tn+1)

)
. (3.95)

Then, considering for simplicity the homogeneous heat equation with F(t) =
0, given the initial state U0 = U(0), the fully discrete scheme consists to find
a sequence of vectors Un, by solving the following linear system of equations

Un+1 = Cτ
hUn where

{
Cτ
h = I − τAM

h forward Euler (explicit)
Cτ
h =

(
I + τAM

h

)−1 backward Euler (implicit).
(3.96)

We immediately notice that the forward scheme gives rise to an explicit
set of equations, where updating the solution from tn to tn+1 is obtained by
multiplying Un for a given matrix Cτ

h. Conversely, the backward Euler scheme
is said to be implicit, because to determine Un+1 from Un we need to solve
a linear system of equations governed by the matrix Cτ

h = I + τAM
h . As we

will see in the next section, this is a substantial difference that significantly
affects the stability properties of the schemes.

3.6.2 Stability analysis for Euler methods

Let us consider for simplicity the homogeneous Cauchy-Dirichlet problem,
namely the heat equation complemented with u(0, t) = u(1, t) = 0 and f = 0,
whose discretization by means of finite differences leads to the matrix Ah ∈
R

(N−1)×(N−1) obtained removing the N − th row and column from AM
h ∈

R
N×N .

The exact solution of the Cauchy-Dirichlet problem is such that

lim
t→∞ max

x∈(0,1)
|u(x, t)| = 0 (3.97)

and for Euler type schemes, ensuring stability consists in enforcing that the
discrete solution Un satisfies an equivalent property at the discrete level,

lim
n→∞ ‖Un‖∞ = 0, (3.98)

where ‖ · ‖∞ denotes the maximum norm, namely ‖U‖∞ = max
i=1,...,N−1

|ui|. We

refer to Appendix C and in particular to (3.98) for a more rigorous definition
of stability.

For both forward and backward Euler schemes we observe that (3.96)
implies Un = (Cτ

h)
nU0. As a consequence, (Cτ

h)
n → 0 as n→∞ is a sufficient

condition to ensure that ‖Un‖∞ → 0. Then, stability substantially depends
on the spectrum of the iteration matrix Cτ

h, which is mainly determined by
the one of Ah. The following properties are useful to analyze the stability of
Euler schemes.
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Theorem 3.5. The matrix Ah ∈ RN−1×N−1 is symmetric and positive defi-
nite. The spectrum of Ah consists of the following N − 1 real distinct eigen-
values,

λi =
4
h2

sin2
(π

2
ih
)
, i = 1, . . . , N − 1.

Corollary 3.3. The eigenvalues of the forward Euler matrix are μi = 1−τλi,
while the backward Euler ones are ηi =

(
1 + τλi

)−1.

To conclude, we apply the following property which puts into evidence
the relation between the condition (Cτ

h)
n → 0 as n → ∞ and the matrix

spectrum.

Theorem 3.6. For any U0 ∈ R(N−1) we have lim
n→∞ ‖(C

τ
h)
nU0‖∞ = 0 if and

only if max
i=1,...,N−1

|λi| < 1, where λi are the eigenvalues of Cτ
h.

Since λi are monotonically increasing with respect to the index i and the
entire sequence is upper bounded by 4/h2, we observe that to ensure stability
it is sufficient to satisfy |λi| < 1 for the largest eigenvalue. Then, owing to
Corollary 3.3 and Theorem 3.6 the following conclusions hold true. 25

Corollary 3.4. Backward Euler scheme is unconditionally stable, namely it
satisfies (3.98) without restrictions on h and τ .

Corollary 3.5. Forward Euler scheme is only conditionally stable, because it
satisfies (3.98) provided that

√
2τ < h.

Furthermore, we notice that the restriction 2τ < h2 implies that forward
Euler matrix Cτ

h = I − τAh is positive, namely all its elements are non
negative, with at least one being strictly positive. Then, the expression Un =
(Cτ

h)
nU0 (valid for the simplified case F(t) = 0) allows us to conclude that

the discrete solution Un is a positive vector, provided that U0 is positive. This
property can be seen as the discrete counterpart of the maximum principle
for a homogeneous Cauchy-Dirichlet problem and it is often called discrete
maximum principle. It is also valid for the backward Euler scheme, without
any restriction on h and τ .

We conclude this section observing that the stability analysis is a fun-
damental step toward proving the convergence of the discrete solution to the
exact one. The role of stability in the error analysis of finite difference schemes
is discussed in Appendix C.

3.6.3 The solution of the heat equation as a probability density
function

Let us consider the random walk of a particle moving on a lattice of equidis-
tributed nodes in x ∈ R, t ∈ R+ spaced by h and τ along the space and time
25 For further details we refer to Quarteroni, Sacco, Saleri (2007).
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t

x(xi↪ tn)

(xi↪ tn+1)
√

2τ

(xi−1↪ t
n)

ht

x(x− h↪ t) (x+ h↪ t)

(x↪ t+ τ)

Fig. 3.10. Interpretation of the forward Euler stability condition
√

2τ < h as a
restriction of random walks

axes, respectively. From the initial state x = 0 for t = 0, we assume that in
each time interval the particle takes a single step on the left or on the right.
Being (x, t) a generic node of the lattice, we aim to determine the probability
p(x, t + τ) of finding the particle at (x, t + τ). To this purpose, we observe
that the particle can reach (x, t+τ ) only from (x±h, t), as shown in Fig. 3.10
(left). Then, the probabilities of finding the particle in these nodes satisfy the
following relation,

p(x, t+ τ) =
1
2
(
p(x− h, t) + p(x+ h, t)

)
.

Assuming that p(·, ·) is a regular function of its arguments, we apply Taylor
expansions

p(x, t+ τ) = p(x, t) + τpt(x, t) +O(τ2)

p(x± h, t) = p(x, t)± hpx(x, t) +
1
2
h2pxx(x, t)± 1

6
h3pxxx(x, t) +O(h4)

to conclude that

pt +O(τ ) =
h2

2τ
pxx +

h2

τ
O(h2).

Both left and right hand side of the previous expression remain bounded
passing to the limit τ , h → 0, provided that the ratio h2/2τ is kept constant
(which consists in performing a parabolic dilation). Then, the constant D =
h2/2τ plays the role of diffusion coefficient and the probability density of
finding the particle at (x, t) is governed by the heat equation

pt = Dpxx, (x, t) ∈ R× R+.

Furthermore, denoting with h∗ the mean free path traveled by the particle in
a time slab of length τ , we observe that (h∗)2 = 2τ or h∗ =

√
2τ . Then, going

back to the Euler schemes for the approximation of the heat equation, the
stability condition for the forward Euler scheme corresponds to require that
for each time slab the mean free path of this random walk must be smaller
than the width of a computational cell, namely h∗ < h, see also Fig. 3.10
(right).
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3.7 Exercises

3.1. A homogeneous bar is located in the interval 0 ≤ x ≤ 1; its section is
negligible compared to its length. The lateral surface of the bar is adiabatic
and its temperature u at the initial time t = 0 is u(x, 0) = g(x). Furthermore,
at time t = 0 the endpoints of the bar, x = 0 and x = 1 are settled and kept
at constant temperatures, respectively, u0 and u1. The thermal diffusivity of
the bar is Dm2/s. Write the mathematical model describing the evolution of
u as t > 0. Then, calculate u for g(x) = x, u0 = 1, u1 = 0.

3.2. Consider the following Cauchy-Neumann problem:
⎧⎨
⎩
ut − uxx = 0 0 < x < L, t > 0
u (x, 0) = x 0 < x < L
ux (0, t) = ux (L, t) = 0 t > 0.

Find the solution using the separation of variables and examine the asymptotic
behavior of u (x, t) as t→ +∞.

3.3. Use the separation of variables to solve the following non homogeneous
Cauchy-Neumann problem:

⎧⎨
⎩
ut − uxx = tx 0 < x < π, t > 0
u (x, 0) = 1 0 ≤ x ≤ π
ux (0, t) = ux (π, t) = 0 t > 0.

3.4 (The evolution of a chemical solution). Consider a tube of length L
and constant cross section A, where x is the symmetry-axis. The tube contains
a saline solution of concentration c (dimensionally [mass]×[length]−3). Let A
be small enough to assume that the concentration c depends only on x and t,
in order that the diffusion of salt is one dimensional, in the direction x. Let
also the velocity of the fluid be negligible.

From the left boundary of the pipe at x = 0 a solution of constant concen-
tration C0 ([mass] × [length]−3) enters with velocity R0 ([length]3 × [time]),
while at the other end x = L the solution is removed at the same speed.

Using the Fick’s law, show that c solves a diffusion Neumann-Robin prob-
lem. Thus, find the explicit solution and verify that for t→ +∞, c (x, t) tends
to a steady state.

3.5 (Diffusion of concentrated source). Find the similarity solutions of
the equation ut − uxx = 0 of the form u (x, t) = U

(
x/
√
t
)

and express the
result in term of the error function

erf (x) =
2√
π

∫ x

0

e−z
2
dz.
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Then, use the result to solve the following diffusion problem on the half
straight line, with constant concentration in x = 0 as t > 0:

⎧⎨
⎩
ut − uxx = 0 x > 0, t > 0
u (0, t) = C, limx→+∞ u (x, t) = 0 t > 0
u (x, 0) = 0 x > 0.

3.6 (A problem in dimension n = 3). Assume that

BR =
{
x ∈R3: |x| < 1

}

is the volume occupied by a material that is homogeneous and has the constant
temperature U at the initial time t = 0. When t > 0, the temperature on the
boundary of the ball is brought and maintained at the value zero. Describe
the evolution of temperature at the points of the ball, and make sure that the
temperature at the center of the sphere tends to zero as t→ +∞.

3.7. Prove that, if wt −DΔw = 0 in QT and w ∈ C (QT
)
, then

min
∂pQT

w ≤ w (x,t) ≤ max
∂pQT

w for every (x,t) ∈ QT .

3.8. Find an explicit formula for the solution of the global Cauchy problem
{
ut = Duxx + bux + cu x ∈ R,t > 0
u (x, 0) = g (x) x ∈ R

where D, b, c are constant coefficients. Show that, if c < 0 and g is bounded,
u (x, t)→ 0 as t→ +∞.

3.9. Find an explicit formula for the solution of the Cauchy-Dirichlet problem
⎧⎨
⎩
ut = uxx x > 0,t > 0
u (x, 0) = g (x)
u (0, t) = 0

x ≥ 0
t > 0

with g continuous and g (0) = 0.

3.10. LetQT = Ω×(0, T ), withΩ bounded domain in Rn. Let u ∈ C2,1 (QT )∩
C
(
QT
)

satisfy the equation

ut = DΔu+ b (x,t) · ∇u+ c (x,t)u in QT

where b and c are continuous in QT . Show that if u ≥ 0 (resp. u ≤ 0) on
∂pQT then u ≥ 0 (resp. u ≤ 0) in QT .

3.11. Solve the following initial-Dirichlet problem in B1 =
{
x ∈R3: |x| < 1

}
:

⎧⎨
⎩
ut = Δu x ∈B1, t > 0
u (x, 0) = 0
u (σ, t) = 1

x ∈B1

σ ∈ ∂B1, t > 0.

Compute limt→+∞ u.
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3.12. Solve the following initial-Dirichlet problem
⎧⎨
⎩
ut = Δu x ∈K, t > 0
u (x, 0) = 0
u (σ, t) = 1

x ∈K
σ ∈ ∂K, t > 0

where K is the rectangular box

K =
{
(x, y, z)∈R3: 0 < x < a, 0 < y < b, 0 < z < c

}
.

Compute limt→+∞ u.

3.13. Solve the following initial-Neumann problem in B1 =
{
x ∈R3: |x| < 1

}
:

⎧⎨
⎩
ut = Δu x ∈B1, t > 0
u (x, 0) = |x|
uν (σ, t) = 1

x ∈B1

σ ∈ ∂B1, t > 0.

3.14. Solve the following non homogeneous initial-Dirichlet problem in the
unit sphere B1 (u = u (r, t) , r = |x|):

⎧⎪⎨
⎪⎩
ut − (urr +

2
r
ur) = qe−t 0 < r < 1, t > 0

u (r, 0) = U
u (1, t) = 0

0 ≤ r ≤ 1
t > 0.

3.7.1 Application of Euler methods to the discretization of the
Cauchy-Dirichlet problem

We address the following problem,
⎧⎪⎨
⎪⎩

ut − uxx = 0 −L < x < L, τ < t < T

u(−L, t) = u(L, t) = 0 τ < t < T

u(x, τ) = Γ1(x, τ) −L ≤ x ≤ L.

Provided that the domain width L is large enough to make sure that the
solution is almost insensitive to the boundary conditions, we assume that the
fundamental solution of the one-dimensional heat equation, Γ1(x, t), satisfies
the problem (see also Fig. 3.11). For the numerical approximation we apply
the schemes (3.96), with the aim to verify the stability properties summarized
in Corollary 3.4 and 3.5.

Let us start from forward Euler method defined on a computational mesh
that satisfies the stability condition, for example τ = 1

4h
2. Fig. 3.11 (top-left

panel) confirms the good behavior of the scheme in this case. The numerical
solution obtained by progressively increasing τ until τ = 3

4h
2, reported in

Fig. 3.11 (top-right panel), confirms that spurious oscillations appear above
the threshold τ∗ = 1

2h
2, as symptoms of the lack of stability. Conversely, the

bottom panels of Fig. 3.11 show that the backward scheme is unconditionally
stable.
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Fig. 3.11. A comparison between forward and backward Euler methods

3.7.2 Application to the dynamics of chemicals

As in Exercise 3.4, we aim to study the evolution of a concentration field
c(x, t) such that

⎧⎪⎨
⎪⎩

ct − cxx = 0 0 < x < 1, t > 0
cx(0, t) = −1, cx(1, t) + c(1, t) = 0 t > 0
c(x, 0) = c0(x) 0 ≤ x ≤ 1.

(3.99)

For any positive value of the initial concentration, problem (3.99) admits
a steady state c∗(x) = 2 − x. Exploiting the change of variable u(x, t) =
c(x, t)− c∗(x), we rewrite (3.99) as a problem with a null steady state,

⎧⎪⎨
⎪⎩

ut − uxx = 0 0 < x < 1, t > 0
ux(0, t) = 0, ux(1, t) + u(1, t) = 0 t > 0
u(x, 0) = c0(x)− c∗(x) 0 ≤ x ≤ 1

(3.100)

where c0(x) = 1
2x

2 − x+ 1
2 for compatibility with the boundary conditions of

(3.99).
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Solution u(x, t) of (3.100) Solution c(x, t) of (3.99)
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Fig. 3.12. The solution of Exercise 3.4 approximated by means of backward Euler
scheme

Fig. 3.12 shows the numerical approximation of u(x, t) by backward Euler
scheme, obtained on a computational mesh characterized by τ = 0.1 and
h = 0.05. Although these discretization parameters do not satisfy the stability
condition, the numerical solution is stable owing to the unconditional stability
of the method.
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The Laplace Equation

4.1 Introduction

The Laplace equation Δu = 0 occurs frequently in applied sciences, in partic-
ular in the study of the steady state phenomena. Its solutions are called har-
monic functions. For instance, the equilibrium position of a perfectly elastic
membrane is a harmonic function as it is the velocity potential of a homoge-
neous fluid. Also, the steady state temperature of a homogeneous and isotropic
body is a harmonic function and in this case Laplace equation constitutes the
stationary counterpart (time independent) of the diffusion equation.

Slightly more generally, Poisson’s equation Δu = f plays an important
role in the theory of conservative fields (electrical, magnetic, gravitational,
. . . ) where the vector field is derived from the gradient of a potential.

For example, let E be a force field due to a distribution of electric charges
in a domain Ω ⊂ R3. Then, in standard units, div E =4πρ, where ρ represents
the density of the charge distribution. When a potential u exists such that
∇u = −E, then Δu = div∇u = −4πρ, which is Poisson’s equation. If the
electric field is created by charges located outside Ω, then ρ = 0 in Ω and u
is harmonic therein. Analogously, the potential of a gravitational field due to
a mass distribution is a harmonic function in a region free from mass.

In dimension two, the theories of harmonic and holomorphic functions are
strictly connected1. Indeed, the real and the imaginary part of a holomorphic
function are harmonic. For instance, since the functions

zm = rm (cosmθ + i sinmθ) , m ∈ N,

1 A complex function f = f (z) is holomorphic in an open subset Ω of the complex
plane if for every z0 ∈ Ω, the limit

lim
z→z0

f (z) − f (z0)

z − z0
= f ′ (z0)

exists and it is finite.

Salsa S., Vegni F.M.G., Zaretti A., Zunino P.: A Primer on PDEs. Models, Methods, Simulations.
Unitext – La Matematica per il 3+2 65.
DOI 10.1007/978-88-470-2862-3 4, © Springer-Verlag Italia 2013
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(r, θ polar coordinates) are holomorphic in the whole plane C, the functions

u (r, θ) = rm cosmθ and v (r, θ) = rm sinmθ m ∈ N,

are harmonic in R2 (called elementary harmonics). In Cartesian coordinates,
they are harmonic polynomials; for m = 1, 2, 3 we find

x, y, xy, x2 − y2, x3 − 3xy2, 3x2y − y3.

Other examples are

u (x, y) = eαx cosαy, v (x, y) = eαx sinαy (α ∈ R),

the real and imaginary parts of f (z) = eiαz, both harmonic in R2, and

u (r, θ) = log r, v (r, θ) = θ,

the real and imaginary parts of f (z) = log0 z = log r + iθ, harmonic in
R

2\ (0, 0) and R2\ {θ = 0} , respectively.

In this chapter we present the formulation of the most important well posed
problems and the classical properties of harmonic functions, focusing mainly
on dimensions two and three. A central notion is the concept of fundamental
solution, that we develop in conjunction with the very basic elements of the
so called potential theory .

4.2 Well Posed Problems. Uniqueness

Consider the Poisson equation

Δu = f in Ω (4.1)

where Ω ⊂ Rn is a bounded domain. The well posed problems associated
with equation (4.1) are the stationary counterparts of the corresponding prob-
lems for the diffusion equation. Clearly here there is no initial condition. On
the boundary ∂Ω we may assign:

• Dirichlet data

u = g. (4.2)

• Neumann data

∂νu = h (4.3)

where ν is the outward normal unit vector to ∂Ω.

• A Robin (radiation) condition

∂νu+ αu = h (α > 0). (4.4)
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• A mixed condition; for instance,

u = g on ΓD (4.5)
∂νu = h on ΓN ,

where ΓD ∪ ΓN = ∂Ω, ΓD ∩ ΓN = ∅, and ΓN is a relatively open subset of
∂Ω.

When g = h = 0 we say that the above boundary conditions are homoge-
neous.

We give some interpretations. If u is the position of a perfectly flexible
membrane and f is an external distributed load (vertical force per unit sur-
face), then (4.1) models a steady state.

The Dirichlet condition corresponds to fixing the position of the mem-
brane at its boundary. Robin condition describes an elastic attachment at
the boundary while a homogeneous Neumann condition corresponds to a free
vertical motion of the boundary.

If u is the steady state concentration of a substance, the Dirichlet condition
prescribes the level of u at the boundary, while the Neumann condition assigns
the flux of u through the boundary.

Using Green’s identity (1.12) we can prove the following uniqueness result.

Theorem 4.1. Let Ω ⊂ Rn be a smooth, bounded domain. Then there exists
at most one solution u ∈ C2 (Ω) ∩ C1

(
Ω
)

of (4.1), satisfying on ∂Ω one of
the conditions (4.2), (4.3), (4.4) or (4.5).

In the case of the Neumann condition, that is when

∂νu = h on ∂Ω,

two solutions differ by a constant.

Proof. Let u and v be solutions of the same problem, sharing the same bound-
ary data, and let w = u − v. Then w is harmonic and satisfies homogeneous
boundary conditions (one among (4.2)-(4.5)). Substituting u = v = w into
(1.12) we find ∫

Ω

|∇w|2 dx =
∫

∂Ω

w∂νw dσ.

If Dirichlet or mixed conditions hold, we have
∫

∂Ω

w∂νw dσ = 0.

When a Robin condition holds
∫

∂Ω

w∂νw dσ = −
∫

∂Ω

αw2dσ ≤ 0.



112 4 The Laplace Equation

In any case we obtain that
∫

Ω

|∇w|2 dx ≤0. (4.6)

From (4.6) we infer ∇w = 0 and therefore w = u − v = constant. This
concludes the proof in the case of Neumann condition. In the other cases, the
constant must be zero (why?), hence u = v. �

Remark 4.1. Consider the Neumann problem Δu = f in Ω, ∂νu = h on ∂Ω.
Integrating the equation on Ω and using Gauss’ formula we find

∫

Ω

f dx =
∫

∂Ω

h dσ. (4.7)

The relation (4.7) appears as a compatibility condition on the data f and
h, that has necessarily to be satisfied in order for the Neumann problem to
admit a solution. Thus, when having to solve a Neumann problem, the first
thing to do is to check the validity of (4.7). If it does not hold, the problem
does not have any solution. We will examine later the physical meaning of
(4.7).

4.3 Harmonic Functions

4.3.1 Mean value properties

Guided by their discrete characterization, we want to establish some funda-
mental properties of harmonic functions. To be precise, we say that a function
u is harmonic in a domain Ω ⊆ Rn if u ∈ C2 (Ω) and Δu = 0 in Ω.

Since d−harmonic functions are defined through a mean value property, we
expect that harmonic functions inherit a mean value property of the following
kind: the value at the center of any ball B ⊂⊂ Ω, i.e. compactly contained in
Ω, equals the average of the values on the boundary ∂B. Actually, something
more is true.

Theorem 4.2. Let u be harmonic in Ω ⊆ Rn. Then, for any ball BR (x) ⊂⊂
Ω the following mean value formulas hold:

u (x) =
n

ωnRn

∫

BR(x)

u (y) dy (4.8)

u (x) =
1

ωnRn−1

∫

∂BR(x)

u (σ) dσ (4.9)

where ωn is the surface of ∂BR.
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Proof (n = 2). Let us start from the second formula. For r < R define

g (r) =
1

2πr

∫

∂Br(x)

u (σ) dσ.

Perform the change of variables σ = x+rσ′. Then σ′ ∈ ∂B1 (0), dσ = rdσ′

and
g (r) =

1
2π

∫

∂B1(0)

u (x+rσ′) dσ′.

Let v (y) = u (x+ry) and observe that

∇v (y) = r∇u (x+ry)
Δv (y) = r2Δu (x+ry) .

Then we have

g′ (r) =
1
2π

∫

∂B1(0)

d

dr
u (x+rσ′) dσ′ =

1
2π

∫

∂B1(0)

∇u (x+rσ′) · σ′dσ′

=
1

2πr

∫

∂B1(0)

∇v (σ′) · σ′dσ′ = (divergence theorem)

=
1

2πr

∫

B1(0)

Δv (y) dy =
r

2π

∫

B1(0)

Δu (x+ry) dy = 0.

Thus, g is constant and since g (r) → u (x) for r → 0, we get (4.9).
To obtain (4.8), let R = r in (4.9), multiply by r and integrate both sides

between 0 and R. We find

R2

2
u (x) =

1
2π

∫ R

0

dr

∫

∂Br(x)

u (σ) dσ=
1
2π

∫

BR(x)

u (y) dy

from which (4.8) follows. �

Even more significant is a converse of Theorem 4.2. We say that a contin-
uous function u satisfies the mean value property in Ω, if (4.8) or (4.9) holds
for any ball BR (x) ⊂⊂ Ω. It turns out that if u is continuous and possesses
the mean value property in a domain Ω, then u is harmonic in Ω. Thus we
obtain a characterization of harmonic functions through a mean value prop-
erty, as in the discrete case. As a by product, we deduce that every harmonic
function in a domain Ω is continuously differentiable of any order in Ω, that
is, it belongs to C∞ (Ω). Notice that this is not a trivial fact since it involves
derivatives not appearing in the expression of the Laplace operator. For in-
stance, u (x, y) = x+ y |y| is a solution of uxx+uxy = 0 in all R2 but it is not
twice differentiable with respect to y at (0, 0).

Theorem 4.3. Let u ∈ C (Ω). If u satisfies the mean value property, then
u ∈ C∞ (Ω) and it is harmonic in Ω.

We postpone the proof to the end of Section 4.3.3.
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4.3.2 Maximum principles

As in the discrete case, a function satisfying the mean value property in a
domain2 Ω cannot attain its maximum or minimum at an interior point of Ω,
unless it is constant. In case Ω is bounded and u (non constant) is continuous
up to the boundary of Ω, it follows that u attains both its maximum and
minimum only on ∂Ω. This result expresses a maximum principle that we
state precisely in the following theorem.

Theorem 4.4. Let u ∈ C (Ω), Ω ⊆ Rn. If u has the mean value property and
attains its maximum or minimum at p ∈ Ω, then u is constant. In particular,
if Ω is bounded and u ∈ C(Ω) is not constant, then, for every x ∈Ω,

u (x) < max
∂Ω

u and u (x) > min
∂Ω

u (strong maximum principle).

Proof (n = 2). Let p be a minimum point3 for u:

m = u(p) ≤ u(y), ∀y ∈Ω.

We want to show that u ≡ m inΩ. Let q be another arbitrary point inΩ. Since
Ω is connected, it is possible to find a finite sequence of circles B (xj) ⊂⊂ Ω,
j = 0, . . . , N , such that (Fig. 4.1):

• xj ∈ B (xj−1) , j = 1, . . . , N ;
• x0 = p, xN = q.

The mean value property gives

m = u (p) =
1

|B (p)|
∫

B(p)

u (y) dy.

Fig. 4.1. A sequence of overlapping circles connecting the points p and q

2 Recall that a domain is an open connected set.
3 The argument for the maximum is the same.
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Suppose there exists z ∈B (p) such that u (z) > m. Then, given a circle
Br (z) ⊂ B (p), we can write:

m =
1

|B (p)|
∫

B(p)

u (y) dy (4.10)

=
1

|B (p)|

{∫

B(p)\Br(z)

u (y) dy +
∫

Br(z)

u (y) dy

}
.

Since u (y) ≥ m for every y and, by the mean value again,
∫

Br(z)

u (y) dy =u (z) |Br (z)| > m |Br (z)| ,

continuing from (4.10) we obtain

>
1

|B (p)| {m |B (p) \Br (z)|+m |Br (z)|} = m

and therefore the contradiction m > m.
Thus it must be that u ≡ m in B (p) and in particular u(x1) = m. We

repeat now the same argument with x1 in place of p to show that u ≡ m
in B (x1) and in particular u(x2) = m. Iterating the procedure we eventually
deduce that u(xN ) = u(q) = m. Since q is an arbitrary point of Ω, we
conclude that u ≡ m in Ω. �

An important consequence of the maximum principle is the following corol-
lary.

Corollary 4.1. Let Ω ⊂ R
n be a bounded domain and g ∈ C (∂Ω). The

problem {
Δu = 0 in Ω
u = g on ∂Ω

(4.11)

has at most a solution ug∈C2 (Ω) ∩ C (Ω). Moreover, let ug1 and ug2 be the
solutions corresponding to the data g1, g2 ∈ C (∂Ω). Then:

(a) (Comparison). If g1 ≥ g2 on ∂Ω and g1 �= g2, then

ug1 > ug2 in Ω. (4.12)

(b) (Stability).

|ug1 (x)− ug2 (x)| ≤ max
∂Ω

|g1 − g2| for every x ∈Ω. (4.13)

Proof. We first show (a) and (b). Let w = ug1 −ug2 . Then w is harmonic and
w = g1−g2 ≥ 0 on ∂Ω. Since g1 �= g2, w is not constant and from Theorem 4.4

w (x) > min
∂Ω

(g1 − g2) ≥ 0 for every x ∈Ω.
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This is (4.12). To prove (b), apply Theorem 4.4 to w and −w to find

±w (x) ≤ max
∂Ω

|g1 − g2| for every x ∈Ω

which is equivalent to (4.13).
Now if g1 = g2, (4.13) implies w = ug1 − ug2 ≡ 0, so that the Dirichlet

problem (4.11) has at most one solution. �

Remark 4.2. Inequality (4.13) is a stability estimate. Indeed, suppose g is
known within an absolute error less than ε, or, in other words, suppose g1 is
an approximation of g and max∂Ω |g − g1| < ε; then (4.13) gives

max
Ω̄
|ug1 − ug| < ε

so that the approximate solution is known within the same absolute error.

4.3.3 The Dirichlet problem in a circle. Poisson’s formula

To prove the existence of a solution to one of the boundary value problems we
considered in Section 4.2 is not an elementary task. In Chapter 8, we solve this
question in a general context, using the more advanced tools of Functional
Analysis. However, in special cases, elementary methods, like separation of
variables, work. We use it to compute the solution of the Dirichlet problem
in a circle. Precisely, let BR = BR (p) the circle of radius R centered at
p =(p1, p2) and g ∈ C (∂BR). We want to prove the following theorem.

Theorem 4.5. The unique solution u ∈ C2 (BR) ∩ C (BR
)

of the problem

{
Δu = 0 in BR
u = g on ∂BR

(4.14)

is given by Poisson’s formula

u (x) =
R2 − |x− p|2

2πR

∫

∂BR(p)

g (σ)
|x− σ|2 dσ. (4.15)

In particular, u ∈ C∞ (BR).

Proof. For simplicity, we give the proof assuming that g is a smooth function.
The symmetry of the domain suggests the use of polar coordinates

x1 = p1 + r cos θ x2 = p2 + r sin θ.

Accordingly, let

U (r, θ) = u (p1 + r cos θ, p2 + r sin θ) , G (θ) = g (p1 +R cos θ, p2 +R sin θ).
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The Laplace equation becomes4

Urr +
1
r
Ur +

1
r2
Uθθ = 0, 0 < r < R, 0 ≤ θ ≤ 2π, (4.16)

with the Dirichlet condition

U (R, θ) = G (θ) , 0 ≤ θ ≤ 2π.

Since we ask that u be continuous in BR, then U and G have to be con-
tinuous in [0, R] × [0, 2π] and [0, 2π], respectively; moreover both have to be
2π−periodic with respect to θ.

We use now the method of separation of variables, by looking first for
solutions of the form

U (r, θ) = v (r)w (θ)

with v, w bounded and w 2π−periodic. Substitution in (4.16) gives

v′′ (r)w (θ) +
1
r
v′ (r)w (θ) +

1
r2
v (r)w′′ (θ) = 0

or, separating the variables,

−r
2v′′ (r) + rv′ (r)

v (r)
=
w′′ (θ)
w (θ)

.

This identity is possible only when the two quotients have a common constant
value λ. Thus we are lead to the ordinary differential equation

r2v′′ (r) + rv′ (r)− λv (r) = 0 (4.17)

and to the eigenvalue problem
{
w′′ (θ)− λw (θ) = 0
w (0) = w (2π) . (4.18)

We leave to the reader to check that problem (4.18) has only the zero solution
for λ ≥ 0. If λ = −μ2, μ > 0, the differential equation in (4.18) has the general
integral

w (θ) = a cosμθ + b sinμθ (a, b ∈ R) .

The 2π−periodicity forces μ = m, a nonnegative integer.
The equation (4.17) is an Euler equation. The change of variables s = log r

yields to the equation
v′′ (s)−m2v (s) = 0

whose general solution is

v (r) = d1r
−m + d2r

m (d1, d2 ∈ R) .

Since v has to be bounded hence d1 = 0.
4 Appendix D.
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We have found a countable number of 2π−periodic harmonic functions

Um(r, θ) = rm {am cosmθ + bm sinmθ} m = 0, 1, 2, . . . . (4.19)

We superpose now the (4.19) by writing

U (r, θ) = a0 +
∞∑
m=1

rm {am cosmθ + bm sinmθ} (4.20)

with the coefficients am and bm still to be chosen in order to satisfy the
boundary condition

lim
(r,θ)→(R,ξ)

U(r, θ) = G (ξ) ∀ξ∈ [0, 2π] . (4.21)

Since G is smooth, it can be expanded in a uniformly convergent Fourier
series

G (ξ) =
α0

2
+

∞∑
m=1

{αm cosmξ + βm sinmξ}

where

αm =
1
π

∫ 2π

0

G (ϕ) cosmϕ dϕ, βm =
1
π

∫ 2π

0

G (ϕ) sinmϕ dϕ.

Then, the boundary condition (4.21) is satisfied if we choose

a0 =
α0

2
, am = R−mαm, bm = R−mβm.

Substitution of these values of a0, am, bm into (4.20) gives, for r ≤ R,

U (r, θ) =
α0

2
+

1
π

∞∑
m=1

( r
R

)m ∫ 2π

0

G (ϕ) {cosmϕ cosmθ + sinmϕ sinmθ} dϕ

=
1
π

∫ 2π

0

G (ϕ)

[
1
2

+
∞∑
m=1

( r
R

)m
{cosmϕ cosmθ + sinmϕ sinmθ}

]
dϕ

=
1
π

∫ 2π

0

G (ϕ)

[
1
2

+
∞∑
m=1

( r
R

)m
cosm(ϕ− θ)

]
dϕ.

Note that in the second equality above, the exchange of sum and integration
is possible because of the uniform convergence of the series. Moreover, for
r < R, we can differentiate under the integral sign and then term by term as
many times as we want (why?). Therefore, since for every m ≥ 1 the functions

( r
R

)m
cosm(ϕ− θ)

are smooth and harmonic, also U ∈ C∞ (BR) and is harmonic for r < R.
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To obtain a better formula, observe that

∞∑
m=1

( r
R

)m
cosm(ϕ− θ) = Re

[ ∞∑
m=1

(
ei(ϕ−θ)

r

R

)m]
.

Since

Re
∞∑
m=1

(
ei(ϕ−θ)

r

R

)m
= Re

1
1− ei(ϕ−θ) rR

− 1 =
R2 − rR cos (ϕ− θ)

R2 + r2 − 2rR cos (ϕ− θ) − 1

=
rR cos (ϕ− θ)− r2

R2 + r2 − 2rR cos (ϕ− θ)
we find

1
2

+
∞∑
m=1

( r
R

)m
cosm(ϕ− θ) =

1
2

R2 − r2
R2 + r2 − 2rR cos (ϕ− θ) . (4.22)

Inserting (4.22) into the formula for U , we get Poisson’s formula in polar
coordinates:

U (r, θ) =
R2 − r2

2π

∫ 2π

0

G (ϕ)
R2 + r2 − 2Rr cos (θ − ϕ)

dϕ. (4.23)

Going back to Cartesian coordinates5 we obtain Poisson’s formula (4.15).
Corollary 3.1 assures that (4.23) is indeed the unique solution of the Dirichlet
problem (4.14). �

Remark 4.3 (Poisson’s formula in dimension n > 2). Theorem 4.5 has
an appropriate extension in any number of dimensions. When BR = BR (p)
is an n-dimensional ball, the solution of the Dirichlet problem (4.14) is given
by

u (x) =
R2 − |x− p|2

ωnR

∫

∂BR(p)

g (σ)
|x− σ|n dσ. (4.24)

Remark 4.4. The method of separation of variables can be used also in pres-
ence of a distributed source. Let us solve, for instance, the following nonho-
mogeneous Dirichlet problem.

{
Δu = f in BR
u = 0 in ∂BR.

5 With σ = R(cosϕ, sinϕ), dσ = Rdϕ and

|x − σ|2 = (r cos θ −R cosϕ)2 + (r sin θ −R sinϕ)2

= R2 + r2 − 2Rr (cosϕ cos θ + sinϕ sin θ)

= R2 + r2 − 2Rr cos (θ − ϕ) .
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Using again polar coordinates, we assume that f = f (r, θ) has a development
in sine-Fouries series with respect to θ, in [0, 2π]:

f (r, θ) =
∞∑
m=1

fm (r) sinmθ.

We write the candidate solution in the form

u (r, θ) =
∞∑
m=1

um (r) sinmθ

where the coefficients um (r) are unknown. Substituting, we find:
∞∑
m=1

{
u′′m (r) +

1
r
u′ (r)− m2

r2
um (r)

}
sinmθ =

∞∑
m=1

fm (r) sinmθ

so that the mth coefficient um cand be found by solving the ordinary differ-
ential equation

u′′m (r) +
1
r
u′ (r)− m2

r2
um (r) = fm (r) m ≥ 1

with
um (R) = 0, and um bounded in [0, 1] .

We are now in position to prove Theorem 4.3, the converse of the mean
value property (m.v.p.).

Proof (Theorem 4.3). First observe that if two functions satisfy the m.v.p.
in a domain Ω, their difference satisfies this property as well. Let u ∈ C (Ω)
satisfying the m.v.p. and consider a circle B ⊂⊂ Ω. We want to show that u
is harmonic and infinitely differentiable in Ω. Denote by v the solution of the
Dirichlet problem {

Δv = 0 in B
v = u on ∂B.

From Theorem 4.5 we know that v ∈ C∞ (B) ∩ C (B) and, being harmonic,
it satisfies the m.v.p. in B. Then, also w = v−u satisfies the m.v.p. in B and
therefore it attains its maximum and minimum on ∂B. Since w = 0 on ∂B,
we conclude that u = v in B. Since B is arbitrary, u ∈ C∞ (Ω) and harmonic
in Ω. �

4.4 Fundamental Solution and Newtonian Potential

4.4.1 The fundamental solution

In this section we shall derive formulas involving various types of potentials,
constructed using a special function, called the fundamental solution of the
Laplace operator.
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As we did for the diffusion equation, let us look at the invariance prop-
erties characterizing the operator Δ: the invariances by translations and by
rotations.

Let u = u (x) be harmonic in Rn. Invariance by translations means that
the function v (x) = u (x− y), for each fixed y, is also harmonic, as it is
immediate to check.

Invariance by rotations means that, given a rotation in Rn, represented by
an orthogonal matrix M (i.e. MT = M−1), also v (x) = u (Mx) is harmonic
in Rn. To check it, observe that, if we denote by D2u the Hessian of u, we
have

Δu = TrD2u = trace of the Hessian of u.

Since
D2v (x) = MTD2u (Mx)M

and M is orthogonal, we have

Δv (x) = Tr[MTD2u (Mx)M] = TrD2u (Mx) = Δu (Mx) = 0

and therefore v is harmonic.
Now, a typical rotation invariant quantity is the distance function from

a point, for instance from the origin, that is r = |x|. Thus, let us look for
radially symmetric harmonic functions u = u (r).

Consider first n = 2; using polar coordinates and recalling (4.16), we find

∂2u

∂r2
+

1
r

∂u

∂r
= 0

so that
u (r) = C log r + C1.

In dimension n = 3, using spherical coordinates (r, ψ, θ), r > 0, 0 < ψ < π,
0 < θ < 2π, the operator Δ has the following expression6:

Δ =
∂2

∂r2
+

2
r

∂

∂r︸ ︷︷ ︸
radial part

+
1
r2

{
1

(sinψ)2
∂2

∂θ2 +
∂2

∂ψ2 + cotψ
∂

∂ψ

}

︸ ︷︷ ︸
.

spherical part (Laplace-Beltrami operator)

The Laplace equation for u = u (r) becomes

∂2u

∂r2
+

2
r

∂u

∂r
= 0

whose general integral is

u (r) =
C

r
+ C1 C,C1 arbitrary constants.

Choose C1 = 0 and C = 1
4π if n = 3, C = − 1

2π if n = 2.

6 Appendix D.
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The function

Φ (x) =

⎧⎪⎨
⎪⎩

− 1
2π log |x| n = 2

1
4π |x| n = 3

(4.25)

is called the fundamental solution for the Laplace operator Δ. The above
choice of the constant C is made in order to have

ΔΦ (x) = −δ (x) in Rn

where δ (x) denotes the Dirac measure at x = 0.
The physical meaning of Φ is remarkable: if n = 3, in standard units, 4πΦ

represents the electrostatic potential due to a unitary charge located at the
origin and vanishing at infinity7.

Clearly, if the origin is replaced by a point y, the corresponding potential
is Φ (x− y) and

ΔxΦ (x−y) = −δ (x− y) .

By symmetry, we also have ΔyΦ (x− y) = −δ (x− y).

4.4.2 The Newtonian potential

Suppose that (4π)−1
f (x) is the density of a charge located inside a compact

set in R3. Then Φ (x− y) f (y) dy represents the potential at x due to the
charge f (y) dy inside a small region of volume dy around y. The full potential
is given by the sum of all the contributions; we get

Nf (x) =
∫

R3
Φ (x− y) f (y) dy =

1
4π

∫

R3

f (y)
|x− y|dy (4.26)

which is the convolution between f and Φ and it is called the Newtonian
potential of f . Formally, we have

ΔNf (x) =
∫

R3
ΔxΦ (x− y) f (y) dy = −

∫

R3
δ (x− y) f (y) dy = −f (x) .

(4.27)
Under suitable hypotheses on f , (4.27) is indeed true (see Theorem 4.6 below).
Clearly, u is not the only solution of Δv = −f , since u + c, c constant, is a
solution as well. However, from Liouville’s Theorem, the Newtonian potential
is the only solution vanishing at infinity8. All this is stated precisely in the
7 In dimension 2,

2πΦ (x1, x2) = − log
√
x2

1 + x2
2

represents the potential due to a charge of density 1, distributed along the x3

axis.
8 Let v ∈ C2

(
R

3
)

another solution to (4.28), vanishing at infinity. Then u− v is a
bounded harmonic function in R3 and therefore is constant. Since it vanishes at
infinity it must be zero; thus u = v.
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theorem below, where, for simplicity, we assume f ∈ C2
(
R

3
)

with compact
support9. We have:

Theorem 4.6. Let f ∈ C2
(
R

3
)

with compact support. Let u be the New-
tonian potential of f , defined by (4.26). Then, u is the only solution in R3

of
Δu = −f (4.28)

belonging to C2
(
R

3
)

and vanishing at infinity.

Remark 4.5. An appropriate version of Theorem 4.6 holds in dimension n =
2, with the Newtonian potential replaced by the logarithmic potential

u (x) =
∫

R2
Φ (x− y) f (y) dy = − 1

2π

∫

R2
log |x− y| f (y) dy. (4.29)

The logarithmic potential does not vanish at infinity; its asymptotic behavior
is

u (x) = −M
2π

log |x|+O

(
1
|x|
)

as |x| → +∞ (4.30)

where
M =

∫

R2
f (y) dy.

Indeed, the logarithmic potential is the only solution of Δu = −f in R
2

satisfying (4.30).

4.5 The Green Function

4.5.1 An integral identity

Formula (4.26) gives a representation of the solution to Poisson’s equation
in all R3. In bounded domains, any representation formula has to take into
account the boundary values, as indicated in the following theorem.

Theorem 4.7. Let Ω ⊂ Rn be a smooth, bounded domain and u ∈ C2
(
Ω
)
.

Then, for every x ∈Ω,

u (x) = −
∫

Ω

Φ (x− y)Δu (y) dy+

+
∫

∂Ω

Φ (x− σ) ∂νσu (σ) dσ−
∫

∂Ω

u (σ) ∂νσΦ (x− σ) dσ.
(4.31)

The last two terms in the right hand side of (4.31) are called single and
double layer potentials, respectively. We are going to examine these surface
potentials later. The first one is the Newtonian potential of −Δu in Ω.
9 Recall that the support of a continuous function f is the closure of the set where
f is not zero.
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Proof. We give it for n = 3. Fix x ∈ Ω, and consider the fundamental solution

Φ (x− y) =
1

4πrxy
rxy = |x− y|

as a function of y: we write Φ (x− ·).
We would like to apply Green’s identity (1.14)

∫

Ω

(vΔu− uΔv)dx =
∫

∂Ω

(v∂νu −u∂νv)dσ (4.32)

to u and Φ (x− ·). However, Φ (x− ·) has a singularity in x, so that it cannot
be inserted directly into (4.32). Let us isolate the singularity inside a ball
Bε (x), with ε small. In the domain Ωε = Ω\Bε (x), Φ (x− ·) is smooth and
harmonic.

Thus, replacing Ω with Ωε, we can apply (4.32) to u and Φ (x− ·). Since

∂Ωε = ∂Ω ∪ ∂Bε (x) ,

and ΔyΦ (x− y) = 0, we find
∫

Ωε

1
rxy

Δu dy =
∫

∂Ωε

(
1
rxσ

∂u

∂νσ
−u ∂

∂νσ

1
rxσ

)
dσ

=
∫

∂Ω

(· · · ) dσ +
∫

∂Bε(x)

1
rxσ

∂u

∂νσ
dσ +

∫

∂Bε(x)

u
∂

∂νσ

1
rxσ

dσ.

(4.33)

We let now ε→ 0 in (4.33). We have
∫

Ωε

1
rxσ

Δu dy →
∫

Ω

1
rxσ

Δu dy as ε→ 0 (4.34)

since Δu ∈ C (Ω) and r−1
xσ is positive and integrable in Ω.

On ∂Bε (x), we have rxσ = ε and |∂νu| ≤M , since |∇u| is bounded; then
∣∣∣∣∣
∫

∂Bε(x)

1
rxσ

∂u

∂νσ
dσ

∣∣∣∣∣ ≤ 4πεM → 0 as ε→ 0. (4.35)

The most delicate term is
∫

∂Bε(x)

u
∂

∂νσ

1
rxσ

dσ.

On ∂Bε (x), the outward pointing (with respect to Ωε) unit normal at σ is
νσ=x−σ

ε , so that

∂

∂νσ

1
rxσ

= ∇y
1
rxσ

· νσ=
x− σ
ε3

x− σ
ε

=
1
ε2
.
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As a consequence,
∫

∂Bε(x)

u
∂

∂νσ

1
rxσ

dσ =
1
ε2

∫

∂Bε(x)

u dσ → u (x) (4.36)

as ε→ 0, by the continuity of u.
Letting ε→ 0 in (4.33), from (4.34), (4.35), (4.36) we obtain (4.31). �

4.5.2 The Green function for the Dirichlet problem

The function Φ defined in (4.25) is the fundamental solution for the Laplace
operator Δ in all Rn (n = 2, 3). We can also define a fundamental solution for
the Laplace operator in any open set and in particular in any bounded domain
Ω ⊂ Rn, representing the potential due to a unit charge placed at a point x ∈
Ω and equal to zero on ∂Ω.

This function, that we denote by G (x,y), is called the Green function in
Ω, for the operator Δ; for fixed x ∈Ω, G satisfies

ΔyG (x,y) = −δx in Ω

and
G (x,σ) = 0, σ ∈ ∂Ω.

More explicitly, the Green’s function can be written in the form

G (x,y) = Φ (x− y)− ϕ (x,y)

where ϕ, for fixed x ∈Ω, solves the Dirichlet problem
{

Δyϕ = 0 in Ω
ϕ (x,σ) = Φ (x− σ) on ∂Ω.

(4.37)

Two important properties of the Green’s function are the following:

(a) Positivity: G (x,y) > 0 for every x,y ∈ Ω, with G (x,y) → +∞ when
x− y → 0;

(b) Symmetry: G (x,y) = G (y,x).

The existence of the Green’s function for a particular domain depends on
the solvability of the Dirichlet problem (4.37). From Theorem 4.7, we know
that this is the case if Ω is smooth and bounded, for instance.

Even if we know that the Green’s function exists, explicit formulas are
available only for special domains. Sometimes a technique known as works.
In this method ϕ (x, ·) is considered as the potential due to an imaginary
charge q placed at a suitable point x∗, the image of x, in the complement of
Ω. The charge q and the point x∗ have to be chosen so that ϕ (x, ·) on ∂Ω is
equal to the potential created by the unit charge in x.
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The simplest way to illustrate the method is to find the Green’s function
for the upper half-space, although this is an unbounded domain. Clearly, we
require that G vanishes at infinity.

• Green’s function for the upper half space in R3. Let R3
+ be the upper half

space:
R

3
+ = {(x1, x2, x3) : x3 > 0} .

Fix x = (x1, x2, x3) and observe that if we choose x∗= (x1, x2,−x3) then, on
y3 = 0 we have

|x∗ − y| = |x− y| .
Thus, if x ∈R3

+, x∗ belongs to the complement of R3
+, the function

ϕ (x,y) = Φ (x∗−y) =
1

4π |x∗ − y|
is harmonic in R3

+ and ϕ (x,y) = Φ (x− y) on the plane y3 = 0. In conclusion,

G (x,y) =
1

4π |x− y| −
1

4π |x∗ − y| (4.38)

is the Green’s function for the upper half space.

• Green’s function for sphere. LetΩ = BR = BR (0) ⊂ R3. To find the Green’s
function for BR, set

ϕ (x,y) =
q

4π |x∗ − y| ,

x fixed in BR, and try to determine x∗, outside BR, and q, so that

q

4π |x∗ − y| =
1

4π |x− y| (4.39)

when |y| = R. The (4.39) gives

|x∗ − y|2 = q2 |x− y|2 (4.40)

or
|x∗|2 − 2x∗ · y +R2 = q2(|x|2 − 2x · y +R2).

Rearranging the terms we have

|x∗|2 +R2 − q2(R2 + |x|2) = 2y · (x∗ − q2x). (4.41)

Since the left hand side does not depend on y, it must be that x∗ = q2x and

q4 |x|2 − q2(R2 + |x|2) +R2 = 0

from which q = R/ |x| . This works for x �= 0 and gives

G (x,y) =
1
4π

[
1

|x− y| −
R

|x| |x∗ − y|
]

, x∗=
R2

|x|2 x, x �= 0. (4.42)
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Fig. 4.2. The image x∗ of x in the construction of the Green’s function for the
sphere

Since

|x∗ − y| = |x|−1
(
R4 − 2R2x · y + y |x|2

)1/2

,

when x→ 0 we have

ϕ (x,y) =
1
4π

R

|x| |x∗ − y| →
1

4πR

and therefore we can define

G (0,y) =
1
4π

[
1
|y| −

1
R

]
.

4.5.3 Green’s representation formula

From Theorem 4.7 we know that every smooth function u can be written as
the sum of a volume (Newtonian) potential with density −Δu, a single layer
potential of density ∂νu and a double layer potential of moment u. Suppose
u solves the Dirichlet problem

{
Δu = f in Ω
u = g on ∂Ω. (4.43)

Then (4.31) gives, for x ∈Ω,

u (x) = −
∫

Ω

Φ (x− y) f (y) dy+

+
∫

∂Ω

Φ (x− σ) ∂νσu (σ) dσ−
∫

∂Ω

g (σ) ∂νσΦ (x− σ) dσ.
(4.44)

This representation formula for u is not satisfactory, since it involves the data
f and g but also the normal derivative ∂νσu, which is unknown. To get rid of
∂νσu, let G (x,y) = Φ (x− y)− ϕ (x,y) be the Green’s function in Ω. Since
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ϕ (x, ·) is harmonic in Ω, we can apply (4.32) to u and ϕ (x, ·); we find

0 =
∫

Ω

ϕ (x,y) f (y) dy +

−
∫

∂Ω

ϕ (x,σ) ∂νσu (σ) dσ +
∫

∂Ω

g (σ) ∂νσϕ (x,σ) dσ.
(4.45)

Adding (4.44), (4.45) and recalling that ϕ (x,σ) = Φ (x− σ) on ∂Ω, we ob-
tain:

Theorem 4.8. Let Ω be a smooth domain and u be a smooth solution of
(4.43). Then:

u (x) = −
∫

Ω

f (y)G (x,y) dy−
∫

∂Ω

g (σ) ∂νσG (x,σ) dσ. (4.46)

Thus the solution of the Dirichlet problem (4.43) can be written as the
sum of the two Green’s potentials in the right hand side of (4.46) and it is
known as soon as the Green’s function in Ω is known. In particular, if u is
harmonic, then

u (x) = −
∫

∂Ω

g (σ) ∂νσG (x,σ) dσ. (4.47)

The function
P (x,σ) = −∂νσG (x,σ)

is called Poisson’s kernel. Since G (·,σ) > 0 inside Ω and vanishes on Ω, P
is nonnegative (actually positive).

On the other hand, the formula

u (x) = −
∫

Ω

f (y)G (x,y) dy

gives the solution of the Poisson equation Δu = f in Ω, vanishing on ∂Ω.
From the positivity of G we have that:

f ≥ 0 in Ω implies u ≤ 0 in Ω,

which is another form of the maximum principle.

• Poisson’s kernel and Poisson’s formula. From (4.42) we can compute Pois-
son’s kernel for the sphere BR (0). We have, recalling that x∗=R2 |x|−2 x, if
x �= 0,

∇y

[
1

|x− y| −
R

|x| |x∗ − y|
]

=
x− y

|x− y|3 −
R

|x|
x∗−y

|x∗ − y|3 .

If σ ∈∂BR (0), from (4.40) we have |x∗ − σ| = R |x|−1 |x− σ| , therefore

∇yG (x,σ) =
1
4π

[
x− σ
|x− σ|3 −

|x|2
R2

x∗−σ
|x− σ|3

]
=

−σ
4π |x− σ|3

[
1− |x|

2

R2

]
.
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Since on ∂BR (0) the exterior unit normal is νσ= σ/R, we have

P (x,σ) = −∂νσG (x,σ) = −∇yG (x,σ) · νσ =
R2 − |x|2

4πR
1

|x− σ|3 .

As a consequence, we obtain Poisson’s formula

u (x) =
R2 − |x|2

4πR

∫

∂BR(0)

g (σ)
|x− σ|3 dσ (4.48)

for the unique solution of the Dirichlet problem Δu = 0 in BR (0) and u = g
on ∂BR (0).

4.5.4 The Neumann function

We can find a representation formula for the solution of a Neumann problem
as well. Let u be a smooth solution of the problem

{
Δu = f in Ω
∂νu = h on ∂Ω

(4.49)

where f and h have to satisfy the solvability condition
∫

∂Ω

h (σ) dσ=
∫

Ω

f (y) dy, (4.50)

keeping in mind that u is uniquely determined up to an additive constant.
From Theorem 4.7 we can write

u (x) = −
∫

Ω

Φ (x− y) f (y) dy+

+
∫

∂Ω

h (σ)Φ (x− σ) dσ−
∫

∂Ω

u (σ) ∂νσΦ (x− σ) dσ
(4.51)

and now we should get rid of the second integral, containing the unknown
data u on ∂Ω. Mimicking what we have done for the Dirichlet problem, we
try to find an analog of the Green’s function, that is a function N = N (x,y)
given by

N (x,y) = Φ (x− y)− ψ (x,y)

where, for x fixed, ψ is a solution of
{
Δyψ = 0 in Ω
∂νσψ (x,σ) = ∂νσΦ (x− σ) on ∂Ω,

in order to have ∂νσN (x,σ) = 0 on ∂Ω. But this Neumann problem has no
solution because the compatibility condition

∫

∂Ω

∂νσΦ (x− σ) dσ = 0
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is not satisfied. In fact, letting u ≡ 1 in (4.31), we get
∫

∂Ω

∂νσΦ (x− σ) dσ = −1. (4.52)

Thus, taking into account (4.52), we require ψ to satisfy
{
Δyψ = 0 in Ω

∂νσψ (x,σ) = ∂νσΦ (x− σ) + 1
|∂Ω| on ∂Ω.

(4.53)

In this way, ∫

∂Ω

(
∂νσΦ (x− σ) +

1
|∂Ω|

)
dσ = 0

and (4.53) is solvable. Note that, with this choice of ψ, we have

∂νσN (x,σ) = − 1
|∂Ω| on ∂Ω. (4.54)

Apply now (4.32) to u and ψ (x, ·); we find:

0 = −
∫

∂Ω

ψ (x,σ) ∂νσu (σ) dσ+
∫

∂Ω

h (σ) ∂νσψ (σ) dσ +
∫

Ω

ψ (y) f (y) dy.

(4.55)
Adding (4.55) to (4.51) and using (4.54) we obtain:

Theorem 4.9. Let Ω be a smooth domain and u be a smooth solution of
(4.49). Then:

u (x)− 1
|∂Ω|

∫

∂Ω

u (σ) dσ =
∫

∂Ω

h (σ)N (x,σ) dσ −
∫

Ω

f (y)N (x,y) dy.

Thus, the solution of the Neumann problem (4.49) can also be written as
the sum of two potentials, up to the additive constant c = 1

|∂Ω|
∫
∂Ω

u (σ) dσ,
the mean value of u.

The function N is called Neumann function (also Green’s function for the
Neumann problem) and it is defined up to an additive constant.

4.6 Numerical methods

4.6.1 The 5 point finite difference scheme for the Poisson problem

Let us consider a two-dimensional Poisson problem complemented with Dirich-
let boundary conditions,

{
−Δu = f in Ω = (0, Lx)× (0, Ly)
u = g on ∂Ω.

(4.56)
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The finite difference discretization is easily applicable to tensor product do-
mains, such as Ω = (0, Lx)× (0, Ly), because in this case the computational
grid is obtained as a tensor product of the one-dimensional partition of (0, Lx)
and (0, Ly). More precisely, given two integers Nx and Ny, we define

xi = i · hx, hx = Lx/(Nx + 1), i = 0, . . . , Nx + 1
yj = j · hy, hy = Ly/(Ny + 1), j = 0, . . . , Ny + 1

being (xi, yj) the computational nodes where we aim to approximate the
solution of (4.56), namely uij � u(xi, yj).

Since in the Cartesian coordinate system the Laplace operator is simply
given byΔu = ∂xxu+∂yyu, a finite difference discretization can be achieved by
exploiting the three-point approximation for second order derivatives, namely
(3.89),

∂xxu(xi, yj) =
1
h2
x

(
u(xi+1, yj)− 2u(xi, yj) + u(xi−1, yj)

)
+O(h2

x)

∂yyu(xi, yj) =
1
h2
y

(
u(xi, yj+1)− 2u(xi, yj) + u(xi, yj−1)

)
+O(h2

y)

that can be combined to obtain the so called 5 point approximation of the
Laplace operator in terms of pointwise values of u,

Δu(xi, yj) =
1
h2

(
u(xi+1, yj) + u(xi, yj+1)− 4u(xi, yj)

+ u(xi−1, yj) + u(xi, yj−1)
)

+O(h2) (4.57)

where for simplicity we have assumed hx = hy = h. Equation (4.57) also
shows that the the 5 point scheme is second order accurate. Then, rewriting
(4.57) for the discrete unknowns, the finite difference approximation of the
Poisson problem (4.56) consists in finding uij such that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
h2

(
ui+1,j + ui,j+1 − 4uij + ui−1,j + ui,j−1

)
i = 1, . . . , Nx

= f(xi, yj) j = 1, . . . , Ny
ui,0 = g(xi, 0), ui,Ny+1 = g(xi, Lx) i = 0, . . . , Nx + 1
u0,j = g(0, yj), uNx+1,j = g(Ly, yj) j = 0, . . . , Ny + 1.

(4.58)

Now, the main difficulty consists to reformulate (4.58) in matrix form.
In contrast to the one-dimensional case, where the ordering of the discrete
unknowns is straightforwardly dictated by the orientation of the x axis, in
multiple space dimensions the ordering of the unknowns is relevant. Denoting
by U = {Uk}Nk=1 with N = Nx × Ny the collection of discrete degrees of
freedom, the problem of ordering corresponds to define a mapping from the
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couple (i, j) to the integer k. In the classical cases of ordering by rows or by
columns we obtain

ordering by rows Uk = uij with k = (j − 1) ·Nx + i

ordering by columns Uk = uij with k = (i− 1) ·Ny + j.

From now on we will adopt the row ordering, although switching i with j
and Nx with Ny leads to the matrix formulation corresponding to column
ordering. We aim to rewrite (4.58) as follows

AhU = Fh, Ah ∈ RN×N , U ∈ RN , Fh ∈ RN (4.59)

where Ah and Fh have to be suitably defined and the subscript h reminds
that their coefficients depend on 1/h2

x and 1/h2
y. For the assembly of Ah we

proceed by blocks. In particular, we define as Dh ∈ RNx×Nx the block that
preforms the coupling of nodes on the same row, while Eh ∈ RNx×Nx is the
block accounting for the remaining degrees of freedom in (4.58),

Dh =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α β 0 . . . . . . 0
β α β 0 . . . . . . 0
0 β α β 0 . . . . . . 0
...

. . . . . . . . .
...

...
. . . . . . . . .

...
0 . . . . . . β α β 0
0 . . . . . . β α β
0 . . . . . . 0 β α

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Eh =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ 0 0 . . . . . . 0
0 γ 0 0 . . . . . . 0
0 0 γ 0 0 . . . . . . 0
...

. . . . . . . . .
...

...
. . . . . . . . .

...
0 . . . . . . 0 γ 0 0
0 . . . . . . 0 γ 0
0 . . . . . . 0 0 γ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

α =
2
h2
x

+
2
h2
y

, β = − 1
h2
x

, γ = − 1
h2
y

.

Analogously to the block decomposition of Ah, we proceed to the decom-
position of Fh into sub-vectors Fh,j ∈ RNx relative to the j−th row of the
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system,

Fh,1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f(x1, y1) + g(0,y1)
h2

x
+ g(x1,0)

h2
y

f(x2, y1) + g(x2,0)
h2

y

...
f(xi, y1) + g(xi,0)

h2
y

...
f(xNx−1, y1) + g(xNx−1,0)

h2
y

f(xNx , y1) + g(Lx,y1)
h2

x
+ g(Lx,0)

h2
y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Fh,Ny =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f(x1, yNy ) + g(0,yNy )

h2
x

+ g(x1,Ly)
h2

y

f(x2, yNy ) + g(x2,Ly)
h2

y

...
f(xi, yNy ) + g(xi,Ly)

h2
y

...
f(xNx−1, yNy ) + g(xNx−1,Ly)

h2
y

f(xNx , yNy ) + g(Lx,yNy )

h2
x

+ g(Lx,Ly)
h2

y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Fh,j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f(x1, yj) + g(0,yj)
h2

x

f(x2, yj)
...

f(xi, yj)
...

f(xNx−1, yj)
f(xNx , yj) + g(Lx,yj)

h2
x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, j = 2, . . . , Ny − 1.

Casting Dh, Eh and Fh,j into the global Ah and the right hand side Fh, we
obtain

Ah =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Dh Eh 0 . . . . . . 0
Eh Dh Eh 0 . . . . . . 0
0 Eh Dh Eh 0 . . . . . . 0
...

. . . . . . . . .
...

...
. . . . . . . . .

...
0 . . . . . . Eh Dh Eh 0
0 . . . . . . Eh Dh Eh
0 . . . . . . 0 Eh Dh

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Fh =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Fh,1
Fh,2
Fh,3

...

...
Fh,Ny−2

Fh,Ny−1

Fh,Ny

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.60)
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As observed in Chapter 3, problem (4.56) can be generalized to the un-
steady case, ⎧⎪⎨

⎪⎩

ut −Δu = f in Ω × R+

u = g on ∂Ω × R+

u(t = 0) = u0 on Ω × {t = 0}
that can be discretized by means of the 5 point scheme for the Laplace operator
combined with one of the Euler schemes addressed for the one-dimensional
heat equation. We remind that the application of the forward Euler time
advancing method is restricted to the range of space and time discretization
steps, h and τ respectively, that satisfy a stability condition. Theorem 3.6
shows that such condition is related to the spectrum of the forward Euler
iteration matrix Cτ

h = I − τAh. To facilitate the extension of corollaries 3.4
and 3.5 to the present case, we briefly summarize below the spectral properties
of Ah.

Theorem 4.10. The matrix Ah in (4.60) is symmetric and positive definite.
The spectrum of Ah consists of the following Nx ×Ny distinct eigenvalues,

λk =
4
h2
x

sin2
(π

2
ihx
Lx

)
+

4
h2
y

sin2
(π

2
jhy
Ly

)

where k = (j − 1) ·Nx + i for i = 1, . . . , Nx and j = 1, . . . , Ny.

4.7 Exercises

4.1 (Separation of variables on the rectangle). Consider the rectangle
R = {(x, y) ∈ R2 : 0 < x < L, 0 < y < H}. Solve the following problem:

⎧⎨
⎩
Δu = 0 in R
u(0, y) = g1(y), u(L, y) = g2(y) 0 < y < H
u(x, 0) = g3(x), u(x,H) = g4(x) 0 < x < L

where gi ∈ C(R), i = 1, · · · , 4 and g1(0) = g3(0), g3(L) = g2(0), g2(H) =
g4(L), g1(H) = g4(0).

4.2 (Harmonic functions). Assume that u is harmonic in a domainΩ ⊆ Rn;
show that the derivatives of u of any order are harmonic in Ω.

4.3. Consider the unit circle BR centered in (0, 0) in R2 and use the method
of separation of variables to solve non homogeneous problem

{
Δu = f in BR
u = 0 on ∂BR.
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4.4. Solve the following non homogeneous problem with nonhomogeneus
boundary conditions

{
Δu (x, y) = y in B1 ⊂ R2

u = 1 on ∂B1.

4.5 (Separation of the variables on the ring). Considering the domain
B1,R = {(r, θ) such that 1 < r < R}, find the solution of the Dirichlet prob-
lem ⎧⎨

⎩
Δu = 0 in B1,R

u(1, θ) = g(θ) 0 ≤ θ ≤ 2π
u(R, θ) = h(θ) 0 ≤ θ ≤ 2π

where g, h ∈ C1(R) and are 2π−periodic functions. Then, write the solution
when g(θ) = sin θ and h(θ) = 1.

4.6 (Schwarz’s reflection principle). Denote

B+
1 =

{
(x, y) ∈ R2 : x2 + y2 < 1, y > 0

}

and assume u ∈ C2
(
B+

1

)∩C(B+
1 ) is harmonic in B+

1 and such that u (x, 0) =
0. Show that the function

U (x, y) =
{
u (x, y) y ≥ 0
−u (x,−y) y < 0

obtained from u by odd reflection with respect to y is harmonic in B1.

4.7 (Sub and superharmonic functions). A function u ∈ C2(Ω), Ω ⊆ Rn
is subharmonic (resp. superharmonic) in Ω if Δu ≥ 0 (Δu ≤ 0) in Ω. For
n = 2, prove the following statements.

a) If u is subharmonic10, then, for every BR (x) ⊂⊂ Ω, the following in-
equalities hold

u (x) ≤ 1
2πR

∫

∂BR(x)

u (y) dy and u (x) ≤ 1
πR2

∫

BR(x)

u (y) dy.

b) If u is subharmonic (superharmonic) and u ∈ C (Ω), then the maximum
(minimum) of u is attained at one unique point of ∂Ω, unless u is constant.

c) If u is harmonic in Ω then u2 is subharmonic.
d) Let u be subharmonic in Ω, and consider a function F : R→ R, with F ∈

C2 (R). Which conditions on F guarantee that the composition function
F ◦ u is subharmonic?

10 If u were superharmonic, the direction of the inequalities has to be reverted, in
fact, the statement can be applied to −u.
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4.8 (Torsion problem). Assume Ω ⊂ R
2 is a bounded domain and let

v ∈ C2 (Ω) ∩ C1
(
Ω
)

be the solution to the problem
{
vxx + vyy = −2 in Ω
v = 0 on ∂Ω. (4.61)

Prove that |∇v|2 attains its maximum on ∂Ω.

4.9. Let B1,2 =
{
(r, θ) ∈ R2; 1 < r < 2

}
. Examine the solvability of the Neu-

mann problem
⎧⎨
⎩
Δu = −1 in B1,2

u = cos θ on r = 1
u = λ(cos θ)2 on r = 2

(λ ∈ R)

and write an explicit formula for the solution, when it exists.

4.10. Let u be harmonic in R3 such that
∫

R3
|u (x)|2 dx <∞.

Show that u ≡ 0.

4.11. Let u be harmonic in Rn and M an orthogonal matrix of order n. Using
the mean value property, show that v (x) = u (Mx) is harmonic in Rn.

4.12. Compute the Green function for the circle of radius R.

4.13. Let Ω ⊂ Rn be a bounded smooth domain and G be the Green function
in Ω. Prove that, for every x,y ∈Ω, x �= y:

(a) G (x,y) > 0;
(b) G (x,y) = G (y,x).

4.14. Compute the Green function for the half plane R2
+ = {(x, y) ; y > 0}

and (formally) derive the Poisson formula

u (x, y) =
y

π

∫

R

u (x, 0)
(x− ξ)2 + y2

dξ

for a bounded harmonic function in R2
+.

4.7.1 Approximation of an elastic membrane using the 5 point
scheme

The Poisson equation is a good model to study the deformation of an elastic
membrane under a given load. For this case Dirichlet, Neumann or Robin of
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Fig. 4.3. Numerical approximation of Poisson problem with Dirichlet boundary
conditions, u = 0 (left panel), and Neumann conditions, ∂νu = −1/2 (right panel)

boundary conditions represent different ways to constrain the membrane at
its boundaries.

In particular, let us consider a unit square membrane, Lx = Ly = 1,
deformed by an upward constant load, f = 2. We approximate the Poisson
problem with the 5 point scheme over a computational mesh characterized
by hx = hy = 0.05, that is equivalent to set Nx = Ny = 19 in (4.58).
We compare the numerical simulations obtained in the case of homogeneous
Dirichlet boundary conditions, u = 0 on ∂Ω, with the results obtained with
Neumann conditions, ∂νu = −1/2 on ∂Ω. We notice that in the latter case, the
external load and the boundary forces are in equilibrium, as prescribed by the
compatibility condition (4.7). Finally, to remove the ambiguity with respect
to rigid body motions, we introduce the additional constraint u(0, 0) = 0 to
the Neumann problem.

Results, reported in Fig. 4.3, match common sense intuition about mem-
brane deformation. A more rigorous validation can be performed observing
that the exact solution of the homogeneous Dirichlet problem is u(x, y) =
1
2x(1− x) + 1

2y(1− y).

4.7.2 Numerical simulations for testing maximum principles

We address the following problem,
{
−Δu = 0 in Ω = (0, 1)× (0, 1)
∂νu = sin(2πs) on ∂Ω

(4.62)

where s is the arc length along ∂Ω originating at (0, 0). Observing that the
solution of (4.62) is an harmonic function, we expect that maxima and minima
take place on the boundary.

Fig. 4.4 shows that the maximum principle is satisfied. Furthermore, we
notice that peaks of the solution correspond to peaks of the normal derivatives.
This property is related to the Hopf’s principle, which states that the solution
must satisfy ∂νu > 0 on its minima and ∂νu < 0 on its maxima.



138 4 The Laplace Equation

0

0.5

1

0

0.5

1

−0.1

−0.05

0

0.05

0.1

0.15

xy

Fig. 4.4. Numerical approximation of (4.62) obtained with h = 0.05 and setting
the additional constraint u(0, 0) = 0
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Reaction-diffusion models

In this chapter we shall focus on models in which reaction and diffusion are
in competition. Of particular interest is the study of the asymptotic behavior
of the solutions as time goes on and to explore the existence and the stability
properties of limiting steady states.

In the first section we present some models of pure reaction, governed by
ordinary differential equations. In this connections we briefly recall the notion
of equilibrium point and the linearized stability criterion (more details can be
found in Appendix B).

In Section 2 we examine some elementary examples of linear reaction intro-
ducing the concept of critical dimension. Section 3 is devoted to the method of
super and subsolutions to control the time evolution of semilinear models. Our
reference model is the celebrated Fisher-Kolmogoroff equation on population
dynamics.

In the last two sections we describe the Turing instability phenomenon,
arising in competition population dynamics in presence of different speeds of
diffusion.

5.1 Reaction Models

5.1.1 The mass action law

Consider a system consisting of m chemical species C1, C2, ..., Cm, reciprocally
reacting. The statistical mechanics law of mass action establish that these
substances react according to the following scheme

λ1C1 + λ2C2 + ...+ λmCm → μ1C1 + μ2C2 + ...+ μmCm.

Moreover, the rate of reaction r, whose physical dimensions are mol×m−3×
s−1, is given by

ṙ = kcλ1
1 cλ2

2 · · · cλm

j (5.1)

where cj = [Cj ] denotes the concentration of Cj .

Salsa S., Vegni F.M.G., Zaretti A., Zunino P.: A Primer on PDEs. Models, Methods, Simulations.
Unitext – La Matematica per il 3+2 65.
DOI 10.1007/978-88-470-2862-3 5, © Springer-Verlag Italia 2013
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In (5.1) k is a dimensional constant and λj , μj are the so called stoichio-
metric coefficients. Conservation of mass implies that

m∑
j=1

λjmj =
m∑
j=1

μjmj

where mj is the molar mass of the j − th substance1.
For a single chemical species, conservation of mass gives

dcj
dt

=
(
μj − λj

)
ṙ. (5.2)

Example 5.1. Hydrogen combustion is described by the reaction

2H2 +O2 → 2H2O

with reaction rate proportional to h2o (h = [h2] , o = [O2]).

Example 5.2 (An autocatalytic reaction). Autocatalysis is a process in
which a substance is involved in its own production. For instance

A+B → 2B.

Denoting with a and b the concentration of A and B, the reaction rate is
ṙ = kab. Hence the higher the concentration of B is the faster the production
of B is. From (5.2) we have

da

dt
= −kab db

dt
= kab.

Summing the two equations we get, letting a0 = a (0) , b0 = b (0) :

d (a+ b)
dt

= 0

so that a (t) + b (t) = a0 + b0. From a (t) = a0 + b0 − b (t) we find

db

dt
= kb (a0 + b0 − b)

which can be solved by separation of variables. We write

1
b (a0 + b0 − b)db = kdt

and integrate to find
∫

1
b (a0 + b0 − b)db = kt+ c (c ∈ R). (5.3)

1 Recall that, for Avogadro’s law, a mole of any substance contains the same number
of molecules N = 6.022 × 1023 (Avogadro’s number).
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Since
1

b (a0 + b0 − b) =
1

a0 + b0

(
1
b

+
1

a0 + b0 − b
)

we have ∫
1

b (a0 + b0 − b)db =
1

a0 + b0
log

b

a0 + b0 − b .

Substituting into (5.3) we obtain

log
b

a0 + b0 − b = (a0 + b0) (kt+ c) .

Letting t = 0 we find

log
b0
a0

= c (a0 + b0)

or

c =
1

a0 + b0
log

b0
a0
.

Thus:

log
b

a0 + b0 − b = (a0 + b0) kt+ log
b0
a0
.

Taking exponential of both sides we get

b

a0 + b0 − b =
b0
a0
ek(a0+b0)t

and finally

b (t) =
b0 (a0 + b0) ek(a0+b0)t

a0 + b0ek(a0+b0)t
a (t) =

a0 (a0 + b0)
a0 + b0ek(a0+b0)t

.

Note a (t)→ 0 as t→∞ while b (t) → a0 + b0.

Example 5.3 (Logistic reaction). Consider the double reaction

A+B � 2B.

If the concentration of A is kept constant, then the equation for b reads

db

dt
= kab− k−b2 = akb

(
1− k−

ak
b

)

where k−b2 is the rate of the inverse reaction.
This is known as the logistic model; b evolves towards the asymptotically

stable steady state concentration given by b = ka/k−.
Fig. 5.1 shows a typical behavior of a solution (ka/k− = 1, b0 = 1/3).
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Fig. 5.1. Logistic solution for ka/k− = 1 and b0 = 1/3

5.1.2 Inhibition, activation

Biochemical reactions continuously occur in any living organism and the most
part of them involves certain proteins, called enzymes, that act as catalyzers.
The enzymes react selectively on composite substances, called substrates. For
instance, blood hemoglobin is an enzyme and react with oxygen, a substrate.
Enzymes are important agents for activating or inhibiting a reaction.

We present some models that describe some aspects, mostly kinetics, of
complex biochemical reactions.

Indeed, in almost all biological processes, often the occurring reactions
are not known with sufficient precision. What is known is the qualitative
effects of the variation of a given reactant and this is what a model should
try to reproduce, as a useful tool to make predictions. These models, when
one takes into account only the chemical reactions are constituted by ordinary
differential equations.

In presence of two reactant, one finds a system of the type

du

dt
= f (u, v)

dv

dt
= g (u, v) .

We say that u is an activator (inhibitor) of v if gu > 0 (< 0) while v is an
inhibitor (activator) of u if fv < 0 (> 0).

The constant solutions u (t) ≡ u0, v (t) ≡ v0 are called equilibria (steady
states) and can be found solving the algebraic system

f (u, v) = g (u, v) = 0.

The linear stability of a steady state (u0, v0) can be established by looking at
the eigenvalues of the Jacobian matrix:

J (u0, v0) =
∂f (u0, v0)
∂g (u0, v0)

=
(
fu (u0, v0) fv (u0, v0)
gu (u0, v0) gv (u0, v0)

)
.

If λ1, λ2 are the eigenvalues, we have

TrJ = fu + gu = λ1 + λ2 detJ = |J | = fugv − fvgu = λ1λ2.
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Then:

Proposition 5.1. If TrJ (u0, v0) < 0 and detJ (u0, v0) > 0 then (u0, v0) is
(locally) asymptotically stable.

If detJ (u0, v0) < 0 or TrJ (u0, v0) > 0 then (u0, v0) is unstable.

These results are better described in Appendix B.

Example 5.4. Let us consider the mechanism governed by the following
model.

du

dt
=

a

b+ v
− cu = f (u, v)

dv

dt
= du− ev = g (u, v)

where a, b, c, d are positive constants.
The biological interpretation of the model is the following: u activates v

through the term du (gu = d > 0) and both u and v decrease linearly (terms
−cu and −ev). This behavior is called first order kinetics decay.

The term a/ (b+ v) denotes a negative feedback of v on the production of
u, since any increase of v slows the growth of u and in turn of itself, indirectly
(fv = −a/ (b+ v)2 < 0). This is an example of retroactive inhibition.

The equilibria are the positive solutions of
{ a

b+ v
− cu = 0

du− ev = 0.

The unique solution is

u0 =
1
2
−eb
d

+

√
e2b2

d2
+

4ae
cd

, v0 =
du0

e
.

The Jacobian matrix at (u0, v0) is given by

J (u0, v0) =

(
−c − a

(v0 + b)2
d −e

)
.

Thus:

TrJ (u0, v0) = −c− e < 0 detJ (u0, v0) = ec+
ad

(v0 + b)2
> 0

so that (u0, v0) is asymptotically stable. It is also globally asymptotically sta-
ble since the vector field (u̇, v̇) points inward on the boundary of any rectangle
in the first quadrant (check it).
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Example 5.5. Consider the following model of Schnakenberg
⎧⎪⎨
⎪⎩

du

dt
= γ(a− u+ u2v) = f (u, v)
dv

dt
= γ(b− u2v) = g (u, v)

where a, b and γ are positive constant. We have, for u > 0, v > 0,

fv = γu2 > 0 and gu = −2γuv < 0.

Here there is a autocatalytic production of the activator u through the term
u2v. The only equilibrium point is

u0 = a+ b, v0 =

√
b

a+ b
.

The Jacobian matrix at (u0, v0) is

J (u0, v0) =
(−γ + 2γ

√
b (a+ b) γ (a+ b)2

−2γ
√
b (a+ b) −γ (a+ b)2

)
.

Hence:

TrJ (u0, v0) = −γ(1− 2
√
b (a+ b) + (a+ b)2) < 0

detJ (u0, v0) = γ2 (a+ b)2 > 0

and therefore (u0, v0) is asymptotically stable.

Example 5.6. We examine the dynamics described by the following model
(Thomas 1975):

du

dt
= a− u− ρR (u, v) = f (u, v)

dv

dt
= α(b− v)− ρR (u, v) = g (u, v)

where a, b, α, ρ are positive constants and

R (u, v) =
uv

1 + u+Ku2
.

In this model, u represents the concentration of the uric acid (activator) which
reacts in the presence of the substrate v (concentration of oxygen, inhibitor).
Here u and v are supplied at constant rates a and αb and they linearly decay
(−u and −αv). Both oxygen and uric acid take part in the reaction described
by R (u, v).

The kinetics of the reaction R is that of a substrate inhibition. For fixed
values of v, as u goes to zero, R (u, v) ∼ uv and therefore it is linear with
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Fig. 5.2. Thomas Model. Isocline f (u, v) = 0 (solid line) and g (u, v) = 0 (discon-
tinuous line) for a = 150, b = 100, α = 1.5, ρ = 13, K = 0.05

respect to u (R is increasing with respect too u); on the other hand if u→ +∞,
R (u, v) ∼ v/Ku (R is decreasing with respect to u).

The two isoclines f (u, v) = 0 and g (u, v) = 0 intersect at the equilibrium
point, which is an asymptotically stable focus (Fig. 5.2, see also Appendix B).
We see that at the equilibrium point fu > 0 and gv < 0; indeed, f (u, v0)
switches from negative values (u < u0) to positive values (u > u0), while
g (u0, v) switches from positive values (v < v0) to negative values (v > v0).

5.2 Diffusion and linear reaction

5.2.1 Pure diffusion. Asymptotic behavior

Consider the 1-d diffusion equation

ut = Duxx in (0, L) (5.4)

with initial condition
u (x, 0) = g(x). (5.5)

Here u may represent the concentration of a substance or the density of a
population.

Let us compute the solution of (5.4), (5.5) with the following boundary
conditions

1. Dirichlet: u (0, t) = u (L, t) = 0 (hostile external environment).

2. Neumann: ux (0, t) = ux (0, t) = 0 (insulation, no flux condition).

Using separation of variables, we look for solutions of the type u (x, t) =
U (x)V (t). Substituting into (5.4), we find

V ′ (t)
DV (t)

=
U ′′ (x)
U (x)

= λ = constant.
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The equation for V is
V ′ (t) = λDV (t)

so that
V (t) = eλDt.

U solves the eigenvalue problem

U ′′ (x)− λU (x) = 0 (5.6)

with the Dirichlet conditions

U (0) = U (L) = 0

or the Neumann conditions

Ux (0) = Ux (L) = 0.

We find:

U (x) = c1e
−√

λx + c2e
√
λx if λ > 0

U (x) = c1 + c2x if λ = 0
U (x) = c1 sin

(√−λx)+ c2 cos
(√−λx) if λ < 0.

(c1, c2 arbitrary)

Dirichlet conditions. If λ ≥ 0, imposing U (0) = U (L) = 0 we find U (x) =
0. When λ < 0, we find

U (0) = c2 = 0

U (L) = c1 sin
(√−λL

)
+ c2 cos

(√−λL
)

= 0

from which
sin
(√−λL

)
= 0.

We get the eigenvalues λk = −k2π2/L2 and the eigenfunctions

Uk (x) = sin
kπx

L
.

We now develop the initial data in sine Fourier series

g (x) =
∞∑
k=1

bk sin
kπx

L
bk =

2
L

∫ L

0

g (x) sin
kπx

L
dx.

Then, the solution u is given by

u (x, t) =
∞∑
k=1

bk exp
(
−Dk

2π2

L2
t

)
sin

kπx

L
.



5.2 Diffusion and linear reaction 147

From this formula we see that every term tends exponentially to zero as
t → +∞. The asymptotic profile of u is given by the slowest decaying term,
corresponding to k = 1:

u (x, t) ∼ b1 exp
(
−Dπ2

L2
t

)
sin

πx

L
as t→ +∞.

We conclude that The null solution is asymptotically stable.

Neumann conditions. If λ ≥ 0, imposing the conditions Ux (0) = Ux (L) =
0 we find again U (x) = 0. If λ < 0, we find

Ux (0) = c1
√−λ = 0

Ux (L) = c1
√−λ cos

(√−λL
)
− c2

√−λ sin
(√−λL

)
= 0

whence
sin
(√−λL

)
= 0.

Thus the eigenvalues are λk = −k2π2/L2 with eigenfunctions

Uk (x) = cos
kπx

L
.

Expanding the initial data in cosine Fourier series

g (x) =
a0

2
+

∞∑
k=1

ak sin
kπx

L
ak =

2
L

∫ L

0

g (x) cos
kπx

L
dx,

we find the solution

u (x, t) =
a0

2
+

∞∑
k=1

ak exp
(
−Dk

2π2

L2
t

)
cos

kπx

L
.

Now, each term in the above series goes to zero exponentially as t→ +∞ so
that u (·, t) → a0/2. The asymptotic profile of u is given by

u (x, t) ∼ a0

2
+ a1 exp

(
−Dπ2

L2
t

)
cos

πx

L
as t→ +∞.

Notice that
a0

2
=

1
L

∫ L

0

g (x) dx

and therefore the solution eventually converges to the mean value of the initial
data.

Conclusion. In both cases, the solutions converge to two constant steady
states, in particular spatially homogeneous.
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5.2.2 Asymptotic behavior in general domains

!By the method of separation of variables it is possible to compute explicitly
the solution of linear problems in one spatial dimension and in particularly
simple two or three-dimensional domains (squares, circular sectors, cubes,
spheres, etc.). Thus, in those cases, the asymptotic behavior of the solution
can be red directly from the resulting formula. This is not the case for general
geometries and one has to resort to more or less advanced methods. Some-
times, elementary energy methods can be useful, as shown in the following
theorem.

Theorem 5.1. Let Ω be a bounded regular domain in Rn (n = 1, 2, 3) and u
be the solution of the problem

ut −DΔu = 0 x ∈ Ω, t > 0
u (x,0) = g (x) x ∈ Ω.

(i) If (Dirichlet) u = 0 on ∂Ω then

u (x,t) → 0 as t→∞,

for every x ∈ Ω.
(ii) If (Neumann) ∂νu = 0 on ∂Ω then

∫

Ω

u (x,t) dx =
∫

Ω

g (x) dx for every t ≥ 0

and u converges to the mean value of the initial data:

u (x,t) → 1
|Ω|
∫

Ω

g (x) dx as t→∞

for every x ∈ Ω.
(iii) If (Robin) ∂νu+ hu = 0 on ∂Ω and h > 0, constant, then

u (x,t) → 0 as t→∞,

for every x ∈ Ω.
Proof. For simplicity we show it for n = 1, with Ω = (0, L). Multiply the
differential equation by u and integrate with respect to x over (0, L):

∫ L

0

uutdx = D

∫ L

0

uuxxdx. (5.7)

Note that: ∫ L

0

uutdx =
1
2

∫ L

0

u2
tdx =

1
2
d

dt

∫ L

0

u2dx. (5.8)
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Integrating by parts, we get
∫ L

0

uuxxdx = [u (L, t)ux (L, t)− u (0, t)ux (0, t)]−
∫ L

0

u2
x dx. (5.9)

(i) We now use the Dirichlet conditions. Since u (L, t) = u (0, t) = 0, we have
∫ L

0

uuxxdx = −
∫ L

0

u2
x dx (5.10)

and (5.7), (5.8), (5.9), (5.10) give

1
2
d

dt

∫ L

0

u2 (x, t) dx = −D
∫ L

0

u2
x (x, t) dx.

Set E (t) =
∫ L
0
u2 (x, t) dx. The last equation shows that

Ė (t) = −2D
∫ L

0

u2
x (x, t) dx < 0 for t > 0 (5.11)

and therefore E decreases. Since E (t) ≥ 0 we have

lim
t→+∞E (t) ≥ 0. (5.12)

From

Ë (t) = −4D
∫ L

0

ux (x, t)ux,t (x, t) dx =

= −4D [ux (x, t)ut (x, t)]
L
0 + 4D

∫ L

0

uxx (x, t)ut (x, t) dx

= 4D2

∫ L

0

u2
t (x, t) dx > 0

since ut (0, t) = ut (L, t) = 0.
Using (5.12) we deduce that Ė (t) → 0 and (5.11) gives

∫ L

0

(ux (x, t))2dx→ 0 as t→ +∞. (5.13)

Since u (0, t) = 0, we can write

u (x, t) =
∫ x

0

ux (s, t) ds

and Schwarz inequality gives

|u (x, t)| ≤
∫ L

0

|ux (s, t)| ds ≤
√
L

√∫ L

0

u2
x (x, t) dx. (5.14)

From (5.13) we infer u (x, t) → 0 as t→ +∞, for every x ∈ (0, L).
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(ii) We now use the Neumann conditions ux (L, t) = ux (0, t) = 0 into (5.9).
By arguing as in i) we deduce that (5.13) still holds.

On the other hand, notice that, integrating the equation ut = Duxx with
respect to x over (0, L), we find

d

dt

∫ L

0

u (x, t) dx =
∫ L

0

ut (x, t) dx = D

∫ L

0

uxx (x, t) dx = 0

since ∫ L

0

uxx (x, t) dx = ux (L, t)− ux (0, t) = 0.

Then
∫ L
0
u (x, t) dx is constant in time. Thus:

1
L

∫ L

0

u (x, t) dx =
1
L

∫ L

0

g (x) dx ≡ K for every t ≥ 0.

We show now that u (x, t) → K as t → +∞. First note that by the Mean
Value Theorem, for every t there exists x̃ (t) ∈ (0, L) such that

K =
1
L

∫ L

0

u (x, t) dx = u (x̃ (t) , t) .

Therefore we can write

u (x, t)−K =
∫ x

x̃(t)

ux (s, t) ds.

By Schwarz inequality,

|u (x, t)−K| ≤
∫ L

0

|ux (s, t)| ds ≤
√
L

√∫ L

0

(u2
x (x, t) dx

and (5.13) gives u (x, t) → K for every x ∈ (0, L).

(iii) Finally, let us use Robin’conditions ux (L, t) + hu (L, t) = ux (0, t) +
hu (0, t) = 0 into (5.9). We have:

∫ L

0

uuxx dx = −h [u2 (L, t) + u2 (0, t)
]−
∫ L

0

u2
x dx. (5.15)

Formulas (5.7), (5.8), (5.10) and (5.15) gives, since h > 0,

1
2
Ė (t) = −hD [u2 (L, t) + u2 (0, t)

]−D
∫ L

0

u2
x (x, t) dx < 0.

Once again we infer that Ė (t)→ 0. Hence

hD
[
u2 (L, t) + u2 (0, t)

]
+
∫ L

0

u2
x (x, t) dx→ 0 as t→ +∞. (5.16)
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Now, each term in (5.16) are non negative and therefore

u (L, t) → 0, u (0, t) → 0,
∫ L

0

u2
x (x, t) dx→ 0

as t→ +∞, for every x ∈ (0, L). Arguing as in (i) we get

|u (x, t)− u (0, t)| ≤
∫ L

0

|ux (s, t)| ds ≤
√
L

√∫ L

0

u2
x (x, t) dx.

We conclude that u (x, t) → 0 as t→ +∞, for every x ∈ (0, L).

5.2.3 Linear reaction. Critical dimension

The simplest reaction mechanism is (Malthus) u̇ = au with a > 0. Let us
examine the effect of the competition between diffusion and a Malthusian
reaction over a population governed by the following system

⎧⎨
⎩
ut −Duxx = au 0 < x < L, t > 0
u (0, t) = u (L, t) = 0 t > 0
u (x, 0) = g (x) 0 < x < L.

Given the homogeneous Dirichlet conditions (hostile external environ-
ment), the population decays by diffusion while tends to increase by reaction.
Thus the two effects compete. Let us examine which factors determine the
overwhelming one.

First, since a is constant, setting

u (x, t) = eatw (x, t)

we get
ut = eat(aw + wt), ux = eatwx, uxx = eatwxx.

Thus the equation for w is:

eat(aw + wt)−Deatwxx = aeatw.

After simple algebra we get

wt −Dwxx = 0

with the same initial/boundary conditions

w (0, t) = w (L, t) = 0
w (x, 0) = w (x) .

We have already solved this problem in Section 5.2.1. The solution is

w (x, t) =
∞∑
k=1

bk exp
(
−Dk

2π2

L2
t

)
sin

kπx

L
.



152 5 Reaction-diffusion models

Going back to u we find

u (x, t) =
∞∑
k=1

bk exp
{

(a−Dk
2π2

L2
)t
}

sin
kπx

L
. (5.17)

Formula (5.17) displays an important difference between pure diffusion (a = 0)
and diffusion-reaction as far as asymptotic behavior is concerned. Assuming
b1 �= 0, the evolution determining factor in (5.17) is the first exponential,
corresponding to k = 1.

Now, if a−Dπ2

L2
< 0, that is

aL2

D
< π2 (5.18)

then limt→+∞ u (x, t) = 0, since a−Dk
2π2

L2
< a−Dπ2

L2
for every k > 1.

On the opposite, if

a−Dπ2

L2
> 0

then limt→+∞ u (x, t) = ∞, since the first term increases exponentially while
the other terms are either of lower exponential order or negligible at infinity.

Remark 5.1. The coefficients a and D are intrinsic parameters, encoding the
population features. When these parameters are fixed, the habitat size plays
a major role.

Indeed, the value

L0 = π

√
D

a

is a critical value for the population survival. If L < L0 the habitat is too
small to avoid extinction of the population; on the contrary, if L > L0, one
observe exponential growth.

L0 is called a bifurcation value, since the steady state solution
u (x, t) = 0 changes from stability (L < L0) to instability (L > L0).

What happens for L = L0? In this case (5.17) becomes

u (x, t) = b1 sin
πx

L
+

∞∑
k=2

bk exp
{

(a−Dk
2π2

L2
0

)t
}

sin
kπx

L
.

Note that
u1 (x, t) = b1 sin

πx

L

is the eigenfunction corresponding to the first eigenvalue k1 = −π2/L2 and,

being time independent, is an equilibrium solution. Since a−Dk
2π2

L2
0

< 0

if k > 1, we infer that

u (x, t) → b1 sin
πx

L
as t→ +∞.
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Finally observe that, if for some k ≥ 1, a−Dkπ
2

L2
> 0 then for every 1 ≤ k < k

all numbers a−Dkπ
2

L2
0

are positive and the corresponding terms contribute to

the instability of the null solution: we say that the modes of vibration

bk exp
{

(a−Dk
2π2

L2
0

)t
}

sin
kπx

L

for k = 1, 2, . . . , k are activated.

5.2.4 Linear reaction and diffusion in two dimensions

We examine an example of separation of variables to solve a reaction-diffusion
problem in a rectangle

R = (0, p)× (0, q) .

Let us consider the following Neumann problem
⎧⎨
⎩
ut = D (uxx + uyy) + λu for t > 0, (x, y) ∈ R
∇u · n = 0 on ∂R
u (x, y, 0) = g (x, y) (x, y) ∈ R

(5.19)

where D,λ, p, q are positive constants.
Look for solutions of the form

u (x, y, t) = U (t)V (x, y) .

Substituting into the differential equation, we get

U ′ (t)V (x, y) = DU (t) (Vxx (x, y) + Vyy (x, y)) + λU (t)V (x, y) .

Dividing by DU (t)V (x, y) we have

U ′ (t)
DU (t)

− λ

D
=
Vxx (x, y) + Vyy (x, y)

V (x, y)
= k (constant)

so that U solves the equation

U ′ (t) = (λ+Dk)U (t)

that is
U (t) = ce(λ+Dk)t.

Furthermore V is a solution of the eigenvalue problem
{
Vxx + Vyy = kV (x, y) ∈ R
∇V · n = 0 on ∂R. .
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To solve this problem, we separate the spatial variables looking for solutions
of the form

V (x, y) = W (x)Z (y) .

Substituting into the differential equation, we get

W ′′ (x)
W (x)

+
Z ′′ (y)
Z (y)

= k

which splits into the two Neumann problems

W ′′ (x) = k1W (x) , W ′ (0) = W ′ (p) = 0
Z ′′ (y) = k2Z (y) , Z ′ (0) = Z ′ (q) = 0

with
k1 + k2 = k.

Recalling the computations in the previous sections, we find

k1m = −m
2π2

p2
Wm (x) = cos

mπx

p
m = 0, 1, 2, ...

and

k2n = −n
2π2

q2
Zn (y) = cos

nπy

q
n = 0, 1, 2, ....

Thus, we have the eigenvalues

kmn = −π
2m2

p2
− n2π2

q2

with corresponding eigenfunctions

Vmn (x, y) = cos
mπx

p
cos

nπy

q
.

Setting

gmn =
4
pq

∫ p

0

∫ q

0

g (x, y) cos
mπx

p
cos

nπy

q
dxdy

we can write the solution of problem (5.19)

u (x, y, t) =
∞∑

m,n=0

gmne
(Dkmn+λ)t cos

mπx

p
cos

nπy

q
dxdy.

Note that, since λ > 0, the first term in the above series (m = n = 0) is g00eλt

which grows exponentially.
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5.2.5 An Example in dimension n = 3

In the n-dimensional case, the reaction-diffusion-equation takes the form:

ut = DΔu+ cu.

In this section we examine a model of reaction-diffusion in a fissionable ma-
terial. Although we deal with a greatly simplified model, some interesting
implications can be drawn.

By shooting neutrons into an uranium nucleus it may happen that the
nucleus breaks into two parts, releasing other neutrons already present in
the nucleus and causing a chain reaction. Some macroscopic aspects of this
phenomenon can be described by means of an elementary model.

Suppose a cylinder with height h and radius R is made of a fissionable
material of constant density ρ, with total mass

M = π�R2h.

At a macroscopic level, the free neutrons diffuse like a chemical in a porous
medium, with a flux proportional and opposite to the density gradient. In
other terms, if N = N (x, y, z,t) is the neutron density and no fission oc-
curs, the flux of neutrons is equal to −k∇N , where k is a positive constant
depending on the material. The mass conservation then gives

Nt = kΔN.

When fission occurs at a constant rate γ > 0, we get the equation

Nt = DΔN + γN, (5.20)

where reaction and diffusion are competing: diffusion tends to slow down N,
while, clearly, the reaction term tends to exponentially increase N . A crucial
question is to examine the behavior of N in the long run (i.e. as t→ +∞).

We look for bounded solutions satisfying a homogeneous Dirichlet condition
on the boundary of the cylinder, with the idea that the density is higher at the
center of the cylinder and very low near the boundary. Then it is reasonable
to assume that N has a radial distribution with respect to the axis of the
cylinder. More precisely, using the cylindrical coordinates (r, θ, z) with

x = r cos θ, y = r sin θ,

we can write N = N (r, z, t) and the homogeneous Dirichlet condition on the
boundary of the cylinder translates into

N (R, z, t) = 0 0 < z < h (5.21)
N (r, 0, t) = N (r, h, t) = 0 0 < r < R

for every t > 0. Accordingly we prescribe an initial condition

N (r, z, 0) = N0 (r, z) (5.22)
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such that

N (R, z) = 0 for 0 < z < h, and N (r, 0) = N (r, h) = 0. (5.23)

To solve problem (5.20), (5.21), (5.22), let us first get rid of the reaction
term by setting

N (r, z, t) = N (r, z, t) eγt. (5.24)

Then, writing the Laplace operator in cylindrical coordinates2, N solves

Nt = k

[
Nrr +

1
r
Nr +Nzz

]
(5.25)

with the same initial and boundary conditions of N . By maximum principle,
we know that there exists only one solution, continuous up to the boundary of
the cylinder. To find an explicit formula for the solution, we use the method
of separation of variables, searching for bounded solutions of the form

N (r, z, t) = u (r) v (z)w (t) , (5.26)

satisfying the homogeneous Dirichlet conditions u (R) = 0 and v (0) = v (h) =
0.

Substituting (5.26) into (5.25), we find

u (r) v (z)w′ (t) = k[u′′ (r) v (z)w (t) +
1
r
u′ (r) v (z)w (t) + u (r) v′′ (z)w (t)].

Dividing by N and rearranging the terms, we get,

w′ (t)
kw (t)

−
[
u′′ (r)
u (r)

+
1
r

u′ (r)
u (r)

]
=
v′′ (z)
v (z)

. (5.27)

The two sides of (5.27) depend on different variables so that they must be
equal to a common constant b. Then for v we have the eigenvalue problem

v′′ (z)− bv (z) = 0

v (0) = v (h) = 0.

The eigenvalues are bm ≡ −ν2
m = −m2π2

h2 , m ≥ 1 integer, with corresponding
eigenfunctions

v (z) = c sin νmz.

The equation for w and u can be written in the form

w′ (t)
kw (t)

+ ν2
m =

u′′ (r)
u (r)

+
1
r

u′ (r)
u (r)

(5.28)

2 Appendix D.
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where the variables r and t are again separated. This forces the two sides of
(5.28) to be equal to a common constant μ. Therefore, for w we have the
equation

w′ (t) = k(μ− ν2
m)w (t)

that gives
w (t) = c exp

[
k
(
μ− ν2

m

)
t
]

c ∈ R. (5.29)

Then the equation for u is

u′′ (r) +
1
r
u′ (r)− μu (r) = 0 (5.30)

with
u (R) = 0 and u bounded in [0, R] . (5.31)

The (5.30) is a Bessel equation of order zero with parameter −μ; conditions
(5.31) force3 μ = −λ2 < 0. Then the only bounded solution of (5.30), (5.31)
is J0 (λr), where

J0 (x) =
∞∑
k=0

(−1)k

(k!)2
(x

2

)2k

is the Bessel function of first kind and order zero. To match the boundary
condition u (R) = 0 we require J0 (λR) = 0. Now, J0 has an infinite number
of positive simple zeros4 λn, n ≥ 1

0 < λ1 < λ2 < . . . < λn < . . .

Thus, if λR = λn, we find infinitely many solutions of (5.30), given by

un (r) = J0

(
λnr

R

)
.

Thus

μ = μn = −λ
2
n

R2
.

3 In fact, write Bessel’s equation (5.30) in the form
(
ru′)′ − μru = 0.

Multiplying by u and integrating over (0, R) , we have
∫ R

0

(
ru′)′ udr = μ

∫ R

0

u2dr. (5.32)

Integrating by parts and using (5.31), we get
∫ R

0

(
ru′)′ udr =

[(
ru′)u

]R
0
−
∫ R

0

(u′)2dr = −
∫ R

0

(u′)2dr < 0

and from (5.32) we get μ < 0.
4 The zeros of the Bessel functions are known with a considerable degree of accu-

racy. The first five zeros of J0 are: 2.4048 . . ., 5.5201 . . ., 8.6537 . . ., 11.7915 . . .,
14.9309 . . ..
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To summarize, we have determined so far a countable number of solutions

Nmn (r, z, t) = un (r) vm (z)wm,n (t) =

= J0

(
λnr

R

)
sin νmz exp

[
−k
(
ν2
m +

λ2
n

R2

)
t

]

satisfying the homogeneous Dirichlet conditions. It remains to satisfy the ini-
tial condition. Due to the linearity of the problem, we look for a solution
obtained by superposition of the Nm,n, that is

N (r, z, t) =
∞∑

n,m=1

cmnNmn (r, z, t) .

Then, we choose the coefficients cmn in order to have

∞∑
n,m=1

cmnNmn (r, z, 0) =
∞∑

n,m=1

cmnJ0

(
λnr

R

)
sin

mπ

h
z = N0 (r, z) . (5.33)

The second of (5.23) and (5.33) suggest an expansion of N0 in sine Fourier
series with respect to z. Let

cm (r) =
2
h

∫ h

0

N (r, z) sin
mπ

h
z, m ≥ 1,

and

N0 (r, z) =
∞∑
m=1

cm (r) sin
mπ

h
z.

Then (5.33) shows that, for fixed m ≥ 1, the cmn are the coefficients of the
expansion of cm (r) in the Fourier-Bessel series

∞∑
n=1

cmnJ0

(
λnr

R

)
= cm (r) .

We are not really interested in the exact formula for the cmn, however we will
come back to this point in Remark 2.5 below.

In conclusion, recalling (5.24), the analytic expression of the solution of
our original problem is the following

N (r, z, t) =
∞∑

n,m=1

cmnJ0

(
λnr

R

)
exp
{(

γ − kν2
m − k

λ2
n

R2

)
t

}
sin νmz.

(5.34)
Of course, (5.34) is only a formal solution, since we should check in which
sense the boundary and initial condition are attained and that term by term
differentiation can be performed. This can be done under reasonable smooth-
ness properties of N0 and we do not pursue the calculations here.
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Rather, we notice that from (5.34) we can draw an interesting conclusion
on the long range behavior of N . Consider for instance the value of N at the
center of the cylinder, that is at the point r = 0 and z = h/2; we have, since
J0 (0) = 1 and ν2

m = m2π2

h2 ,

N

(
0,
h

2
, t

)
=

∞∑
n,m=1

cmn exp
{(

γ − km
2π2

h2
− k λ

2
n

R2

)
t

}
sin

mπ

2
.

The exponential factor is maximized for m = n = 1, so the leading term in
the sum is

c11 exp
{(

γ − kπ
2

h2
− k λ

2
1

R2

)
t

}
.

If now

γ − k
(
π2

h2
+
λ2

1

R2

)
< 0,

each term in the series goes to zero as t→ +∞ and the reaction dies out. On
the opposite, if

γ − k
(
π2

h2
+
λ2

1

R2

)
> 0,

that is
γ

k
>
π2

h2
+
λ2

1

R2
, (5.35)

the leading term increases exponentially with time. To be true, (5.35) requires
that the following relations be both satisfied:

h2 >
kπ2

γ
and R2 >

kλ2
1

γ
. (5.36)

The conditions (5.36) give a lower bound for the height and the radius of the
cylinder. Thus, we deduce that there exists a critical mass of material, below
which the reaction cannot be sustained.

Remark 5.2. A sufficiently smooth function f , for instance of class C1([0, R]),
can be expanded in a Fourier-Bessel series, where the Bessel functions J0

(
λnr
R

)
,

n ≥ 1, play the same role of the trigonometric functions. More precisely, the
functions J0(λnr) satisfy the following orthogonality relations:

∫ R

0

xJ0(λmx)J0(λnx)dx =
{

0 m �= n
R2

2 c
2
n m = n

where

cn =
∞∑
k=0

(−1)k

k! (k + 1)!

(
λn
2R

)2k+1

.
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Then

f (x) =
∞∑
n=0

fnJ0 (λnx) (5.37)

with the coefficients fn assigned by the formula

fn =
2

R2c2n

∫ R

0

xf (x)J0 (λnx) dx.

The series (5.37) converges in the following least square sense: if

SN (x) =
N∑
n=0

fnJ0 (λnx)

then

lim
N→+∞

∫ R

0

[f (x)− SN (x)]2 xdx = 0. (5.38)

In Chapter 7, we will interpret (5.38) from the point of view of Hilbert space
theory.

5.3 Diffusion and nonlinear reaction

5.3.1 Monotone methods

In this section we consider models of reaction-diffusion of the type

ut −Δu = f (u) (5.39)

in a space-time cylinder DT = Ω × (0, T ), where Ω is a regular domain,
complemented by Dirichlet or Neumann conditions on ST = ∂Ω× (0, T ], that
is

u = 0 or
∂u

∂ν
= 0 (5.40)

(ν exterior normal) and initial conditions

u (x, 0) = g (x) . (5.41)

We assume that
f ∈ C1 (R) , g ∈ C (Ω) .

In the case of homogeneous Dirichlet we require that g = 0 on ∂Ω (compati-
bility condition).

Given the nonlinear reaction term, the well posedness of the problem in
all DT is not granted. For instance, even the o.d.e. Cauchy problem u̇ = u2,
u (0) = 1 has no solution in (0, T ) for T > 1. Thus it is useful to present some
result in this direction. We need the notion of super/subsolution.
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Definition 5.1. A function u ∈ C
(
DT

) ∩ C2,1 (DT ) is a supersolution of
problem (5.39), (5.40), (5.41) if it satisfies the following conditions:

ut −Δu ≥ f(u) in DT

u ≥ 0 or
∂ū

∂ν
≥ 0 on ST

u (x, 0) ≥ g (x) in Ω.

(5.42)

Analogously u ∈ C (DT

)∩C2,1 (DT ) is a subsolution if it satisfies the opposite
inequalities in (5.42).

Clearly, u is a solution if and only if it is both a sub and a supersolution.
Notice that sub/supersolution are bounded in DT . Thus,

Lemma 5.1. Let u and u be super and subsolution of problem (5.39), (5.40),
(5.41), respectively. Then

u ≤ u in DT .

Proof. If u and u are super and subsolution, there always exists a finite interval
[a, b] such that

a ≤ u, u ≤ b in DT .

By the mean value theorem, we can write, for a suitable v between u and u :

f (u1)− f (u2) = f ′ (v) (u− u) .
Set a (x, t) = f ′ (v (x, t)). Then

|a| ≤M = max
s∈[a,b]

|f ′ (s)|

and w = u−u is a solution of

wt −Δw − aw ≥ 0 in DT

w ≥ 0 or
∂w

∂ν
≥ 0 on ST

w (x, 0) ≥ 0 in Ω.

Set z (x, t) = e2Mtw (x, t). Then z is a solution of zt − Δz − a0z ≥ 0 where
a0 = 2M − a > 0 in DT .

We infer z cannot have a negative minimum at a point (x0, t0) ∈ DT

with 0 < t0 ≤ T . Indeed, if this is the case, we have5 ut (x0, t0) ≤ 0 and
Δu (x0, t0) ≥ 0. From the differential inequality we get the contradiction

zt (x0, t0)−Δz (x0, t0) ≥ −a0 (x0, t0) z (x0, t0) > 0.

Thus, if the Dirichlet conditions hold, we infer that z ≥ 0 in DT . If the
Neumann conditions hold, the negative minimum can occur only on ST . There
one can prove that6 ∂w

∂ν (x0, t0) < 0, contradicting the Neumann inequality. �

5 Assuming that ut (x0, t0) and Δu (x0, t0) exist. Otherwise we argue as in Theo-
rem 3.2.

6 Protter and Wienberger [10].
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In the next theorem, we build a monotone iteration procedure to construct
a solution of problem (5.39), (5.40), (5.41).

Theorem 5.2. Let u and u be super/subsolution of problem (5.39), (5.40),
(5.41), respectively such that

a ≤ u (x, t) ≤ g (x) ≤ u (x, t) ≤ b in DT .

If Ω is a regular domain there exists a unique solution u such that

a ≤ u (x, t) ≤ u (x, t) ≤ u (x, t) ≤ b in DT . (5.43)

Proof. We give only a formal proof for the Dirichlet conditions. The case of
Neumann conditions is similar.

We construct a recursive sequence of functions in the following way. Set
F (s) = f (s) +M where M = maxs∈[a,b] |f ′ (s)| . Then

F ′ (s) = f ′ (s) +M ≥ −M +M = 0

so that F is increasing in [a, b]. Write the differential equation in the form

ut −Δu+Mu = f(u) +Mu ≡ F (u) .

Define u(0) = u and let u(1) be the solution of the linear problem
⎧⎨
⎩
u

(1)
t −Δu(1) +Mu(1) = F (u(0)) in DT

u(1) = 0 on ST
u(1) (x, 0) = g (x) in Ω.

Since F
(
u(0)
)

is bounded and regular in DT , there exists a unique solution
u(1) ∈ C (DT

) ∩ C2,1 (DT ).
The function w(1) = u(1) − u(0) satisfies the inequality

w
(1)
t −Δw(1) +Mw(1) ≥ F (u(0))− F (u(0)) = 0 in DT

and moreover u(1) = 0 on ST and u(1) (x, 0) = 0 in Ω. Arguing as in
Lemma 5.1, we infer that

a ≤ u(0) ≤ u(1) ≤ u ≤ b in DT .

Now let u(2) be the unique solution of the linear problem
⎧⎨
⎩
u

(2)
t −Δu(2) +Mu(2) = F

(
u(1)
)

in DT

u(2) = 0 on ST
u(2) (x, 0) = g (x) in Ω.

The function w(2) = u(2) − u(2) satisfies the inequality

w
(2)
t −Δw(2) +Mw(2) = F (u(1))− F (u(0)) in DT .
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and moreover u(2) = 0 on ST and u(2) (x, 0) = 0 in Ω. Since a ≤ u(0) ≤ u(1) ≤
b and F is increasing in [a, b] we have F (u(1))− F (u(0)) ≥ 0. Arguing once
more as in Lemma 5.1 we infer that

a ≤ u(0) ≤ u(1) ≤ u(2) ≤ u ≤ b in DT .

Iterating the above construction, we define a sequence
{
u(k)
}
k≥1

such that

⎧⎨
⎩
u

(k)
t −Δu(k) +Mw(k) = F (u(k−1)) in DT

u(k) = 0 on ST
u(k) (x, 0) = g (x) in Ω

(5.44)

and
u ≤ u(1) ≤ u(2) ≤ · · · ≤ u(k) ≤ u(k+1) ≤ · · · ≤ u

in DT . Being increasing and bounded,
{
u(k)
}

converges to a function u sat-
isfying (5.43). Taking the limit as k → +∞ in problem (5.44) one can show7

that u solves (5.39), (5.40), (5.41).
The uniqueness follows again from Lemma 5.1: if u1 and u2 are solutions

satisfying (5.43), since they are both super and sub solutions, we deduce
u1 ≥ u2 and u2 ≥ u1. �

Remark 5.3. Starting from u(0) = u the sequence
{
u(k)
}

is decreasing and
converges to the solution u. Note that Theorem 5.2 reduces the existence and
uniqueness of a solution to (5.39), (5.40), (5.41), to find bounded a super
and a subsolution. In several interesting cases, it is possible to find super
and subsolutions time independent. In this case Theorem 5.2 gives global
solutions, that is defined for all t > 0.

5.3.2 The Fisher’s equation

We apply the results in the last section to the Cauchy-Dirichlet problem
⎧⎪⎨
⎪⎩
wτ = Dwyy + aw

(
1− w

N

)
0 < y < L, τ > 0

w (y, 0) = g (y) 0 < y < L
w (0, τ) = w (L, τ) = 0 τ > 0

(5.45)

where g ≥ 0. The differential equation in (5.45) (so called Fisher’s equation)
is a diffusion model with logistic reaction. In absence of diffusion, the resulting
ordinary equation has two constant steady states w = 0, unstable and w = 1,
asymptotically stable with basin of attraction (0,+∞) .

The parameter a encodes the reaction speed (with dimension (time)−1)
while N represents the habitat carrying capacity, a threshold value for w.

7 The justification of this fact is not elementary and out of the scope of this intro-
ductory text. See for instance [15].
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To analyze the behavior of the solutions we introduce dimensionless quan-
tities by suitably rescaling the variables y, τ and w. Since L is a typical length,
set

x =
y

L
.

We may rescale time in two ways. For instance, recalling that the dimension
of a is (tima)−1 and that of D is (length)2×(tempo)−1, we may set

t = aτ or t =
Dτ

L2
.

Let us choose the second one. To rescale w we use N as a typical size and
define

u (x, t) =
1
N
w

(
Lx,

L2t

D

)
.

We have

ut = wτ
dτ

dt
= wτ

L2

ND
, uxx =

1
N
wyy

d2y

dx2
= wyy

L2

N
.

Substituting into (5.45) we get

ut = uxx + λu (1− u) 0 < x < 1

where

λ =
aL2

D
with initial condition

u (x, 0) = g (Lx) /N ≡ G (x) 0 < x < 1

and
u (0, t) = u (1, t) = 0 t > 0.

From the results of Section 3.1 we can easily prove that, if 0 ≤ g ≤ 1, there
exists for all t > 0 a unique solution u, such that 0 ≤ u ≤ 1.

Indeed, it is enough to observe that u = 0 and u = 1 are respectively sub
and supersolution. What is mostly interesting is the asymptotic behavior of
u as t→ +∞. We shall see that λ plays the role of bifurcation parameter.

Notice that the same parameter appears in (5.18). We have seen that
if λ < π2, the solution of the linearized equation, obtained neglecting the
nonlinear term −λu2, goes rapidly to zero. This occurs also to the Fisher-
Kolmogoroff equation. In fact, heuristically, by adding −λu2 we enforce the
decaying effect and therefore u (x, t) → 0 for t→ +∞.

What happens when λ > π2 ? We shall see that, in this case, the solution
u evolves towards a steady state v = v (x), 0 ≤ v ≤ 1, solution of the
stationary problem

{
vxx + λv (1− v) = 0 0 < x < 1
v (0) = v (1) = 0.

(5.46)
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5.3.3 Steady states, linearization and stability

To justify our conclusions on the Fisher’s equations, we use a linearization
technique that we describe for the following equation

ut = Δu+ f (u) in Ω × (0,+∞) (5.47)

where f ∈ C1 (R), with initial condition

u (x, 0) = g (x) in Ω, (5.48)

and homogeneous Dirichlet or Neumann conditions.
Let vs = vs (x) be a steady state solution, that is a bounded solution of

the stationary problem
⎧⎪⎨
⎪⎩

Δv + f (v) = 0 in Ω

v = 0 or
∂v

∂ν
= 0 on ∂Ω.

(5.49)

In particular, a steady state can be constant (spatially homogeneous). The
non constant steady states correspond to heterogeneous spatial configura-
tions. In the applications to biology these solutions (so called patterns) are
particularly important.

We want to analyze the stability properties of vs, that is to determine
under which conditions u (x, t) → vs (x) as t → +∞, pointwise or uniformly
in Ω.

Precisely, we say that vs is (neutrally) stable if, for every ε > 0, there
exists δ such that, if u is a bounded solution of (5.47), (5.48) with

|g (x)− vs (x)| < δ, ∀x ∈ Ω,

then
|u (x, t)− vs (x)| < ε ∀x ∈ Ω,∀t > 0.

If moreover
lim

t→+∞ sup
x∈Ω

|u (x, t)− vs (x)| = 0

then vs is asymptotically stable. We say that vs unstable is it is not
stable.

Set
w (x, t) = u (x, t)− vs (x) .

Then w solves
wt = Δw + [f (u)− f (vs)] (5.50)

with
w (x, 0) = g (x)− vs (x) in Ω
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and
w = 0 or

∂w

∂ν
= 0 on ST .

By the Mean Value Theorem, we can write

f (u (x, t))− f (v (x)) = f ′ (vs (x))w (x, t) +R (x, t)

where R (x, t) is of lower order as w → 0.
We formally linearize the problem by neglecting the remainder R. Then

(5.50) becomes
wt = Δw + f ′ (vs (x))w (5.51)

which is linear in w. Note that f ′ (vs (x)) is bounded in Ω.
If supx∈Ω |w (x, t)| → 0 as t→ +∞ then we say that v is linearly asymptot-

ically stable. Let us check under which conditions linear stability occurs. Using
separation of variables we seek for solutions of the form w (x, t) = U (x)Z (t) .
Substituting into (5.51) we find

U (x)Z ′ (t) = ΔU (x)Z (t) + f ′ (vs (x))U (x)Z (t)

and then
ΔU (x) + f ′ (vs (x))U (x)

U (x)
=
Z ′ (t)
Z (t)

= μ

where μ is a constant. Thus, U is a solution of the eigenvalue problem

ΔU (x) + f ′ (vs (x))U (x) = μU (x) in Ω (5.52)

with boundary conditions

U = 0 or
∂U

∂ν
= 0 on ∂Ω. (5.53)

If f ′ (vs (x)) is not identically zero, the following theorem holds8:

Theorem 5.3. Let vs = vs (x) be a solution of problem (5.49). Then:

1. There exists a sequence

· · · < μk+1 < μk < · · · < μ2 < μ1

of real eigenvalues of problem (5.52), (5.53) such that μk → −∞. In
particular, there exists only a finite number of positive eigenvalues.

2. All the eigenfunctions corresponding to the principal eigenvalue μ1 are
multiples of a single eigenfunction ϕ1, positive in Ω in the case of Dirichlet
conditions, positive in Ω in the case of Neumann conditions.

From this theorem we can get the information we want.
8 See Salsa [15].
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Theorem 5.4. Let vs = vs (x) be a solution of problem (5.49).

(a) If μ1 < 0 then vs is asymptotically stable in the following sense: there exist
positive numbers ρ and α such that if

|g (x)− vs (x)| ≤ ρϕ1 (x) ∀x ∈ Ω (5.54)

then

|u (x,t)− vs (x)| ≤ ρe−αtϕ1 (x) ∀x ∈ Ω, ∀t > 0. (5.55)

(b) If μ1 > 0 then vs is unstable unstable, and precisely, for every σ ∈ (0, 1),
there exist positive numbers ρ and α such that, if

g (x)− vs (x) ≥ ρ (1− σ)ϕ1 (x) ∀x ∈ Ω (5.56)

then

u (x,t)− v (xs) ≥ ρ(1− σe−αt)ϕ1 (x) ∀x ∈ Ω, ∀t > 0. (5.57)

Proof (a). Let w (x, t) = vs (x) + ρe−αtϕ1 (x). We choose positive ρ and α to
make w a supersolution to the problem (5.39), (5.40), (5.41).

We have, since Δϕ1 + f ′ (vs)ϕ1 = μ1ϕ1

wt −Δw = −Δvs + (−αϕ1 −Δϕ1)ρe
−αt

= f (vs) + (−α− μ1 + f ′ (vs)) ρe−αtϕ1.

By the mean Value Theorem, for a suitable η = η (x,t), 0 < η < ρ, we can
write

f (vs) = f (w)− f ′ (vs + η) ρe−αtϕ1.

Since f ∈ C1 (R) and μ1 < 0, if −α − μ1 > 0 and ρ is sufficiently small, we
have

−α− μ1 + f ′ (vs) > f ′ (vs + η) .

Recalling that ϕ1 > 0,

wt −Δw = f (w) + [−α− μ1 + f ′ (vs)− f ′ (vs + η)]ρe−αtϕ1 ≥ f (w) .

Observe that from (5.54), vs (x) + ρϕ1 (x) ≥ u (x,0) = g (x) and w = 0 or
∂νw = 0 on ST . It follows that w is a supersolution of the problem (5.39),
(5.40), (5.41) and therefore, Lemma 5.1 gives

u (x,t) ≤ vs (x) + ρe−αtϕ1 (x) t > 0,x ∈ Ω.
Similarly for suitable positiveρ and α, z (x,t) = vs (x) − ρe−αtϕ1 (x) is a
subsolution of the same problem so that

u (x,t) ≥ vs (x)− ρe−αtϕ1 (x) t > 0,x ∈ Ω.
This shows (5.55).
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Proof (b). It is sufficient to check that w (x,t) = vs (x) + ρ(1 − σe−αt)ϕ1 (x)
is a subsolution for suitable ρ and α. We omit the details. �

Remark 5.4. In the case of Neumann conditions, (5.55) expresses the asymp-
totic stability of vs, since ϕ1 ≥ c0 > 0 in Ω.

In the case of Dirichlet conditions, rigorously, the solution vs attracts
only solutions starting from an initial condition close to vs, vanishing on the
boundary, since in this case ϕ1 = 0 on ∂Ω. With a supplementary effort it is
possible to show that this occurs also with general initial data, so that vs is
asymptotically stable.

5.3.4 Application to Fisher’s equation (Dirichlet conditions)

We apply Theorem 5.4 to Fisher’s equation with homogeneous Dirichlet
conditions and initial data g, 0 ≤ g ≤ 1. Consider first vs ≡ 0. Since
f ′ (u) = (1 − 2u), we have f ′ (0) = 1 and the eigenvalue problem (5.52),
(5.53) reduces to

U ′′ (x) = (μ− λ)U (x) 0 < x < 1

with
U (0) = U (1) = 0.

We have already solved this problem; we have

μ− λ = −k2π2 k ≥ 1

so that
μ1 = λ− π2.

From Theorem 5.4 we infer that:

Proposition 5.2. If λ < π2 then vs = 0 is asymptotically stable. If λ > π2,
vs = 0 is unstable.

We can also show that vs = 0 is the unique nonnegative steady state if
λ < π2. In fact, multiplying the equation v′′ + λf (v) = 0 by sinπx and
integrating over (0, 1) we find

∫ 1

0

v′′ sinπx dx = −
∫ 1

0

λv (1− v) sinπx dx.

An integration by parts gives, using the homogeneous Dirichlet conditions
∫ 1

0

v′′ sinπx dx = −
∫ 1

0

π2v sinπx dx

whence (
λ− π2

) ∫ 1

0

v sinπx dx =
∫ 1

0

λv2 sinπx dx. (5.58)

If λ < π2, the (5.58) is possible only if v ≡ 0 in (0, 1) .
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This fact implies that every solution with initial data g, bounded and
nonnegative, converges to the zero solution as t→ +∞.

Since in terms of the original parameters λ = aL2/D, Proposition 5.2
shows that in presence of large diffusion coefficients or of too small habitat
the population eventually goes towards extinction.

We now analyze the case λ > π2. We shall show later on, that in this case
there exists another steady state solution vs Moreover, 0 ≤ vs ≤ 1 and vs
is positive in (0, 1). Assuming for the moment that such solution exists, we
examine its stability using Theorem 5.4. Since vs is not a constant, we cannot
compute explicitly the eigenvalues of the stationary problem and we have to
resort to an indirect method.

The following theorem holds.

Theorem 5.5. Let λ > π2 and vs be a steady state solution, 0 ≤ vs ≤ 1,
positive in (0, 1) of the problem

{
v′′ + λf (v) = 0 0 < x < 1
v (0) = v (1) = 0. (5.59)

Then vs is asymptotically stable.

Proof. We must show that the first eigenvalue μ1 of the problem (5.52), with
U (0) = U (1) = 0 and f (s) = s (1− s), is negative. Recall that the corre-
sponding eigenfunction ϕ1 (x) is positive in (0, 1).

Multiply the stationary Fisher’s equation by ϕ1 and integrate over (0, 1)

∫ 1

0

[v′′s (x) + λf (vs (x))]ϕ1 (x) dx = 0.

Multiply the equation

ϕ′′
1 (x) + λf ′ (vs (x))ϕ1 (x) = μ1ϕ1 (x)

by v and integrate over (0, 1):

∫ 1

0

[ϕ′′
1 (x) + λf ′ (vs (x))ϕ1 (x)] vs (x) dx = −μ1

∫ 1

0

ϕ1 (x) vs (x) dx.

Subtracting the two equations we get.

∫ 1

0

[v′′s (x)ϕ1 (x)− vs (x)ϕ′′
1 (x)] dx+ λ

∫ 1

0

[f (vs (x))

−f ′ (vs (x)) vs (x)]ϕ1 (x) dx = −μ1

∫ 1

0

ϕ1 (x) vs (x) dx.
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Integrating by parts the first terms we obtain
∫ 1

0

[v′′s (x)ϕ1 (x)− vs (x)ϕ′′
1 (x)] dx

= [v′s (x)ϕ1 (x)− vs (x)ϕ′
1 (x)]10 −

∫ 1

0

[v′s (x)ϕ′
1 (x)− v′s (x)ϕ′

1 (x)] dx

= 0.

Thus

λ

∫ 1

0

[f (vs (x))− f ′ (vs (x)) vs (x)]ϕ1 (x) dx = −μ1

∫ 1

0

ϕ1 (x) vs (x) dx.

(5.60)
Since λ > π2, ϕ1 > 0, vs > 0 in (0, 1) and moreover

f (vs)− f ′ (vs) vs = vs − v2
s − (1− 2vs) vs = v2

s > 0 in (0, 1) ,

we deduce from (5.60) that μ1 < 0.
Theorem 5.4 implies that vs is asymptotically stable. �

We now prove the existence and uniqueness of the steady state vs = vs (x).
The following result holds9.

Theorem 5.6. There exists a unique solution vs of problem (5.59), positive
in (0, 1) and asymptotically stable (by Theorem 5.5).

Proof. Set v′ = w and consider the system
{
v′ = w
w′ = −λv (1− v) = −λf (v) . (5.61)

Let F (v) =
∫ v
0
f (s) ds = v2

2 − v3

3 . The differential equations for the orbits
in the phase plane v, w is

dw

dv
=
λf (v)
w

or
wdw = −λf (v) dv.

Integrating, we find the family of curves given by

w2 = −2λF (v) + c = −λ
(
v2 − 2

3
v3

)
+ c c ∈ R. (5.62)

The orbits are symmetric with respect to the v axis; their configuration, de-
pending on the parameter c, is described in Fig. 5.3.

9 See Murray [24].
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Fig. 5.3. Orbit configurations of equation (5.62) for λ = 1

A solution vs = vs (x) vanishing at x = 0, x = 1 corresponds to a half of a
periodic orbit and therefore it is always positive (right semiorbit) or negative
(left semiorbit). Our task is to establish the range of λ for which such orbits
exist and, in particular, to select the minimum λ in that range (bifurcation
value).

Let us focus on the right semiorbits. By symmetry we must have m =
max[0,1] vs = vs (1/2) and 0 < m < 1, while ws (1/2) = 0. Moreover, ws > 0
in (0, 1/2) and ws < 0 in (1/2, 0). Thus, we can only consider 0 ≤ x ≤ 1/2.

Note that, letting x = 1/2 into (5.62) we get

c = 2λF
(
vs

(
1
2

))
= 2λF (m) = λ

(
m2 − 2

3
m3

)

hence we can write (5.62) in the form

w2
s = 2λ [F (m)− F (vs)] =

λ

3
(
3m2 − 2m3 − 3v2

s + 2v3
s

)
. (5.63)

From v′s = ws and (5.63) we have

dvs
dx

=

√
λ

3
(3m2 − 2m3 − 3v2

s + 2v3
s)

whence

dx =

√
3
λ

dvs√
3m2 − 2m3 − 3v2

s + 2v3
s

.
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When x goes from 0 to 1/2), the solution vs, when it exists, varies from 0 to
m. Thus, integrating the last equation over (0, 1/2) we find

1
2

=
∫ m

0

√
3
λ

dv√
3m2 − 2m3 − 3v2 + 2v3

. (5.64)

This improper integral is finite10 and therefore (5.64) defines a unique
λ = λ (m), for every m, 0 < m < 1

λ (m) = 12
(∫ m

0

dv√
3m2 − 2m3 − 3v2 + 2v3

)2

.

The function m �→ λ (m) is strictly increasing. To see it, let v = my. Then y
varies from 0 to 1, while dv = mdy. Then

∫ m

0

dv√
3m2 − 2m3 − 3v2 + 2v3

=
∫ 1

0

dy√
3− 2m− 3y2 + 2my3

≡
∫ 1

0

G (m, y) dy.

We compute

∂G

∂m
=

1− y3

(3− 2m− 3y2 + 2my3)3/2
> 0 for every y ∈ (0, 1)

so that λ (m) is increasing Hence, the bifurcation value is

λmin = lim
m→0+

λ (m) = 4

(∫ 1

0

dy√
1− y2

)2

= 4
(
[arcsin y]10

)2

= π2.

Moreover,
lim

m→1−
λ (m) = +∞.

We infer that, for every λ > π2 there exists a unique v = vs (x) , positive in
(0, 1), such that λ (m) = λ. �

Remark 5.5. Given the uniqueness of the stationary solution vs it is possible
to prove that the basin of attraction of vs includes all the solutions of Fisher’s
equation with initial data g > 0 in (0, 1).

10 We have

3m2 − 2m3 − 3v2 + 2v3 = (m− s)
(
3m+ 3v − 2m2 − 2mv − 2v2) .

If v → m,
3m2 − 2m3 − 3v2 + 2v3 ∼ 6 (m− v)

(
m−m2)

hence the integrand is of order (m− v)−1/2 which is integrable near v = m.
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5.3.5 Application to Fisher’s equation (Neumann conditions)

In this section we analyze the asymptotic behavior of a solution of the equation
ut = uxx+f (u) with homogeneous Neumann conditions and initial condition
g, 0 ≤ g ≤ 1 in (0, 1).

First observe that a nonconstant steady state (pattern) cannot have con-
stant sign. This follows from the phase plane analysis in the previous section,
since now the patterns corresponds to semiorbits connecting two point on the
v axis, and all these orbits must cross the w axis.

Moreover, a pattern cannot be asymptotically stable. In fact, using Theorem
5.4 we can prove the following:

Theorem 5.7. Let v = v (x) be a non constant steady state, that is a solution
of the problem

v′′ + λf (v) = 0, 0 < x < 1,

with v′ (0) = v′ (1) = 0. Then v is unstable.

Proof. Let μ1 and ϕ1 the principal eigenvalue and the corresponding eigen-
function of the linearized Neumann problem

ϕ′′
1 (x) + λf ′ (v (x))ϕ1 (x) = μ1ϕ1 (x) (5.65)

and
ϕ′

1 (0) = ϕ′
1 (1) = 0.

We may choose ϕ1 positive in [0, L].
Since v changes his sign, we must argue differently from the proof of The-

orem 5.7. Differentiating the stationary Fisher’s equation, we get:

(v′)′′ + λf ′ (v) v′ = 0 0 < x < 1

which is an equation for v′. Multiply this equation by ϕ1 and integrate over
(0, 1) ∫ 1

0

[(v′)′′ + λf ′ (v) v′]ϕ1dx = 0. (5.66)

Now multiply (5.65) by v′ and integrate over (0, 1):
∫ 1

0

[ϕ′′
1 + λf ′ (v)ϕ1]v

′dx = μ1

∫ 1

0

ϕ1v
′dx. (5.67)

Subtracting (5.66) from (5.67) we find
∫ 1

0

[ϕ′′
1v

′ − (v′)′′ϕ1]dx = μ1

∫ 1

0

ϕ1v
′dx.

An integration by parts of the first integral gives, using the Neumann condi-
tions
∫ 1

0

[ϕ′′
1v

′ − (v′)′′ϕ1]dx = [ϕ′
1v

′ − v′′ϕ1]
L
0 = −v′′ (1)ϕ1 (1) + v′′ (0)ϕ1 (0) .
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We now distinguish 3 cases, recalling that ϕ1 (1) > 0 and ϕ1 (0) > 0.

a) v increasing in [0, 1]. Then v′ ≥ 0, v′′ (0) ≥ 0 and v′′ (1) ≤ 0. Hence

−v′′ (1)ϕ1 (1) + v′′ (0)ϕ1 (0) ≥ 0 while
∫ 1

0

ϕ1v
′dx > 0.

Thus μ1 > 0.

b) v decreasing [0, 1]. Then v′ ≥ 0, v′′ (0) ≤ 0 and v′′ (1) ≤ 0. Hence

−v′′ (1)ϕ1 (1) + v′′ (0)ϕ1 (0) ≤ 0 and
∫ 1

0

ϕ1v
′dx < 0

so that μ1 > 0 again.

c) v oscillating. Then there exists an interval (a, b) ⊂ (0, 1) such that v′ (a) =
v′ (b) = 0, v′′ (a) ≥ 0, v′′ (b) ≤ 0 and v′ ≥ 0 in (a, b) . If we integrate over
(a, b) instead of (0, 1) and we use the same argument we infer again that
μ1 > 0.
In any case we get μ1 > 0 so that v is unstable. �

Still we do not know which should be the asymptotic behavior of a solu-
tion? Here we have two constant steady states, v0 ≡ 0 and v1 ≡ 1.

Consider first v0 ≡ 0. We have f ′ (0) = 1 and problem (5.52), (5.53)
reduces to

U ′′ (x) = (μ− λ)U (x) 0 < x < 1

with
U ′ (0) = U ′ (1) = 0.

The eigenvalues are
μ− λ = −k2π2 k ≥ 0

whence
μ1 = λ > 0.

In any case, v0 is unstable.
Let us try with v1.We have f ′ (1) = −1 and problem (5.52), (5.53) becomes

U ′′ (x) = (μ+ λ)U (x) 0 < x < 1

with
U ′ (0) = U ′ (1) = 0.

The eigenvalues are
μ+ λ = −k2π2 k ≥ 0

whence
μ1 = −λ < 0.
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We infer that v1 ≡ 1 is asymptotically stable. Let us determine its basin
of attraction. Let g > 0 in [0, 1] . Choose H ≤ m = min[0,1] g, 0 < H < 1,
and K ≥M = max[0,1] g. Let U1 = U1 (t) , U2 = U2 (t) be the solutions of the
logistic equation

U̇ = λU (1− U)

with initial data U1 (0) = H and U2 (0) = K, respectively.
Then U1 is a subsolution and U2 is a supersolution of problem (5.39),

(5.40), (5.41) and both are bounded. Then, by Lemma 5.1 and Theorem 5.2,
if u is the solution of Fisher’s equation with initial data g, we have

U1 (t) ≤ u (x, t) ≤ U2 (t) .

Since limt→∞ U1 (t) = limt→∞ U2 (t) = 1, we infer that

sup
x∈[0,1]

u (x, t) → 1 as t→∞.

Conclusion. Any solution of Fisher’s equation in (0, 1) with homogeneous
Neumann conditions and positive initial data evolves uniformly in [0, 1] to-
wards the constant steady state vs ≡ 1.

5.4 Turing instability

We have seen that solutions of Fisher’s equation with Neumann boundary
conditions and positive initial conditions evolves towards the constant steady
state of the logistic o.d.e.

du

dt
= λu (1− u) .

This fact an be generalized (with similar proof) to equations of the type

ut = DΔu+ f (u) .

Indeed, if u ≡ c is a an equilibrium solution of the o.d.e.

du

dt
= f (u) ,

that is f (c) = 0, and f ′ (c) < 0, then u ≡ c is asymptotically stable. In terms
of population dynamics, this means that a self organizing population (zero
boundary flux) evolves toward a spatially homogeneous steady state.

If instead, of a single equation we consider a system of two or more
reaction-diffusion equations, the evolution can significantly change. Indeed
a steady state which is asymptotically stable for the dynamics in absence of
diffusion, can be turned into an unstable state in presence of diffusion.
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This quite surprising effect was discovered by Alan Turing in 1952 (The
Chemical Basis of Morphogenesis). He showed that, under certain conditions,
specific chemical components may react and diffuse producing stable con-
centrations of chemical substances (morphogenes), spatially nonhomogeneous
(patterns).

Here we consider a typical bidimensional example.
Assume that two chemical substances with concentrations A = A (ξ,η,τ)

and B = B (ξ,η,τ) diffuse and react according to the system (τ denotes time)
{
Aτ = DAΔA+ F (A,B)
Bτ = DBΔA+G (A,B)

where F and G (in general nonlinear) model the chemical reactions involving
A and B.

Turing intuition is the following. In absence of diffusion (DA = DB = 0)
we obtain the o.d.e. system

{
Aτ = F (A,B)
Bτ = G (A,B) .

Assume that, A and B evolves as t → +∞ toward a constant state A0, B0,
hence spatially homogeneous, and asymptotically stable for the linearized sys-
tem {

aτ = FA (A0, B0) (a−A0) + FB (A0, B0) (b−B0)
bτ = GA (A0, B0) (a−A0) +GA (A0, B0) (b−B0) .

Now, under certain conditions that we will describe later on, if DA �= DB ,
for the original reaction-diffusion system the state A0, B0 becomes unstable
and the solution evolves toward a steady state, spatially inhomogeneous, i. e.
a pattern. This phenomenon is known as a diffusion driven instability

Since diffusion is usually a stabilizing factor, Turing’s proof turned out to
be rather surprising. Let us analyze the conditions under which the diffusion
driven instability occurs.

As a typical model for the reaction terms F and G we choose the in-
hibitor/activator model of Schnakenberg:

F (A,B) = k1 − k2A+ k3A
2B, G (A,B) = k4 − k3A

2B

where the kj are positive constants.
It is convenient to deal with dimensionless model. If we choose as our

reference two-dimensional domain a rectangle and L is a typical length (for
instance a side length), we can set:

A =
√
k2

k3
u, B =

√
k2

k3
v, x =

ξ

L
, y =

η

L
, t =

DAτ

L2

and

γ =
L2k2

DA
, d =

DB

DA
, a =

k1

k2

√
k3

k2
, b =

k4

k2

√
k3

k2
.
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After simple computations, we obtain the dimensionless system
{
ut = uxx + uyy + γ(a− u+ u2v)
vt = d(vxx + vyy) + γ

(
b− u2v

)

which is of the form {
ut = Δu+ γf (u, v)
vt = dΔv + γg (u, v) (5.68)

with
fv > 0, gu < 0. (5.69)

Moreover, u = u (x, y, t), v = v (x, y,t) where t > 0 and x, y vary in a dimen-
sionless rectangle

R = {(x, y) : 0 < x < p, 0 < y < q}
and the parameter γ has the following interpretations

a) γ is proportional to the habitat surface area;
b) γ encodes the intensity of the reaction terms;
c) increasing γ corresponds to decreasing the coefficient d.

To the system (5.68) we associate the initial condition

u (x, y, 0) = u0 (x, y) , v (x, y,0) = v0 (x, y) 0 < x < p, 0 < y < q

and homogeneous Neumann conditions on ∂R

ux (0, y, t) = ux (p, y, t) = uy (x, 0, t) = uy (x, q, t) = 0
vx (0, y, t) = vx (p, y, t) = vy (x, 0, t) = vy (x, q, t) = 0

which can be written in the compact form

∇u · n = ∇v · n = 0 on ∂R

where n denotes the exterior normal to ∂R.
Setting

w =
(
u
v

)
, F (w) =

(
f (u, v)
g (u, v)

)
and D =

(
1 0
0 d

)

we can write our system in the form

wt = DΔw + γF (w) . (5.70)

Consider the system
wt = γF (w)

without diffusion and linearize it at the steady state w0 =
(
u0

v0

)
. Setting

z = w −w0 we get
zt = γAz (5.71)
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with

A =
(
fu fv
gu gv

)

(u0,v0)

.

Assume now that w0 is asymptotically stable, or, equivalently, that 0 is
asymptotically stable for (5.71). Then it must be

trA = fu + gv < 0 and |A| = fugv − fvgu > 0 (5.72)

where each derivative is computed at (u0, v0) .
Let us linearize at w0 also the reaction-diffusion system (5.70); we find

zt = DΔz + γAz (5.73)

still with z = w −w0.
Our goal is now the following: to determine under which conditions

the solution z = 0 is unstable for the system (5.73).
Thus, we have to analyze the stability of z = 0 for (5.73). We can use

the separation of variables. To simplify simplify the computations, we intro-
duce the eigenfunctions Wmn and the corresponding eigenvalues μmn for the
Neumann problem

ΔWmn + μmnWmn = 0 in R

and
∇Wmn · n = 0 on ∂R.

From Section 5.2 we have

μmn = π2

(
n2

p2
+
m2

q2

)
, n,m = 0, 1, 2, . . .

and

Wmn (x, y) = c cos
nπx

p
cos

mπy

q
, c =

(
c1
c2

)
.

Since we always find the an exponential t−dependence, let us look for solutions
to (5.73) of the form

z (x, y, t) = eλtWmn (x, y) .

Substituting into (5.73) we find, after simplifying by eλt,

λWmn (x, y) = DΔWmn + γAWmn

or, since ΔWmn = −μmnWmn,

(λI− γA + Dμmn)Wmn = 0 (5.74)

where I is the identity matrix.
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Non trivial solutions of (5.74) exist if

|λI− γA + Dμmn| = 0.

This condition gives an algebraic equation for λ as a function of μmn : λmn =
λ (μmn) . Explicitly we find

λ2 + λ [μmn (1 + d)− γtrA] + h (μmn) = 0 (5.75)

where
h (μmn) = dμ2

mn − γ (dfu + gv)μmn + γ2 |A| . (5.76)

Even if μmn is a real number, λmn could be a complex one. Thus, the solution
of the linearized problem is given by a formula of the following type

w (x, y, t) =
∑
m,n

cn,meλmntWmn (x, y) (5.77)

wherr the ck are the cosine Fourier coefficients of the initial data.
To get instability we must have

Reλmn > 0

for some couple m,n. This can happen in two cases: either μmn (1 + d) −
γtrA < 0 or h (μmn) < 0 for some mn.

Since trA < 0 and μmn (1 + d) ≥ 0 the only possibility is the second one.
From (5.76), since |A| > 0, to have h (μmn) < 0 it must be

dfu + gv > 0.

Since fu + gv = trA < 0, this implies d �= 1 and that fu and gv have different
signs

dfu + gv > 0 =⇒ d �= 1 and fugv < 0. (5.78)

Therefore, we have the following proposition.

Proposition 5.3. For the existence of the driven diffusion instability it is
necessary that DA �= DB.

The condition (5.78) is only necessary to guarantee that there exist couples
m,n such that h (μmn) < 0. Thus the minimum of h (μmn) must be
negative.

By examining the parabola

s �−→ h (s) = ds2 − γ (dfu + gv) s+ γ2 |A|

we see that its minimum is attained at

smin =
γ (dfu + gv)

2d
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and is equal to

hmin = h (smin) = γ2

[
|A| − (dfu + gv)

2

4d

]
.

We infer that hmin < 0 if

(dfu + gv)
2

4d
> |A| .

Let us summarize the necessary conditions for driven diffusion insta-
bility we have found so far:

1. fu + gv < 0;
2. dfu + gv > 0;
3. fugv − fvgu > 0;
4. (dfu + gv)

2 − 4d(fugv − fvgu) > 0.

Keeping fixed the other parameters, the equation (dfu + gv)
2 = 4d |A|

defines the critical value dc for the ratio of the diffusion coefficients,
that is the solution > 1 of the equationd2

cf
2
u + 2 (2fvgu − fugv) dc + g2

v = 0.
Corresponding to the value dc we have a critical value sc given by

sc =
γ (dcfu + gv)

2dc
= γ

[ |A|
dc

]1/2
.

When d > dc, h (s) has two zeros s1 and s2 given by

s1 =
γ

2d

[
(dfu + gv)−

{
(dfu + gv)

2 − 4d |A|
}1/2

]

s2 =
γ

2d

[
(dfu + gv)−

{
(dfu + gv)

2 − 4d |A|
}1/2

]
.

( )h s cd d=

2s

cd d>

cd d<

1s cs

( )h s cd d=

2s

cd d>

cd d<

1s cs

Fig. 5.4. Zeroes of the parabola h(s), according to different values of the parame-
ter d



5.5 Numerical methods 181

The set of possible values of μmn corresponding to Reλmn > 0 is located
between s1 and s2. It could be that this set is empty, since the μmn
assumes rather special values. In other terms, if there are values of μmn such
that

s1 ≤ μmn ≤ s2,

then these values correspond to exponentially growing terms in the series
(5.77). This means that, for large t,

z (x, y, t) ∼
∑

s1≤μmn≤s2
cmneλmntWmn (x, y) .

Notice the dependence of the number of activated modes on the domain R.
The larger are dimensions p or q the larger is the number of activated modes.
As in the scalar case, the exponential growth is counterbalanced by the non-
linear reaction terms and eventually spatially nonhomogeneous equilibrium
configurations will appear11.

5.5 Numerical methods

5.5.1 Numerical approximation of a nonlinear reaction-diffusion
problem

We address the following problem, which is based on equation (5.39) in one
space dimension, to be discretized by means of finite differences,
⎧⎪⎨
⎪⎩

ut = uxx + f(u) 0 < x < 1, t > 0
u(0, t) = u(1, t) = 0 or ux(0, t) = ux(1, t) = 0 t > 0
u(x, 0) = g(x) 0 ≤ x ≤ 1.

(5.79)
We observe that either Dirichlet or Neumann boundary conditions are ad-
dressed. Given a partition of (0, 1) in N + 1 equally spaced nodes xi =
i h, h = 1/N, i = 0, . . . , N , we denote by AD

h ∈ R
(N−1)×(N−1) and

AN
h ∈ R

(N+1)×(N+1) the centred three point finite difference approxima-
tion of −∂xx (see (3.92) Chapter 3) complemented with Dirichlet or Neu-
mann boundary conditions respectively, as in (5.79). More precisely, given
UD(t) = {ui(t)}N−1

i=1 ∈ R(N−1) or UN (t) = {ui(t)}Ni=0 ∈ R(N+1) the degrees
of freedom for Dirichlet or Neumann problems, the semi-discrete counter-
part of (5.79) reads as follows,

U̇∗(t) = f(U∗)−A∗
hU

∗, U∗(0) = g = {g(xi)} (5.80)

where ∗ = D,N according to the choice of boundary conditions and f(U∗)
denotes the component-wise application of function f to U∗. Problem (5.80)
11 The proof of this fact is not elementary and we refer to the original paper of

Turing.
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is an autonomous differential equation system to be discretized in time. The
main difference with respect to the simple diffusion equation consists in the
nonlinear term. The application of an explicit time stepping scheme, such as
backward Euler method, allows to override the nonlinearity, by evaluating
f(U∗) at the previous iterative step. As a result of this, we obtain,

U∗
n+1 = U∗

n + τf
(
U∗
n

)− τA∗
hU

∗
n. (5.81)

In spite of its simplicity, the application of such scheme is severely limited
by stability constraints and poor accuracy. An effective generalization which
maintains the attractive feature of treating the nonlinear term explicitly is
provided by the family of explicit Runge-Kutta schemes. As an example,
we report here a third-order Runge-Kutta scheme.12 Given U∗

n the updated
solution U∗

n+1 is provided through the following intermediate steps,
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

U∗
a = U∗

n + τ
(
f(U∗

n)−A∗
hU

∗
n

)

U∗
b =

(
3
4U

∗
n + 1

4U
∗
a

)
+ τ

4

(
f(U∗

a)−A∗
hU

∗
a

)

U∗
c = U∗

n+1 =
(

1
3U

∗
n + 2

3U
∗
b

)
+ 2τ

3

(
f(U∗

b)−A∗
hU

∗
b

)
.

(5.82)

We finally address the application of the aforementioned discretization
methods to systems of equations, such as

{
ut = Δu+ f(u, v)
vt = dΔv + g(u, v)

(5.83)

(see (5.68) with γ = 1). Let Ah be the matrix corresponding to the five
point discretization of Laplace operator in two space dimensions and Cartesian
coordinates, complemented with suitable boundary conditions, Un and Vn be
the vectors of degrees of freedom for the discretization of u(x, y, t) and v(x, y, t)
at time tn, respectively. The backward Euler scheme applied to (5.83) reads
as follows, {

Un+1 = Un + τ
[
f
(
Un,Vn

)−AhUn

]
Vn+1 = Vn + τ

[
g
(
Un,Vn

)−AhVn

]
.

(5.84)

which can be extended to Runge-Kutta type time stepping as in (5.82).

5.6 Exercises

5.1 (An “invasion” problem). A population of density P = P (x, y, t) and
mass M is initially (t = 0) located at a single point, for instance the origin
(0, 0). It increases with constant linear rate a > 0 and diffuses with constantD.
12 See [43] for more details about these methods.
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a) Write the problem describing the evolution of P and solve it.
b) Determine the evolution of the mass

M (t) =
∫

R2
P (x, y, t) dxdy.

c) Denoting BR the ball centered at the origin (0, 0) and radius R. Find
R = R (t) in a way that

∫

R2\BR(t)

P (x, y, t) dxdy = M.

Considering the metropolitan area the region BR(t) and rural area the
region R2 \BR(t), find the speed of progression of the metropolitan front.

5.2. Consider the following initial-boundary value problem for the reaction
diffusion equation

⎧⎨
⎩
ut − uxx − αu = 0 (0, 1)× (0,+∞)
u(x, 0) = x2 − 1/3 [0, 1]
ux(0, t) = 0, ux(1, t) = 0 (0,+∞)

where α ∈ R.

a) After a change of variable, use the separation technique to find the solution
uα.

b) Calculate the limit of uα as t→ +∞ for every fixed x ∈ [0, 1].

5.6.1 Numerical simulation of Fisher’s equations

We address the following Cauchy-Dirichlet problem
⎧⎪⎨
⎪⎩

ut = uxx + λu(1− u) 0 < x < 1, t > 0
u(0, t) = u(1, t) = 0 t > 0
u(x, 0) = c sin(x) 0 ≤ x ≤ 1

(5.85)

λ, c ∈ R with the aim to apply numerical simulations based on scheme (5.82)
to test the consequences of Theorem 5.5 and Theorem 5.7. Fig. 5.5 shows the
results obtained for different combinations of λ and c. We observe that for
λ = π2−1, c = 0.1 the solution tends to a stable equilibrium state u(x, t) = 0
for t→∞, in agreement with Theorem 5.5. Conversely, when λ is larger than
the critical threshold π2, the only stable equilibrium solution is given by a
positive function whose image belongs to (0, 1), which is an attractor for the
evolution of the system starting from any initial state in (0, 1). This behaviour
is confirmed by the numerical results obtained using λ = π2 + 1, c = 0.075
and c = 0.25, with an initial state being either larger or smaller than the
equilibrium state, as in Fig. 5.5.
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Fig. 5.5. Numerical approximation of problem (5.85) visualized on the (x, t) plane

Finally, we address the Cauchy-Neumann problem,⎧⎪⎨
⎪⎩

ut = uxx + λu(1− u) 0 < x < 1, t > 0
ux(0, t) = ux(1, t) = 0 t > 0
u(x, 0) = c exp(−10x2) 0 ≤ x ≤ 1

(5.86)
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Fig. 5.6. Numerical approximation of (5.86) visualized on the (x, t) plane

whose solution evolves towards u = 1 for any possible value of λ and c. Indeed,
Fig. 5.6 confirms the expected behaviour of the system for λ = π2 and c = 0.5
or c = 1.5 for the initial state.

5.6.2 Numerical approximation of travelling wave solutions

We show that when reaction dominates, namely λ� 1, the Fisher-Kolmogoroff
equation represents a propagation effect. Indeed, the equation has been pro-
posed by R.A. Fisher in the paper entitled The wave of advance of advanta-
geous genes appeared on Annals of Eugenics on 1937, with the aim to develop
a mathematical model for the propagation of a dominating gene in a popula-
tion. The model shows that, although the dominating gene is initially shared
by a minority of individuals, it quickly propagates among others.

Fig. 5.7 shows the numerical simulations obtained with λ = 50π2 � 500
and the initial condition g(x) = exp(−50x2), which describes the initial spatial
distribution of individuals featuring a generic dominating gene. We see that
the gene density propagates towards the entire domain starting from the initial
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Fig. 5.7. Numerical approximation of problem (5.86) with λ = 50π2 and u(x, 0) =
exp(−50x2), visualized on the (x, t) plane

seed clustered in the neighbourhood of the origin, resembling the motion of a
progressive wave.

5.6.3 Numerical approximation of Turing instability and pattern
formation

We consider system (5.68) on a rectangular domain Ω = (0, 1)×(0, q) of aspect
ratio equal to 1/q. In particular, we choose 1/q = 5 and we set Neumann
type boundary conditions along the vertical sides of the domain, while we
apply periodic conditions along the longitudinal boundaries. By this way, Ω
is equivalent to a cylinder oriented along the x axis. In biology, these equations
represent a model to study the formation of patterns on the mantle or the tail
of various families of large animals, such as felines, bovine or reptiles.

We aim to find u(x, y, t), v(x, y, t) such that
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = Δu+ γf(u, v) vt = dΔv + γg(u, v) (x, y, t) ∈ (0, 1)× (0, q)× R+

ux(0, y, t) = ux(1, y, t) = 0 y ∈ (0, q), t ∈ R+

vx(0, y, t) = vx(1, y, t) = 0 y ∈ (0, q), t ∈ R+

u(x, 0, t) = u(x, q, t) x ∈ (0, 1), t ∈ R+

v(x, 0, t) = v(x, q, t) x ∈ (0, 1), t ∈ R+

u(x, y, 0) = u0(x, y), v(x, y, 0) = v0(x, y) (x, y) ∈ (0, 1)× (0, q)
(5.87)

where f(u, v) and g(u, v) correspond to the following kinetics, experimentally
determined by D. Thomas on 1975, 13

f(u, v) = a− u− ρuv

1 + u+Ku2
, g(u, v) = α(b− v)− ρuv

1 + u+Ku2
,

13 See Thomas D.: Artificial enzyme membranes, transport, memory, and oscillatory
phenomena. In [26], pp. 115–150; or Murray [24].
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with a = 92, b = 64, K = 0.1, α = 1.5, ρ = 18.5. In what follows, we will
focus on the behavior of solutions with respect to γ ∈ R+.

For the numerical approximation, we apply the Runge-Kutta method ob-
tained merging (5.84) and (5.82), combined with the 5 point approximation
of Laplace operator. We use numerical simulation to test that (5.87) allows
for a non uniform steady solution, featuring small oscillations in the neigh-
bourhood of ū, v̄ such that f(ū, v̄) = g(ū, v̄) = 0. Turing instability is the
primary reason of such non uniform equilibrium state, also called pattern.
The numerical simulations also suggest that patterns are highly sensitive to
the aspect ratio of the domain that is directly proportional to γ � L2 in the
non-dimensional setting, where L is the characteristic length of the original
domain (0, L) × (0, Lq). According to the principles of Turing instability, we
expect that for smaller values of γ only oscillations along the longitudinal axis
are activated, while increasing the parameter allows transversal patterns to
appear.

Using the transformation ξ = Lx, η = L(x)y from (x, y) ∈ (0, 1) × (0, q)
into (ξ, η) ∈ (0, L) × (0, L(x)q), where L(x) is an affine function of x, it is
possible to study the pattern formation on a trapezoidal domain. In non-
dimensional coordinates, it is equivalent to extend (5.87) with γ = γ(x).
As an example, the function γ(x) = γmaxx + γmin, x ∈ (0, 1), γmax >
γmin > 0 takes into account of a domain that progressively dilates along with
the longitudinal axis.

For better putting into evidence the formation of instabilities, we visualize
the following indicator χ(u∞; ū)

χ(u∞; ū) =

{
0 if u∞ < ū

1 if u∞ ≥ ū

where u∞ is the steady state of (5.87).
Fig. 5.8 shows the approximation of χ(u∞; ū) obtained by running the

aforementioned scheme on a time interval large enough to reach equilibrium
within a small tolerance. We observe that these results capture some typical
features of animal mantle and in particular of their tail, since we are address-
ing the case of high aspect ratios. The results confirm that small animals,
corresponding to γ = 10, 100 are more prone to develop stripes. Increasing
the size, the stripe frequency increases, progressively transforming to spots.

Finally, in Fig. 5.9 we address the effect of tapering. We notice that the
frequency of stripes increases when using increasing function γ(x) = γmaxx+
γmin. This corresponds to what is usually observed for felines such as the
leopard or the jaguar. Although their mantle is characterized by spots, the
increasing aspect ratio of the tail gives rise to stripes, which end up with
a large black tip. Indeed, this behaviour is very similar to what happens in
Fig. 5.9 nearby x = 0.
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Case γ = 10

Case γ = 100

Case γ = 500

Case γ = 1000

Fig. 5.8. The characteristic function χ(u∞; ū) quantified by numerical simulations
of (5.87). Black pixels correspond to χ = 1

Case γ(x) = 1000x+ 10

Case γ(x) = 2000x+ 20

Case γ(x) = 3000x+ 30

Fig. 5.9. Pattern formation on tapered domains, where the physical domain width
proportionally increases with x. We notice that the frequency of oscillations follows
the same trend
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Waves and vibrations

6.1 General Concepts

6.1.1 Types of waves

Our daily experience deals with sound waves, electromagnetic waves (as radio
or light waves), deep or surface water waves, elastic waves in solid materials.
Oscillatory phenomena manifest themselves also in contexts and ways less
macroscopic and known. This is the case, for instance, of rarefaction and
shock waves in traffic dynamics or of electrochemical waves in human nervous
system and in the regulation of the heart beat. In quantum physics, everything
can be described in terms of wave functions, at a sufficiently small scale.

Although the above phenomena share many similarities, they show several
differences as well. For example, progressive water waves propagate a distur-
bance, while standing waves do not. Sound waves need a supporting medium,
while electromagnetic waves do not. Electrochemical waves interact with the
supporting medium, in general modifying it, while water waves do not.

Thus, it seems too hard to give a general definition of wave, capable of
covering all the above cases, so that we limit ourselves to introducing some
terminology and general concepts, related to specific types of waves. We start
with one-dimensional waves.

Progressive or travelling waves are disturbances described by a function
of the following form:

u (x, t) = g (x− ct) .
For t = 0, we have u (x, 0) = g (x), which is the “initial” profile of the per-
turbation. This profile propagates without change of shape with speed |c|, in
the positive (negative) x−direction if c > 0 (c < 0). We have already met this
kind of waves in Chapters 2 and 3.

Harmonic waves are particular progressive waves of the form

u (x, t) = A exp {i (kx− ωt)} , A, k, ω ∈ R. (6.1)

Salsa S., Vegni F.M.G., Zaretti A., Zunino P.: A Primer on PDEs. Models, Methods, Simulations.
Unitext – La Matematica per il 3+2 65.
DOI 10.1007/978-88-470-2862-3 6, © Springer-Verlag Italia 2013
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Fig. 6.1. Sinusoidal wave

Usually, only the real part (or the imaginary part) A cos (kx− ωt) is of in-
terest. Of course, the complex notation may often simplify the computations.
Considering for simplicity ω and k positive in (6.1), waves are characterized
by the following qualities:

• the wave amplitude |A|;
• the wave number k, which is the number of complete oscillations in the

space interval [0, 2π], and the wavelength

λ =
2π
k

being the distance between successive maxima (crest) or minima (troughs)
of the waveform;

• the angular frequency ω, and the frequency

f =
ω

2π

is the number of complete oscillations in one second (Hertz) at a fixed
space position;

• the wave or phase speed
cp =

ω

k

which is the crests (or troughs) speed.

Standing waves are of the form

u (x, t) = B cos kx cosωt.

In these disturbances, the basic sinusoidal wave, cos kx, is modulated by the
time dependent oscillation B cosωt. A standing wave may be generated, for
instance, by superposing two harmonic waves with the same amplitude, prop-
agating in opposite directions:

A cos(kx− ωt) +A cos(kx+ ωt) = 2A cos kx cosωt. (6.2)
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Consider now waves in dimension n > 1.

Plane waves. Scalar plane waves are of the form

u (x,t) = f (k · x−ωt) .
The disturbance propagates in the direction of k with speed cp = ω/ |k|. The
planes of equation

θ (x,t) = k · x−ωt = constant
constitute the wave-fronts.

Harmonic or monochromatic plane waves have the form

u (x, t) = A exp {i (k · x−ωt)} .
Here k is the wave number vector and ω is the angular frequency. The vector
k is orthogonal to the wave front and |k| /2π gives the number of waves per
unit length. The scalar ω/2π still gives the number of complete oscillations in
one second (Hertz) at a fixed space position.
Spherical waves are of the form

u (x,t) = v (r, t)

where r = |x− x0| and x0 ∈ R
n is a fixed point. In particular u (x,t) =

eiωtv (r) represents a stationary spherical wave, while u (x,t) = v (r − ct) is a
progressive wave whose wavefronts are the spheres r− ct = constant, moving
with speed |c| (outgoing if c > 0, incoming if c < 0).

6.1.2 Group velocity and dispersion relation.

Many oscillatory phenomena can be modelled by linear equations whose solu-
tions are superpositions of harmonic waves with angular frequency depending
on the wave number:

ω = ω (k) . (6.3)
A typical example is the wave system produced by dropping a stone in a pond.

If ω is linear, e.g. ω (k) = ck, c > 0, the crests move with speed c, inde-
pendent of the wave number. However, if ω (k) is not proportional to k, the
crests move with speed cp = ω (k) /k, that depends on the wave number. In
other words, the crests move at different speeds for different wavelengths. As
a consequence, the various components in a wave packet given by the super-
position of harmonic waves of different wavelengths will eventually separate
or disperse. For this reason, (6.3) is called dispersion relation.

In the theory of dispersive waves, the group velocity, given by

cg = ω′ (k)

is a central notion, mainly for the following three reasons.

1. It is the speed at which an isolated wave packet moves as a whole.
2. An observer that travels at the group velocity sees constantly waves of the

same wavelength 2π/k, after the transitory effects due to a localized initial
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perturbation (e.g. a stone thrown into a pond). In other words, cg is the
propagation speed of the wave numbers.

3. Energy is transported at the group velocity by waves of wavelength 2π/k.

Let us comment on the first point. A wave packet may be obtained by the
superposition of dispersive harmonic waves, for instance through a Fourier
integral of the form

u (x, t) =
∫ +∞

−∞
a (k) ei[kx−ω(k)t]dk (6.4)

where the real part only has a physical meaning. Consider a localized wave
packet, with wave number k ≈ k0, almost constant, and with amplitude slowly
varying with x. Then, the packet contains a large number of crests and the
amplitudes |a (k)| of the various Fourier components are negligible except that
in a small neighborhood of k0, (k0 − δ, k0 + δ), say.

Fig. 6.2 shows the initial profile of a Gaussian packet,

Reu (x, 0) =
3√
2

exp
{
−x

2

32

}
cos 14x,

slowly varying with x, with k0 = 14, and its Fourier transform:

a (k) = 6 exp{−8 (k − 14)2}.
As we can see, the amplitudes |a (k)| of the various Fourier components are
negligible except when k is near k0.

Then we may write

ω (k) ≈ ω (k0) + ω′ (k0) (k − k0) = ω (k0) + cg (k − k0)

and

u (x, t) ≈ ei{k0x−ω(k0)t}
∫ k0+δ

k0−δ
a (k) ei(k−k0)(x−cgt)dk. (6.5)

Thus, u turns out to be well approximated by the product of two waves. The
first one is a pure harmonic wave with relatively short wavelength 2π/k0 and

Fig. 6.2. Wave packet and its Fourier transform
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phase speed ω (k0) /k0. The second one depends on x, t through the combi-
nation x − cgt, and is a superposition of waves of very small wavenumbers
k − k0, which correspond to very large wavelengths. We may interpret the
second factor as a sort of envelope of the short waves of the packet, that is
the packet as a whole, which therefore moves with the group speed.

In a wave packet like (6.5), the energy is proportional to1

∫ k0+δ

k0−δ
|a (k)|2 dk � 2δ |a (k0)|2

so that it moves at the same speed of k0, that is cg.

6.2 Transversal Waves in a String

6.2.1 The model

We derive a classical model for the small transversal vibration of a tightly
stretched horizontal string (e.g. a string of a guitar). We assume the following
hypotheses:

1. Vibrations of the string have small amplitude. This entails that the changes
in the slope of the string from the horizontal equilibrium position are very
small.

2. Each point of the string undergoes vertical displacements only. Horizontal
displacements can be neglected, according to 1.

3. The vertical displacement of a point depends on time and on its position on
the string. If we denote by u the vertical displacement of a point located
at x when the string is at rest, then we have u = u (x, t) and, according to
1, |ux (x, t)| � 1.

4. The string is perfectly flexible. This means that it offers no resistance to
bending. In particular, the stress at any point on the string can be modelled
by a tangential2 force T of magnitude τ , called tension. Fig. 6.3 shows how
the forces due to the tension act at the end points of a small segment of
the string.

5. Friction is negligible.

Under the above assumptions, the equation of motion of the string can be
derived from conservation of mass and Newton law.

Let ρ0 = ρ0 (x) be the linear density of the string at rest and ρ = ρ (x, t)
be its density at time t. Consider an arbitrary part of the string between x
and x + Δx and denote by Δs the corresponding length element at time t.
Then, conservation of mass yields

ρ0 (x)Δx = ρ (x, t)Δs. (6.6)
1 See Segel [25].
2 Consequence of absence of distributed moments along the string.
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Fig. 6.3. Tension at the end points of a small segment of a string

To write Newton law of motion we have to determine the forces acting on our
small piece of string. Since the motion is vertical, the horizontal forces have to
balance. On the other hand they come from the tension only, so that if τ (x, t)
denotes the magnitude of the tension at x at time t, we can write (Fig. 6.3):

τ (x+Δx, t) cosα (x+Δx, t)− τ (x, t) cosα (x, t) = 0.

Dividing by Δx and letting Δx→ 0, we obtain

∂

∂x
[τ (x, t) cosα (x, t)] = 0

from which
τ (x, t) cosα (x, t) = τ0 (t) (6.7)

where τ0 (t) is positive3.
The vertical forces are given by the vertical component of the tension and

by body forces such as gravity and external loads.
Using (6.7), the scalar vertical component of the tension at x, at time t,

is given by:

τvert (x, t) = τ (x, t) sinα (x, t) = τ0 (t) tanα(x, t) = τ0 (t)ux (x, t) .

Therefore, the (scalar) vertical component of the force acting on our small
piece of string, due to the tension, is

τvert (x+Δx, t)− τvert (x, t) = τ0 (t) [ux (x+Δx, t)− ux (x, t)].

Denote by f (x, t) the magnitude of the (vertical) body forces per unit mass.
Then, using (6.6), the the magnitude of the body forces acting on the string
segment is given by:

ρ (x, t) f (x, t)Δs = ρ0 (x) f (x, t)Δx.
3 It is the magnitude of a force.
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Thus, using (6.6) again and observing that utt is the (scalar) vertical acceler-
ation, Newton law gives:

ρ0 (x)Δx utt = τ0 (t) [ux (x+Δx)− ux (x)] + ρ0 (x) f (x, t)Δx.

Dividing by Δx and letting Δx→ 0, we obtain the equation

utt − c2 (x, t)uxx = f (x, t) (6.8)

where c2 (x, t) = τ0 (t) /ρ0 (x).
If the string is homogeneous then ρ0 is constant. If moreover it is perfectly

elastic4 then τ0 is constant as well, since the horizontal tension is nearly the
same as for the string at rest, in the horizontal position. We shall come back
to equation (6.8) shortly.

6.2.2 Energy

Suppose that a perfectly flexible and elastic string has length L at rest, in
the horizontal position. We may identify its initial position with the segment
[0, L] on the x axis. Since ut(x, t) is the vertical velocity of the point at x, the
expression

Ecin (t) =
1
2

∫ L

0

ρ0u
2
t dx (6.9)

represents the total kinetic energy during the vibrations. The string
stores potential energy too, due to the work of elastic forces. These forces
stretch an element of string of length Δx at rest by5

Δs−Δx =
∫ x+Δx

x

√
1 + u2

x dx−Δx =
∫ x+Δx

x

(√
1 + u2

x − 1
)
dx ≈ 1

2
u2
xΔx

since |ux| � 1. Thus, the work done by the elastic forces on that string element
is

dW =
1
2
τ0u

2
xΔx.

Summing all the contributions, the total potential energy is given by:

Epot (t) =
1
2

∫ L

0

τ0u
2
x dx. (6.10)

From (6.9) and (6.10) we find, for the total energy:

E (t) =
1
2

∫ L

0

[ρ0u
2
t + τ0u

2
x] dx. (6.11)

4 For instance, guitar and violin strings are nearly homogeneous, perfectly flexible
and elastic.

5 Recall that, at first order, if ε� 1,
√

1 + ε− 1 	 ε/2.



196 6 Waves and vibrations

Let us compute the variation of E. Taking the time derivative under the
integral, we find (remember that ρ0 = ρ0 (x) and τ0 is constant),

Ė (t) =
∫ L

0

[ρ0ututt + τ0uxuxt] dx.

By an integration by parts we get
∫ L

0

τ0uxuxt dx = τ0[ux (L, t)ut (L, t)− ux (0, t)ut (0, t)]− τ0

∫ L

0

utuxxdx

whence

Ė (t) =
∫ L

0

[ρ0utt − τ0uxx]utdx+ τ0[ux (L, t)ut (L, t)− ux (0, t)ut (0, t)].

Using (6.8), we find:

Ė (t) =
∫ L

0

ρ0fut dx+ τ0[ux (L, t)ut (L, t)− ux (0, t)ut (0, t)]. (6.12)

In particular, if f = 0 and u is constant at the end points 0 and L (therefore
ut (L, t) = ut (0, t) = 0) we deduce Ė (t) = 0. This implies

E (t) = E (0)

which expresses the conservation of energy.

6.3 The One-dimensional Wave Equation

6.3.1 Initial and boundary conditions

Equation (6.8) is called the one-dimensional wave equation. The coefficient c
has the dimensions of a speed and in fact, we will shortly see that it represents
the wave propagation speed along the string. When f ≡ 0, the equation is ho-
mogeneous and the superposition principle holds: if u1 and u2 are solutions of

utt − c2uxx = 0 (6.13)

and a, b are (real or complex) scalars, then au1 + bu2 is a solution as well.
More generally, if uk (x,t) is a family of solutions depending on the parameter
k (integer or real) and g = g (k) is a function rapidly vanishing at infinity,
then ∞∑

k=1

uk (x,t) g (k) and
∫ +∞

−∞
uk (x,t) g (k) dk

are still solutions of (6.13).
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Suppose we are considering the space-time region 0 < x < L, 0 < t < T . In
a well posed problem for the (one-dimensional) heat equation it is appropriate
to assign the initial profile of the temperature, because of the presence of a
first order time derivative, and a boundary condition at both ends x = 0 and
x = L, because of the second order spatial derivative.

By analogy with the Cauchy problem for second order ordinary differential
equations, the second order time derivative in (6.8) suggests that not only the
initial profile of the string but the initial velocity has to be assigned as well.

Thus, our initial (or Cauchy) data are

u (x, 0) = g (x) , ut (x, 0) = h (x) , x ∈ [0, L] .

The boundary data are formally similar to those for the heat equation.
Typically, we have the following.

• Dirichlet data describe the displacement of the end points of the string:

u (0, t) = a (t) , u (L, t) = b (t) , t > 0.

If a (t) = b (t) ≡ 0 (homogeneous data), both ends are fixed, with zero dis-
placement.

• Neumann data describe the applied (scalar) vertical tension at the end
points. As in the derivation of the wave equation, we may model this ten-
sion by τ0ux so that the Neumann conditions take the form

τ0ux (0, t) = a (t) , τ0ux (L, t) = b (t) , t > 0.

In the special case of homogeneous data, a (t) = b (t) ≡ 0, both ends of the
string are attached to a frictionless sleeve and are free to move vertically.

• Robin data describe a linear elastic attachment at the end points. One way
to realize this type of boundary condition is to attach an end point to a linear
spring6 whose other end is fixed. This translates into assigning

τ0ux (0, t) = ku (0, t) , τ0ux (L, t) = −ku (L, t) , t > 0,

where k (positive) is the elastic constant of the spring.
In several concrete situations, mixed conditions have to be assigned. For

instance, Robin data at x = 0 and Dirichlet data at x = L.

• Global Cauchy problem. We may think of a string of infinite length and
assign only the initial data

u (x, 0) = g (x) , ut (x, 0) = h (x) , x ∈ R.
Although physically unrealistic, it turns out that the solution of the global
Cauchy problem is of fundamental importance. We shall solve it in Section
6.4.
6 Which obeys Hooke’s law: the strain is a linear function of the stress.
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A simple argument based of the energy formulas (6.12) and (6.11) shows
that the above problems are well posed. Indeed, let u and v be solutions of
(6.13). Then w = u−v is a solution of the same problem with zero initial and
boundary data. We want to show that w ≡ 0. Applying formula (6.12) to w,
we find

Ė (t) = τ [wx (L, t)wt (L, t)− wx (0, t)wt (0, t)]

for all t > 0.
In the case of Dirichlet or Neumann lateral data, at both end points we

have wt = 0 or wx = 0, respectively. Therefore Ė (t) = 0 and E is constant.
Since E (0) = 0 we infer

E (t) = Ecin (t) + Epot (t) ≡ 0.

On the other hand, Ecin (t) ≥ 0, Epot (t) ≥ 0, so that we deduce

Ecin (t) = 0, Epot (t) = 0

which force wt = wx = 0. Thus w is constant and since w (x, 0) = 0, we
conclude that w (x, t) = 0 for every t ≥ 0.

To find the solution one can often use the method of separation of variables
as it is shown at the end of the chapter.

6.4 The d’Alembert Formula

6.4.1 The homogeneous equation

In this section we establish the celebrated formula of d’Alembert for the so-
lution of the following global Cauchy problem:

{
utt − c2uxx = 0 x ∈ R, t > 0
u (x, 0) = g (x) , ut (x, 0) = h (x) x ∈ R. (6.14)

To find the solution, we first factorize the wave equation in the following way:

(∂t − c∂x) (∂t + c∂x)u = 0. (6.15)

Now, let
v = ut + cux. (6.16)

Then v solves the linear transport equation

vt − cvx = 0

whence
v (x, t) = ψ (x+ ct)
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where ψ is a differentiable arbitrary function. From (6.16) we have

ut + cux = ψ (x+ ct)

and formula (2.16) in sction 2.2.1 yields

u (x, t) =
∫ t

0

ψ (x− c (t− s) + cs) ds+ ϕ (x− ct) ,

where ϕ is another arbitrary differentiable function.
Letting x− ct+ 2cs = y, we find

u (x, t) =
1
2c

∫ x+ct

x−ct
ψ (y) dy + ϕ (x− ct) . (6.17)

To determine ψ and ϕ we impose the initial conditions:

u (x, 0) = ϕ (x) = g (x) (6.18)

and
ut (x, 0) = ψ (x)− cϕ′ (x) = h (x)

whence
ψ (x) = h (x) + cg′ (x) . (6.19)

Inserting (6.19) and (6.18) into (6.17) we get:

u (x, t) =
1
2c

∫ x+ct

x−ct
[h (y) + cg′ (y)] dy + g (x− ct)

=
1
2c

∫ x+ct

x−ct
h (y) dy +

1
2

[g (x+ ct)− g (x− ct)] + g (x− ct)

and finally the d’Alembert formula

u (x, t) =
1
2

[g(x+ ct) + g (x− ct)] +
1
2c

∫ x+ct

x−ct
h (y) dy. (6.20)

If g ∈ C2(R) and h ∈ C1 (R), formula (6.20) defines a C2−solution in the
half-plane R×[0,+∞). On the other hand, a C2−solution u in R×[0,+∞)
has to be given by (6.20), just because of the procedure we have used to solve
the Cauchy problem. Thus the solution is unique. Observe however, that no
regularizing effect takes place here: the solution u remains no more than C2

for any t > 0. Thus, there is a striking difference with diffusion phenomena,
governed by the heat equation.

Furthermore, let u1 and u2 be the solutions corresponding to the data g1,
h1 and g2, h2, respectively. Then, the d’Alembert formula for u1 − u2 yields,
for every x ∈ R and t ∈ [0, T ],

|u1 (x, t)− u2 (x, t)| ≤ ‖g1 − g2‖∞ + T ‖h1 − h2‖∞
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Fig. 6.4. Characteristic rectangle

where

‖g1 − g2‖∞ = sup
x∈R

|g1 (x)− g2 (x)| , ‖h1 − h2‖∞ = sup
x∈R

|h1 (x)− h2 (x)| .

Therefore, we have stability in pointwise uniform sense, at least for finite time.
Rearranging the terms in (6.20), we may write u in the form7

u (x, t) = F (x+ ct) +G (x− ct) (6.21)

which gives u as a superposition of two progressive waves moving at constant
speed c in the negative and positive x − direction, respectively. Thus, these
waves are not dispersive.

The two terms in (6.21) are respectively constant along the two families
of straight lines γ+ and γ− given by

x+ ct = constant, x− ct = constant.

These lines are called characteristics8 and carry important information, as we
will see in Section 6.5.

An interesting consequence of (6.21) comes from looking at Fig. 6.4. Con-
sider the characteristic parallelogram with vertices at the point A,B,C,D.
From (6.21) we have

F (A) = F (C) , G (A) = G (B)
F (D) = F (B) , G (D) = G (C) .

7 For instance:

F (x+ ct) =
1

2
g (x+ ct) +

1

2c

∫ x+ct

0

h (y) dy

and

G (x− ct) =
1

2
g (x− ct) +

1

2c

∫ 0

x−ct

h (y) dy.

8 In fact they are the characteristics for the two first order factors in the factoriza-
tion (6.15).
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Domain of dependence of (x,t)

x ct− x ct+

( , )x t

,x tS

Range of influence of z

x ct z− =

z

x ct z+ =

x

Domain of dependence of (x,t)

x ct− x ct+

( , )x t

,x tS

Range of influence of z

x ct z− =

z

x ct z+ =

x

Fig. 6.5. Domain of dependence and range of influence

Summing these relations we get

[F (A) +G (A)] + [F (D) +G (D)] = [F (C) +G (C)] + [F (B) +G (B)]

which is equivalent to

u (A) + u (D) = u (C) + u (B) . (6.22)

Thus, knowing u at three points of a characteristic parallelogram, we can
compute u at the fourth one.

From d’Alembert formula it follows that the value of u at the point (x, t)
depends on the values of g at the points x− ct e x+ ct and on the values of
h over the whole interval [x − ct, x + ct]. This interval is called domain of
dependence of (x, t) (Fig. 6.5).

From a different perspective, the values of g and h at a point z affect the
value of u at the points (x, t) in the sector

z − ct ≤ x ≤ z + ct,

which is called range of influence of z (Fig. 6.5). This entails that a distur-
bance initially localized at z is not felt at a point x until time

t =
|x− z|
c

.

Remark 6.1. Physically realistic data include g continuous and h bounded
only. On the other hand, observe that d’Alembert formula makes perfect sense
even in these cases The question is in which sense the resulting function
satisfies the wave equation, since, in principle, it is not even differentiable,
only continuous. There are several ways to weaken the notion of solution to
include this case; one of these is described in Chapter 8.

Fig. 6.6 shows the wave propagation along a chord of infinite length,
plucked at the origin and originally at rest, modeled by the solution of the
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Fig. 6.6. Chord plucked at the origin (c = 1)

problem {
utt − uxx = 0 x ∈ R, t > 0
u (x, 0) = g (x) , ut (x, 0) = 0 x ∈ R

where g has a triangular profile. As we see, this generalized solution displays
lines of discontinuities of the first derivatives, while outside these lines it is
smooth. It can be shown that these lines are precisely the characteristics.

6.4.2 The nonhomogeneous equation. Duhamel’s method

To solve the nonhomogeneous problem
{
utt − c2uxx = f (x, t) x ∈ R, t > 0
u (x, 0) = 0, ut (x, 0) = 0 x ∈ R (6.23)

we use the Duhamel’s method (see Section 3.4.3). For s ≥ 0 fixed, let w =
w (x, t; s) be the solution of problem

{
wtt − c2wxx = 0 x ∈ R, t ≥ s

w (x, s; s) = 0, wt (x, s; s) = f (x, s) x ∈ R. (6.24)

Since the wave equation is invariant under (time) translations, from (6.20) we
get

w (x, t; s) =
1
2c

∫ x+c(t−s)

x−c(t−s)
f (y, s) dy.

Then, the solution of (6.23) is given by

u (x, t) =
∫ t

0

w (x, t; s) ds =
1
2c

∫ t

0

ds

∫ x+c(t−s)

x−c(t−s)
f (y, s) dy.

In fact, u (x, 0) = 0 and

ut (x, t) = w (x, t; t) +
∫ t

0

wt (x, t; s) ds =
∫ t

0

wt (x, t; s) ds
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since w (x, t; t) = 0. Thus ut (x, 0) = 0. Moreover,

utt (x, t) = wt (x, t; t) +
∫ t

0

wtt (x, t; s) ds = f (x, t) +
∫ t

0

wtt (x, t; s) ds

and

uxx (x, t) =
∫ t

0

wxx (x, t; s) ds.

Therefore, since wtt − c2wxx = 0,

utt (x, t)− c2uxx (x, t) = f (x, t) +
∫ t

0

wtt (x, t; s) ds− c2
∫ t

0

wxx (x, t; s) ds

= f (x, t) .

Everything works and gives the unique solution in C2(R× [0,+∞)), un-
der rather natural hypotheses on f : we require f and fx be continuous in
R× [0,+∞).

Finally note that the value of u at the point (x, t) depends on the values
of the forcing term f in all the triangular sector Sx,t in Fig. 6.5.

6.4.3 Dissipation and dispersion

Dissipation and dispersion effects are quite important in wave propagation
phenomena. Let us go back to our model for the vibrating string, assuming
that its weight is negligible and that there are no external loads.

• External damping. External factors of dissipation like friction due to the
medium may be included into the model through some empirical constitutive
law. We may assume, for instance, a linear law of friction expressing a force
proportional to the speed of vibration. Then, a force given by −kρ0utΔxj,
where k > 0 is a damping constant, acts on the segment of string between x
and x+Δx. The final equation takes the form

ρ0utt − τ0uxx + kρ0ut = 0. (6.25)

For a string with fixed end points, the same calculations in Section 6.2.2 yield

Ė (t) = −
∫ L

0

kρ0u
2
t dx = −kEcin (t) ≤ 0 (6.26)

which shows a rate of energy dissipation proportional to the kinetic energy.
For equation (6.25), the usual initial-boundary value problems are still well

posed under reasonable assumptions on the data. In particular, the uniqueness
of the solution follows from (6.26), since E (0) = 0 implies E (t) = 0 for all
t > 0.

• Internal damping. The derivation of the wave equation in Section 6.2.1 leads
to

ρ0utt = (τvert)x
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where τvert is the (scalar) vertical component of the tension. The hypothesis
of vibrations of small amplitude corresponds to taking

τvert � τ0ux, (6.27)

where τ0 is the (scalar) horizontal component of the tension. In other words,
we assume that the vertical forces due to the tension at two end points of a
string element are proportional to the relative displacement of these points.
On the other hand, the string vibrations convert kinetic energy into heat,
because of the friction among the particles. The amount of heat increases with
the speed of vibration while, at the same time, the vertical tension decreases.
Thus, the vertical tension depends not only on the relative displacements ux,
but also on how fast these displacements change with time9. Hence, we modify
(6.27) by inserting a term proportional to uxt

τvert = τux + γuxt (6.28)

where γ is a positive constant. The positivity of γ follows from the fact that
energy dissipation lowers the vertical tension, so that the slope ux decreases
if ux > 0 and increases if ux < 0. Using the law (6.28) we derive the third
order equation

ρ0utt − τuxx − γuxxt = 0. (6.29)

In spite of the presence of the term uxxt, the usual initial-boundary value
problems are again well posed under reasonable assumptions on the data. In
particular, uniqueness of the solution follows once again from dissipation of
energy, since, in this case10,

Ė (t) = −
∫ L

0

γρ0u
2
xt ≤ 0.

• Dispersion. When the string is under the action of a vertical elastic restoring
force proportional to u, the equation of motion becomes

utt − c2uxx + λu = 0 (λ > 0) (6.30)

known as the linearized Klein-Gordon equation. To emphasize the effect of
the zero order term λu, let us seek for harmonic waves solutions of the form

u (x, t) = Aei(kx−ωt).

Inserting u into (6.30) we find the dispersion relation

ω2 − c2k2 = λ =⇒ ω (k) = ±
√
c2k2 + λ.

9 In the movie The Legend of 1900 there is a spectacular demo of this phenomenon.
10 Check it.
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Thus, this waves are dispersive with phase and group velocities given respec-
tively by

cp (k) =
√
c2k2 + λ

|k| , cg =
dω

dk
=

c2 |k|√
c2k2 + λ

.

Observe that cg < cp.
A wave packet solution can be obtained by an integration over all possible

wave numbers k:

u (x, t) =
∫ +∞

−∞
A (k) ei[kx−ω(k)t]dk (6.31)

where A (k) is the Fourier transform of the initial condition:

A (k) =
∫ +∞

−∞
u (x, 0) e−ikxdx.

This entails that, even if the initial condition is localized inside a small interval,
all the wavelength contribute to the value of u. These dispersive waves do not
dissipate energy. For example, if the ends of the string are fixed, the total
mechanical energy is given by

E (t) =
ρ0

2

∫ L

0

(
u2
t + c2u2

x + λu2
)
dx

and one may check that Ė (t) = 0, t > 0.

6.5 Second Order Linear Equations

6.5.1 Classification

To derive formula (6.21) we may use the characteristics in the following way.
We change variables setting

ξ = x+ ct, η = x− ct (6.32)

or

x =
ξ + η

2
, t =

ξ − η
2c

and define

U (ξ, η) = u

(
ξ + η

2
,
ξ − η
2c

)
.

Then

Uξ =
1
2
ux +

1
2c
ut
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and since utt = c2uxx

Uξη =
1
4
uxx − 1

4c
uxt +

1
4c
uxt − 1

4c2
utt = 0.

The equation
Uξη = 0 (6.33)

is called the canonical form of the wave equation; its solution is immediate

U (ξ, η) = F (ξ) +G (η)

and going back to the original variables (6.21) follows.
Consider now a general equation of the form

autt + 2buxt + cuxx + dut + eux + hu = f (6.34)

with x, t varying, in general, in a domain Ω. We assume that the coefficients
a, b, c, d, e, h, f are smooth functions11 in Ω. The sum of second order terms

a (x, t)utt + 2b (x, t)uxt + c (x, t)uxx (6.35)

is called principal part of equation (6.34) and determines the type of equa-
tion according to the following classification. Consider the algebraic equation

H (p, q) = ap2 + 2bpq + cq2 = 1 (a > 0) (6.36)

in the plane p, q. If b2 − ac < 0, (6.36) defines a hyperbola, if b2 − ac = 0 a
parabola and if b2 − ac < 0 an ellipse. Accordingly, equation (6.34) is called

a) hyperbolic when b2 − ac < 0;
b) parabolic when b2 − ac = 0;
c) elliptic when b2 − ac > 0.

Note that the quadratic form H (p, q) is, in the three cases, indefinite, non-
negative, positive, respectively. In this form, the above classification extends
to equations in any number of variables, as we shall see later on.

It may happen that a single equation is of different type in different sub-
domains. For instance, the Tricomi equation xutt − uxx = 0 is hyperbolic in
the half plane x > 0, parabolic on x = 0 and elliptic in the half plane x < 0.

Basically all the equations in two variables we have met so far are partic-
ular cases of (6.34). Specifically,
• the wave equation

utt − c2uxx = 0

is hyperbolic: a (x, t) = 1, c (x, t) = −c2, and the other coefficients are
zero;

11 E.g. C2 functions.
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• the diffusion equation
ut −Duxx = 0

is parabolic: c (x, t) = −D, d (x, t) = 1, and the other coefficients are zero;

• Laplace equation (using y instead of t)

uxx + uyy = 0

is elliptic: a (x, y) = 1, c (x, y) = 1, and the other coefficients are zero.

May we reduce to a canonical form, similar to (6.33), the diffusion and the
Laplace equation? Let us briefly examine why the change of variables (6.32)
works for the wave equation. Decompose the wave operator as follows

∂tt − c2∂xx = (∂t + c∂x) (∂t − c∂x). (6.37)

If we introduce the vectors v = (c, 1) and w = (−c, 1), then (6.37) can be
written in the form

∂tt − c2∂xx = ∂v∂w.

On the other hand, the characteristics

x+ ct = 0, x− ct = 0

of the two first order equations

φt − cφx = 0 and ψt + cψt = 0,

corresponding to the two factors in (6.37), are straight lines in the direction
of w and v, respectively. The change of variables

ξ = φ (x, t) = x+ ct η = ψ (x, t) = x− ct
maps these straight lines into ξ = 0 and η = 0 and

∂ξ =
1
2c

(∂t + c∂x) =
1
2c
∂v, ∂η =

1
2c

(∂t − c∂x) =
1
2c
∂w.

Thus, the wave operator is converted into a multiple of its canonical form

∂tt − c2∂xx = ∂v∂w = 4c2∂ξη.

Once the characteristics are known, the change of variables (6.32) reduces the
wave equation to the form (6.33).

Proceeding in the same way, for the diffusion operator we would have

∂xx = ∂x∂x.

Therefore we find only one family of characteristics, given by

t = constant.
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Thus, no change of variables is necessary and the diffusion equation is already
in its canonical form.

For the Laplace operator we find

∂xx + ∂yy = (∂y + i∂x) (∂y − i∂x)

and there are two families of complex characteristics given by

φ (x, y) = x+ iy = constant, ψ (x, y) = x− iy = constant.

The change of variables

z = x+ iy, z = x− iy

leads to the equation
∂zzU = 0

whose general solution is

U (z, z) = F (z) +G (z) .

This formula may be considered as a characterization of the harmonic function
in the complex plane.

It should be clear, however, that the characteristics for the diffusion and
the Laplace equations do not play the same relevant role as they do for the
wave equation.

6.5.2 Characteristics and canonical form

Let us go back to the equation in general form (6.34). Can we reduce to a
canonical form its principal part? There are at least two substantial reasons
to answer the question.

The first one is tied to the type of well posed problems associated with
(6.34): which kind of data have to be assigned and where, in order to find
a unique and stable solution? It turns out that hyperbolic, parabolic and
elliptic equations share their well posed problems with their main prototypes:
the wave, diffusion and Laplace equations, respectively. Also the choice of
numerical methods depends very much on the type of problem to be solved.

The second reason comes from the different features the three types of
equation exhibit. Hyperbolic equations model oscillatory phenomena with fi-
nite speed of propagation of the disturbances, while for parabolic equation,
“information” travels with infinite speed. Finally, elliptic equations model
stationary situations, with no evolution in time.

To obtain the canonical form of the principal part we try to apply the ideas
at the end of the previous subsection. First of all, note that, if a = c = 0, the
principal part is already in the form (6.33), so that we assume a > 0 (say).
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Now we decompose the differential operator in (6.35) into the product of two
first order factors, as follows12

a∂tt + 2b∂xt + c∂xx = a
(
∂t − Λ+∂x

) (
∂t − Λ−∂x

)
(6.38)

where

Λ± =
−b±√b2 − ac

a
.

Case 1. b2 − ac > 0, the equation is hyperbolic. The two factors in (6.38)
represent derivatives along the direction fields

v (x, t) =
(−Λ+ (x, t) , 1

)
and w (x, t) =

(−Λ− (x, t) , 1
)

respectively, so that we may write

a∂tt + 2b∂xt + c∂xx = a∂v∂w.

The vector fields v and w are tangent at any point to the characteristics

φ (x, t) = k1 and ψ (x, t) = k2 (6.39)

of the following quasilinear first-order equations

φt − Λ+φx = 0 and ψt − Λ−ψx = 0. (6.40)

Note that we may write the two equations (6.40) in the compact form

av2
t + 2bvxvt + cv2

x = 0. (6.41)

By analogy with the case of the wave equation, we expect that the change of
variables

ξ = φ (x, t) , η = ψ (x, t) (6.42)

should straighten the characteristics, at least locally, converting ∂v∂w into a
multiple of ∂ξη.

First of all, however, we have to make sure that the transformation (6.42)
is non-degenerate, at least locally, or, in other words, that the Jacobian of the
transformation does not vanish

φtψx − φxψt �= 0. (6.43)

On the other hand, this follows from the fact that the vectors ∇φ and ∇ψ
are orthogonal to v and w, respectively, and that v, w are nowhere colinear
(since b2 − ac > 0).
12 Remember that

ax2 + 2bxy + cy2 = a (x− x1) (x− x2)

where
x1,2 =

[
−b±

√
b2 − ac

]
/a.



210 6 Waves and vibrations

Thus, at least locally, the inverse transformation

x = Φ (ξ, η) , t = Ψ (ξ, η)

exists. Let
U (ξ, η) = u (Φ (ξ, η) , Ψ (ξ, η)) .

Then
ux = Uξφx + Uηψx, ut = Uξφt + Uηψt

and moreover

utt = φ2
tUξξ + 2φtψtUξη + ψ2

tUηη + φttUξ + ψttUη

uxx = φ2
xUξξ + 2φxψxUξη + ψ2

xUηη + φxxUξ + ψxxUη

uxt = φtφxUξξ + (φxψt + φtψx)Uξη + ψtψxUηη + φxtUξ + ψxtUη.

Then

autt + 2buxy + cuxx = AUξξ + 2BUξη + CUηη +DUξ + EUη

where13

A = aφ2
t + 2bφtφx + cφ2

x, C = aψ2
t + 2bψtψx + cψ2

x

B = aφtψt + b(φxψt + φtψx) + cφxψx

D = aφtt + 2bφxt + cφxx, E = aψtt + 2bψxt + cψxx.

Now, A = C = 0, since φ and ψ both satisfy (6.41), so that

autt + 2buxt + cuxx = 2BUξη +DUξ + EUη.

We claim that B �= 0; indeed, recalling that Λ+Λ− = c/a, Λ+ + Λ+ = −2b/a
and

φt = Λ+φx, ψt = Λ−ψx,

after elementary computations we find

B =
2
a

(
ac− b2)φxψx.

From (6.43) we deduce that B �= 0. Thus, (6.34) assumes the form

Uξη = F (ξ, η, U, Uξ, Uη)

which is its canonical form.

13 It is understood that all the functions are evaluated at x = Φ (ξ, η) and t =
Ψ (ξ, η) .
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The curves (6.39) are called characteristics for (6.34) and are the solution
curves of the ordinary differential equations

dx

dt
= −Λ+,

dx

dt
= −Λ−, (6.44)

respectively. Note that the two equations (6.44) can be put into the compact
form

a

(
dx

dt

)2

− 2b
dx

dt
+ c = 0. (6.45)

Example 6.1. Consider the equation

xutt −
(
1 + x2

)
uxt = 0. (6.46)

Since b2 − ac =
(
1 + x2

)
/4 > 0, (6.46) is hyperbolic. Equation (6.45) is

x

(
dx

dt

)2

+
(
1 + x2

) dx
dt

= 0

which yields, for x �= 0,

dx

dt
= −1 + x2

x
and

dx

dt
= 0 .

Thus, the characteristics curves are:

φ (x, t) = e2t
(
1 + x2

)
= k1 and ψ (x, t) = x = k2.

We set
ξ = e2t

(
1 + x2

)
and η = x.

After routine calculations, we find D = E = 0 so that the canonical form is

Uξη = 0.

The general solution of (6.46) is therefore

u (x, t) = F
(
e2t
(
1 + x2

))
+G (x)

with F and G arbitrary C2 functions.

Case 2. b2−ac ≡ 0, the equation is parabolic. There exists only one family
of characteristics, given by φ (x, t) = k, where φ is a solution of the first order
equation

aφt + bφx = 0,

since Λ+ = Λ− = −b/a. If φ is known, choose any smooth function ψ such
that ∇φ and ∇ψ are linearly independent and

aψ2
t + 2bψtψx + cψ2

x = C �= 0.
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Set
ξ = φ (x, t) , η = ψ (x, t)

and
U (ξ, η) = u (Φ (ξ, η) , Ψ (ξ, η)) .

For the derivatives of U we can use the computations done in case 1. However,
observe that, since b2 − ac = 0 and aφt + bφx = 0, we have

B = aφtψt + b(φtψx + φxψt) + cφxψx = ψt(aφt + bφx) + ψx(bφt + cφx)

= bψx

(
φt +

c

b
φx

)
= bψx

(
φt +

b

a
φx

)
=
b

a
ψx(aφt + bφx) = 0.

Thus, the equation for U becomes

CUηη = F (ξ, η, U, Uξ, Uη)

which is the canonical form.

Example 6.2. The equation

utt − 6uxt + 9uxx = u

is parabolic. The family of characteristics is

φ (x, t) = 3t+ x = k.

Choose ψ (x, t) = x and set

ξ = 3t+ x, η = x.

Since ∇φ = (3, 1) and ∇ψ = (1, 0), the gradients are independent and we set

U (ξ, η) = u

(
ξ − η

3
, η

)
.

We have, D = E = 0, so that the equation for U is

Uηη − U = 0

whose general solution is

U (ξ, η) = F (ξ) e−η +G (ξ) eη

with F and G arbitrary C2 functions. Finally, we find

u (x, t) = F (3t+ x) e−x +G (3t+ x) ex.
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Case 3. b2 − ac < 0, the equation is elliptic. In this case there are no
real characteristics. If the coefficients a, b, c are analytic functions14 we can
proceed as in case 1, with two families of complex characteristics. This yields
the canonical form

Uzw = G (z, w, U, Uz , Uw) z, w ∈ C.
Letting

z = ξ + iη, w = ξ − iη
and Ũ (ξ, η) = U (ξ + iη, ξ − iη) we can eliminate the complex variables ar-
riving at the real canonical form

Ũξξ + Ũηη = G̃
(
ξ, η, Ũ , Ũξ, Ũη

)
.

6.6 The Multi-dimensional Wave Equation (n > 1)

6.6.1 Special solutions

The wave equation
utt − c2Δu = f, (6.47)

constitutes a basic model for describing a remarkable number of oscillatory
phenomena in dimension n > 1. Here u = u (x,t), x ∈Rn and, as in the
one-dimensional case, c is the speed of propagation. If f ≡ 0, the equation is
said homogeneous and the superposition principle holds. Let us examine some
relevant solutions of (6.47).

• Plane waves. If k ∈Rn and ω2 = c2 |k|2, the function

u (x,t) = w (x · k−ωt)
is a solution of the homogeneous (6.47). Indeed,

utt (x,t)− c2Δu (x,t) = ω2w′′ (x · n−ωt)− c2 |k|2 w′′ (x · n−ωt) = 0.

We have already seen in Section 6.1.1 that the planes

x · k−ωt = constant

constitute the wave fronts, moving at speed cp = ω/ |k| in the k direction.
The scalar λ = 2π/ |k| is the wavelength. If w (z) = Aeiz, the wave is said
monochromatic or harmonic.

• Cylindrical waves (n = 3) are of the form

u (x,t) = w (r, t)
14 I.e. they can be locally expanded in Taylor series.
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where x = (x1, x2, x3), r =
√
x2

1 + x2
2. In particular, solutions like u (x,t) =

eiωtw (r) represent stationary cylindrical waves, that can be found solving
the homogeneous equation (6.47) using the separation of variables, in axially
symmetric domains.

If the axis of symmetry is the x3 axis, it is appropriate to use the cylindrical
coordinates x1 = r cos θ, x2 = r sin θ, x3. Then, the wave equation becomes15

utt − c2
(
urr +

1
r
ur +

1
r2
uθθ + ux3x3

)
= 0.

Looking for standing waves of the form u (r, t) = eiλctw (r), λ ≥ 0, we find,
after dividing by c2eiλct,

w′′ (r) +
1
r
w′ + λ2w = 0.

This is a Bessel equation of zero order. We know that the only solutions
bounded at r = 0 are

w (r) = aJ (λr) , a ∈ R

where, we recall,

J0 (x) =
∞∑
k=0

(−1)k

(k!)2
(x

2

)2k

is the Bessel function of first kind of zero order. In this way we obtain waves
of the form

u (r, t) = aJ0 (λr) eiλct.

• Spherical waves (n = 3) are of the form

u (x,t) = w (r, t)

where x = (x1, x2, x3), r = |x| =
√
x2

1 + x2
2 + x2

3. In particular u (x,t) =
eiωtw (r) represent standing spherical waves and can be determined by solving
the homogeneous equation (6.47) using separation of variables in spherically
symmetric domains. In this case, spherical coordinates

x1 = r cos θ sinψ, x2 = r sin θ sinψ, x3 cosψ,

are appropriate and the wave equation becomes16

1
c2
utt − urr − 2

r
ur − 1

r2

{
1

(sinψ)2
uθθ + uψψ +

cosψ
sinψ

uψ

}
= 0. (6.48)

15 Appendix D.
16 Appendix D.
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Let us look for solution of the form u (r, t) = eiλctw (r), λ ≥ 0. We find, after
simplifying out c2eiλct,

w′′ (r) +
2
r
w′ + λ2w = 0

which can be written17

(rw)′′ + λ2rw = 0.

Thus, v = rw is solution of
v′′ + λ2v = 0

which gives v (r) = a cos (λr) + b sin (λr) and hence the attenuated spherical
waves

w (r, t) = aeiλct
cos (λr)

r
, w (r, t) = beiλct

sin (λr)
r

. (6.49)

Let us now determine the general form of a spherical wave in R3. Inserting
u (x,t) = w (r, t) into (6.48) we obtain

wtt − c2
{
wrr (r) +

2
r
wr

}
= 0

which can be written in the form

(rw)tt − c2 (rw)rr = 0. (6.50)

Then, formula (6.21) gives

w (r, t) =
F (r + ct)

r
+
G (r − ct)

r
≡ wi (r, t) + wo (r, t) (6.51)

which represents the superposition of two attenuated progressive spherical
waves. The wave fronts of uo are the spheres r − ct = k, expanding as time
goes on. Hence, wo represents an outgoing wave. On the contrary, the wave
wi is incoming, since its wave fronts are the contracting spheres r + ct = k.

6.6.2 Well posed problems. Uniqueness

The well posed problems in dimension one, are still well posed in any number
of dimensions. Let

QT = Ω × (0, T )

a space-time cylinder, where Ω is a bounded C1−domain18 in Rn. A solu-
tion u (x,t) is uniquely determined by assigning initial data and appropriate
boundary conditions on the boundary ∂Ω of Ω.

17 Thanks to the miraculous presence of the factor 2 in the coefficient of w′!
18 As usual we can afford corner points (e.g. a triangle or a cone) and also some

edges (e.g. a cube or a hemisphere).
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More specifically, we may pose the following problems: Determine u =
u (x, t) such that:

⎧⎪⎪⎨
⎪⎪⎩

utt − c2Δu = f in QT

u (x, 0) = g (x) , ut (x,0) = h (x) in Ω

+ boundary conditions on ∂Ω × [0, T )

(6.52)

where the boundary conditions are:

(a) u = h (Dirichlet);
(b) ∂νu = h (Neumann);
(c) ∂νu+ αu = h (α ≥ 0, Robin);
(d) u = h1 on ∂DΩ and ∂νu = h2 on ∂NΩ (mixed problem) with ∂NΩ a

relatively open subset of ∂Ω and ∂DΩ = ∂Ω\∂NΩ.

The global Cauchy problem
{
utt − c2Δu = f x ∈Rn, t > 0
u (x, 0) = g (x) , ut (x,0) = h (x) x ∈Rn (6.53)

is quite important also in dimension n > 1. We will examine it with some de-
tails later on. Particularly relevant are the different features that the solutions
exhibit for n = 2 and n = 3.

Under rather natural hypotheses on the data, problem (6.52) has at most
one solution. To see it, we may use once again the conservation of energy,
which is proportional to

E (t) =
1
2

∫

Ω

{
u2
t + c2 |∇u|2

}
dx.

The growth rate is

Ė (t) =
∫

Ω

{
ututt + c2∇ut · ∇u

}
dx.

Integrating by parts, we have
∫

Ω

c2∇ut · ∇u dx =c2
∫

∂Ω

uνut dσ −
∫

Ω

c2utΔu dx

whence, since utt − c2Δu = f ,

Ė (t) =
∫

Ω

{
utt − c2Δu

}
ut dx+c2

∫

∂Ω

uνut dσ

=
∫

Ω

fut dx+c2
∫

∂Ω

uνut dσ.

Now it is easy to prove the following result, where we use the symbol Ch,k (D)
to denote the set of functions h times continuously differentiable with respect
to space and k times with respect to time in D.
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Theorem 6.1. Problem (6.52), coupled with one of the boundary condi-
tions (a)–(d) above, has at most one solution in C2,2 (QT ) ∩ C1,1

(
QT
)
.

Proof. Let u1 and u2 be solutions of the same problem, sharing the same data.
Their difference w = u1 − u2 is a solution of the homogeneous equation, with
zero data. We show that w (x,t) ≡ 0.

In the case of Dirichlet, Neumann and mixed conditions, since either wν =
0 or wt = 0 on ∂Ω× [0, T ), we have Ė (t) = 0. Thus, since E (0) = 0, we infer

E (t) =
1
2

∫

Ω

{
w2
t + c2 |∇w|2

}
dx =0, ∀t > 0.

Therefore, for each t > 0, both wt and |∇w (x,t)| vanish so that w (x,t) is
constant. Then w (x,t) ≡ 0, since w (x, 0) = 0.

For Robin problem

Ė (t) = −c2
∫

∂Ω

αwwt dσ = −c
2

2
d

dt

∫

∂Ω

αw2 dσ

that is
d

dt

{
E (t) +

c2

2

∫

∂Ω

αw2 dσ

}
= 0.

Hence,

E (t) +
c2

2

∫

∂Ω

αw2dσ = constant

and, being zero initially, it is zero for all t > 0. Since α ≥ 0, we again conclude
that w ≡ 0. �

6.6.3 Small vibrations of an elastic membrane.

In Section 6.2.1 we derived a model for the small transversal vibrations of a
string. Similarly, we may derive the governing equation of the small transversal
vibrations of a highly stretched membrane (think e.g. of a drum), at rest in the
horizontal position. We briefly sketch the derivation leaving it to the reader
to fill in the details. Assume the following hypotheses.

1. The vibrations of the membrane are small and vertical. This means that
the changes from the plane horizontal shape are very small and horizontal
displacements are negligible.

2. The vertical displacement of a point of the membrane depends on time and
on its position at rest. Thus, if u denotes the vertical displacement of a
point located at rest at (x, y), we have u = u (x, y, t).

3. The membrane is perfectly flexible and elastic. There is no resistance to
bending. In particular, the stress in the membrane can be modelled by
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a tangential force T of magnitude τ , called tension19. Perfect elasticity
means that τ is a constant.

4. Friction is negligible.

Under the above assumptions, the equation of motion of the membrane
can be derived from conservation of mass and Newton’s law.

Let ρ0 = ρ0 (x, y) be the surface mass density of the membrane at rest and
consider a small “rectangular” piece of membrane, with vertices at the points
A,B,C,D of coordinates (x, y), (x+Δx, y), (x, y +Δy) and (x+Δx, y +Δy),
respectively. Denote by ΔS the corresponding area at time t. Then, conser-
vation of mass yields

ρ0 (x, y)ΔxΔy = ρ (x, y, t)ΔS. (6.54)

To write Newton’s law of motion we have to determine the forces acting on our
small piece of membrane. Since the motion is vertical, the horizontal forces
have to balance.

The vertical forces are given by body forces (e.g. gravity and external
loads) and the vertical component of the tension.

Denote by f (x, y, t)k the resultant of the body forces per unit mass. Then,
using (6.54), the body forces acting on the membrane element are given by

ρ (x, y, t) f (x, y, t)ΔS k = ρ0 (x, y) f (x, y, t)ΔxΔy k.

Along the edges AB and CD, the tension is perpendicular to the x−axis
and almost parallel to the y−axis. Its (scalar) vertical components are respec-
tively given by

τvert (x, y, t) � τuy (x, y, t)Δx, τvert (x, y +Δy, t) � τuy (x, y +Δy, t)Δx.

Similarly, along the edge AC, the tension is perpendicular to the y−axis and
almost parallel to the x−axis. Its (scalar) vertical components are respectively
given by

τvert (x, y, t) � τux (x, y, t)Δy, τvert (x+Δx, y, t) � τux (x+Δx, y, t)Δy.

Thus, using (6.54) again and observing that utt is the (scalar) vertical accel-

19 The tension T has the following meaning. Consider a small region on the mem-
brane, delimited by a closed curve γ. The material on one side of γ exerts on
the material on the other side a force per unit length T (pulling) along γ. A
constitutive law for T is

T (x, y,t) =τ (x, y,t)N (x, y,t) (x, y)∈ γ
where N is the outward unit normal vector to γ, tangent to the membrane. Again,
the tangentiality of the tension force is due to the absence of distributed moments
over the membrane.
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eration, Newton’s law gives:

ρ0 (x, y)ΔxΔy utt =
= τ [uy (x, y +Δy, t)− uy (x, y, t)]Δx+ τ [ux (x+Δx, y, t)− ux (x, y, t)]Δy+
+ ρ0 (x, y) f (x, y, t)ΔxΔy.

Dividing for ΔxΔy and letting Δx,Δy → 0, we obtain the equation

utt − c2(uyy + uxx) = f (x, y, t) (6.55)

where c2 (x, y, t) = τ/ρ0 (x, y).

Example 6.3 (Square membrane). Consider a membrane occupying at
rest a square of side a, pinned at the boundary. We want to study its vibration
when the membrane is initially horizontal, with speed h = h (x, y). If there is
no external load and the weight of the membrane is negligible, the vibrations
are governed by the following initial-boundary value problem:
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

utt − c2Δu = 0 0 < x < a, 0 < y < a, t > 0

u (x, y, 0) = 0, ut (x, y, 0) = h (x, y) 0 < x < a, 0 < y < a

u (0, y, t) = u (a, y, t) = 0
u (x, 0, t) = u (x, a, t) = 0

0 ≤ y ≤ a, t ≥ 0
0 ≤ x ≤ a, t ≥ 0.

The square shape of the membrane and the homogeneous boundary conditions
suggest the use of separation of variables. Let us look for solution of the form

u (x, y, t) = v (x, y) q (t)

with v = 0 at the boundary. Substituting into the wave equation we find

q′′ (t) v (x, y)− c2q (t)Δv (x, y) = 0

and, separating the variables,

q′′ (t)
c2q (t)

=
Δv (x, y)
v (x, y)

= −λ2

whence20 the equation
q′′ (t) + c2λ2q (t) = 0 (6.56)

and the eigenvalue problem

Δv + λ2v = 0 (6.57)

v (0, y) = v (a, y) = v (x, 0) = v (x, a) = 0, 0 ≤ x, y ≤ a.

20 The two ratios must be equal to the same constant. The choice of −λ2 is by our
former experience.
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We first solve the eigenvalue problem, using once more separation of variables
and setting v (x, y) = X (x)Y (y), with the conditions

X (0) = X (a) = 0, Y (0) = Y (a) = 0.

Substituting into (6.57), we obtain

Y ′′ (y)
Y (y)

+ λ2 = −X
′′ (x)
X (x)

= μ2

where μ is a new constant.
Letting ν2 = λ2 − μ2, we have to solve the following two one-dimensional

eigenvalue problems, in 0 < x < a and 0 < y < a, respectively:
{
X ′′ (x) + μ2X (x) = 0
X (0) = X (a) = 0

{
Y ′′ (y) + ν2Y (y) = 0
Y (0) = Y (a) = 0.

The solutions are:

X (x) = Am sinμmx, μm =
mπ

a

Y (y) = Bn sin νny, νn =
nπ

a

where m,n = 1, 2, ... . Since λ2 = ν2 + μ2, we have

λ2
mn =

π2

a2

(
m2 + n2

)
, m, n = 1, 2, ... (6.58)

corresponding to the eigenfunctions

vmn (x, y) = Cmn sinμmx sin νny.

For λ = λmn, the general integral of (6.56) is

qmn (t) = amn cos cλmnt+ bm sin cλmnt.

Thus we have found infinitely many special solutions to the wave equations,
of the form,

umn = (amn cos cλmnt+ bmn sin cλmnt) sinμmx sin νny

which, moreover, vanish on the boundary.
Every umn is a standing wave and corresponds to a particular mode of

vibration of the membrane. The fundamental frequency is f11 = c
√

2/2a,
while the other frequencies are fmn = c

√
m2 + n2/2a, which are not integer

multiple of the fundamental one (as they do for the vibrating string).



6.6 The Multi-dimensional Wave Equation (n > 1) 221

Going back to our problem, to find a solution which satisfies the initial
conditions, we superpose the modes umn defining

u (x, y, t) =
∞∑

m,n=1

(amn cos cλmnt+ bmn sin cλmnt) sinμmx sin νny.

Since u (x, y, 0) = 0 we choose amn = 0 for every m,n ≥ 1. From ut (x, y, 0) =
h (x, y) we find the condition

∞∑
m,n=1

cbmnλmn sinμmx sin νnx = h (x, y) . (6.59)

Therefore, we assume that h can be expanded in a double Fourier sine series
as follows

h (x, y) =
∞∑

m,n=1

hmn sinμmx sin νny,

where the coefficients hmn are given by

hmn =
4
a2

∫

Q

h (x, y) sin
mπ

a
x sin

nπ

a
y dxdy.

Then, if we choose bmm = hmm/cλmn, (6.59) is satisfied. Thus, we have
constructed the formal solution

u (x, y, t) =
∞∑

m,n=1

hmn
cλmn

sin cλmnt sinμmx sin νny. (6.60)

If the coefficients hmm/cλmn vanish fast enough as m,n → +∞, it can be
shown that (6.60) gives the unique solution21.

6.6.4 Small amplitude sound waves

Sound waves are small disturbances in the density and pressure of a com-
pressible gas. In an isotropic gas, their propagation can be described in terms
of a single scalar quantity. Moreover, due to the small amplitudes involved,
it is possible to linearize the equations of motion, within a reasonable range
of validity. Three are the relevant equations: two of them are conservation of
mass and balance of linear momentum, the other one is a constitutive relation
between density and pressure.

Conservation of mass expresses the relation between the gas density ρ =
ρ (x,t) and its velocity v = v (x,t)

ρt + div (ρv) = 0. (6.61)
21 We leave to the reader to find appropriate smoothness hypotheses on h, in order

to assure that (6.60) is the unique solution.
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The balance of linear momentum describes how the volume of gas occupy-
ing a region V reacts to the pressure exerted by the rest of the gas. Assuming
that the viscosity of the gas is negligible, this force is given by the normal
pressure −pν on the boundary of V (ν is the exterior normal to ∂V ).

Thus, if there are no significant external forces, the linear momentum
equation is

Dv
Dt

≡ vt + (v·∇)v = −1
ρ
∇p. (6.62)

The last equation is an empirical relation between p and ρ. Since the
pressure fluctuations are very rapid, the compressions/expansions of the gas
are adiabatic, without any loss of heat.

In these conditions, if γ = cp/cv is the ratio of the specific heats of the gas
(γ ≈ 1.4 in air) then p/ργ is constant, so that we may write

p = f (ρ) = Cργ (6.63)

with C constant.
The system of equations (6.61), (6.62), (6.63) is quite complicated and it

would be extremely difficult to solve it in its general form. Here, the fact that
sound waves are only small perturbation of normal atmospheric conditions
allows a major simplification. Consider a static atmosphere, where ρ0 and p0

are constant density and pressure, with zero velocity field. We may write

ρ = (1 + s) ρ0 ≈ ρ0

where s is a small dimensionless quantity, called condensation and represent-
ing the fractional variation of the density from equilibrium. Then, from (6.63),
we have

p− p0 ≈ f ′ (ρ0) (ρ− ρ0) = sρ0f
′ (ρ0) (6.64)

and
∇p ≈ ρ0f

′ (ρ0)∇s.
Now, if v is also small, we may keep only first order terms in s and v. Thus,
we may neglect the convective acceleration (v·∇)v and approximate (6.62)
and (6.61) with the linear equations

vt= −c20∇s (6.65)

and
st + div v =0 (6.66)

where we have set c20 = f ′ (ρ0) = Cγργ−1
0 .

Let us pause for a moment to examine which implications the above lin-
earization has. Suppose that V and S are average values of |v| and s, respec-
tively. Moreover, let L and T typical order of magnitude for space and time
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in the wave propagation, such as wavelength and period. Rescale v, s, x and
t as follows

ξ =
x
L

, τ =
t

T
, U (ξ, τ ) =

v (Lξ, T τ)
V

, σ (ξ, τ) =
s (Lξ, T τ)

S
. (6.67)

Substituting (6.67) into (6.65) and (6.66) we obtain

V

T
Uτ +

c20S

L
∇σ = 0 and

S

T
στ +

V

L
divU =0.

In this equations the coefficients must be of the same order of magnitude,
therefore

V

T
≈ c20S

L
and

S

T
≈ V

L

which implies
L

T
≈ c0.

As we see, c0 is a typical propagation speed, namely it is the sound speed.
Now, the convective acceleration is negligible with respect to (say) vt, if

V 2

L
U · ∇U� V

T
Uτ

or V � c0.
Thus if the gas speed is much smaller than the sound speed, our lineariza-

tion makes sense. The ratio M = V/c0 is called Mach number.
We want to derive from (6.65) and (6.66) the following theorem in which

we assume that both s and v are smooth functions.

Theorem 6.2. a) The condensation s is a solution of the wave equation

stt − c20Δs = 0 (6.68)

where c0 =
√
f ′ (ρ0) =

√
γp0/ρ0 is the speed of sound.

b) If v (x,0) = 0, there exists an acoustic potential φ such that v =∇φ.
Moreover φ satisfies (6.68) as well.

Proof (a). Taking the divergence on both sides of (6.65) and the t−derivative
on both sides of (6.66) we get, respectively:

div vt= −c20Δs

and
stt= −(div v)t.

Since (div v)t = div vt, equation (6.68) follows.
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Proof (b). From (6.65) we have

vt= −c20∇s.
Let

φ (x,t) = −c20
∫ t

0

s (x,z) dz.

Then
φt = −c20s

and we may write (6.65) in the form

∂

∂t
[v−∇φ] = 0.

Hence, since φ (x,0) = 0, v (x,0) = 0, we infer

v (x,t)−∇φ (x,t) = v (x,0)−∇φ (x,0) = 0.

Thus v =∇φ. Finally, from (6.66),

φtt = −c20st = c20div v =c20Δφ

which is (6.68). �

Once the potential φ is known, the velocity field v, the condensation s and
the pressure fluctuation p− p0 can be computed from the following formulas

v =∇φ, s = − 1
c20
φt, p− p0 = −ρ0φt.

Consider, for instance, a plane wave represented by the following potential

φ (x,t) = w (x · k−ωt) .

We know that if c20 |k|2 = ω2, φ is a solution of (6.68). In this case, we have

v =w′k, s =
ω

c20
w′, p− p0 = ρ0ωw

′.

Example 6.4 (Motion of a gas in a tube). Consider a straight cylindrical
tube with axis along the x1−axis, filled with gas in the region x1 > 0. A flat
piston, whose face moves according to x1 = h (t), sets the gas into motion.
We assume that |h (t)| � 1 and |h′ (t)| � c0. Under these conditions, the mo-
tion of the piston generates sound waves of small amplitude and the acoustic
potential φ is a solution of the homogeneous wave equation. To compute φ we
need boundary conditions. The continuity of the normal velocity of the gas
at the contact surface with the piston gives

φx1
(h (t) , x2, x3, t) = h′ (t) .
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Since h (t) ∼ 0, we may approximate this condition by

φx1
(0, x2, x3, t) = h′ (t) . (6.69)

At the tube walls the normal velocity of the gas is zero, so that, if ν denotes
the outward unit normal vector at the tube wall, we have

∇φ · ν =0. (6.70)

Finally since the waves are generated by the piston movement, we may look
for outgoing plane waves22 solution of the form

φ (x,t) = w (x · n−ct)
where n is a unit vector. From (6.70) we have

∇φ · ν =w′ (x · n−ct)n · ν =0

whence n · ν =0 for every ν orthogonal to the wall tube. Thus, we infer
n =(1, 0, 0) and, as a consequence,

φ (x,t) = w (x1−ct) .
From (6.69) we get

w′ (−ct) = h′ (t)

so that (assuming h (0) = 0),

w (s) = −ch
(
−s
c

)
.

Hence, the acoustic potential is given by

φ (x,t) = −ch
(
t− x1

c

)

which represents a progressive wave propagating along the tube. In this case

v =ci, s =
1
c
h′
(
t− x1

c

)
, p = cρ0h

′
(
t− x1

c

)
+ p0.

6.7 The Cauchy Problem

6.7.1 Fundamental solution (n = 3) and strong Huygens’ principle

In this section we consider the global Cauchy problem for the three-dimension-
al homogeneous wave equation:

{
utt − c2Δu = 0 x ∈R3, t > 0
u (x, 0) = g (x) , ut (x,0) = h (x) x ∈R3.

(6.71)

22 We do not expect incoming waves, which should be generated by sources placed
far from the piston.
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Our purpose here is to show that the solution u exists and to find an explicit
formula for it, in terms of the data g and h. Our derivation is rather heuristic
so that, for the time being, we do not worry too much about the correct
hypotheses on h and g, which we assume as smooth as we need to carry out
the calculations.

First we need a lemma that reduces the problem to the case g = 0 (and
which actually holds in any dimension). Denote by wh the solution of the
problem

{
wtt − c2Δw = 0 x ∈ R3, t > 0

w (x, 0) = 0, wt (x,0) = h (x) x ∈ R3.
(6.72)

Lemma 6.1. If wg has continuous third-order partials, then v = ∂twg solves
the problem

{
wtt − c2Δw = 0 x ∈R3, t > 0

w (x, 0) = g (x) , wt (x,0) = 0 x ∈R3.
(6.73)

Therefore the solution of (6.71) is given by

u = ∂twg + wh. (6.74)

Proof. Let v = ∂twg. Differentiating the wave equation with respect to t we
have

0 = ∂t(∂ttwg − c2Δwg) = (∂tt − c2Δ)∂twg = vtt − c2Δv.
Moreover,

v (x,0) = ∂twg (x,0) = g (x) , vt (x,0) = ∂ttwg (x,0) = c2Δwg (x,0) = 0.

Thus, v is a solution of (6.73) and u = v + wh is the solution of (6.71). �

The lemma shows that, once the solution of (6.72) is determined, the
solution of the complete problem (6.71) is given by (6.74).

Therefore, we focus on the solution of (6.72), first with a special h, given by
the three-dimensional Dirac measure at y, δ (x− y). For example, in the case
of sound waves, this initial data models a sudden change of the air density,
concentrated at a point y. If w represents the density variation with respect
to a static atmosphere, then w solves the problem

{
wtt − c2Δw = 0 x ∈ R3, t > 0
w (x, 0) = 0, wt (x,0) = δ (x− y) x ∈ R3.

(6.75)

The solution of (6.75), which we denote by K (x,y,t), is called funda-
mental solution of the three-dimensional wave equation. To solve (6.75) we
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use ... the heat equation (!), approximating the Dirac measure with the fun-
damental solution of the three-dimensional diffusion equation. Indeed, from
Section 3.3.5, (choosing t = ε, D = 1, n = 3) we know that

Γ (x− y,ε) =
1

(4πε)3/2
exp

{
−|x− y|2

4ε

}
→ δ (x− y)

as ε → 0. Denote by wε the solution of (6.75) with δ (x− y) replaced by
Γ (x− y,ε). Since Γ (x− y,ε) is radially symmetric with pole at y, we expect
that wε shares the same type of symmetry and is a spherical wave of the form
wε = wε (r, t), r = |x− y|. Thus, from (6.51) we may write

wε (r, t) =
F (r + ct)

r
+
G (r − ct)

r
. (6.76)

The initial conditions require

F (r) +G (r) = 0 and c(F ′ (r)−G′ (r)) = rΓ (r,ε)

or
F = −G and G′ (r) = −rΓ (r,ε) /2c.

Integrating the second relation yields

G (r) = − 1
2c(4πε)3/2

∫ r

0

s exp
{
− s

2

4ε

}
ds =

1
4πc

1√
4πε

(
exp
{
− r

2

4ε

}
− 1
)

and finally

wε (r, t) =
1

4πcr

{
1√
4πε

exp
{
− (r − ct)2

4ε

}
− 1√

4πε
exp
{
− (r + ct)2

4ε

}}
.

Now observe that the function

Γ̃ (r, ε) =
1√
4πε

exp
{
− r

2

4ε

}

is the fundamental solution of the one-dimensional diffusion equation with
x = r and t = ε. Letting ε→ 0 we find23

wε (r, t)→ 1
4πcr

{δ(r − ct)− δ(r + ct)} .

Since r + ct > 0 for every t > 0, we deduce that δ(r + ct) = 0 and therefore
we conclude that

K (x,y,t) =
δ(r − ct)

4πcr
r = |x− y| . (6.77)

23 Here δ is one dimensional.
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Fig. 6.7. Strong Huygen’s principle

Thus, the fundamental solution is an outgoing travelling wave, initially con-
centrated at y and thereafter on

∂Bct (y) = {x : |x− y| = ct} .
The union of the surfaces ∂Bct (y) is called the support of K and coin-
cides with the forward space-time cone, with vertex at (y, 0) and opening
θ = tan−1 c, given by

C∗
y,0 = {(x, t) : |x− y| = ct, t > 0} .

In the terminology of Section 6.4, C∗
y,0 constitutes the range of influence

of the point y.
The fact that the range of influence of the point y is only the boundary

of the forward cone and not the full cone has important consequences on the
nature of the disturbances governed by the three-dimensional wave equation.
The most striking phenomenon is that a perturbation generated at time t = 0
by a point source placed at y is felt at the point x0 only at time t0 =
|x0−y| /c (Fig. 6.7). This is known as strong Huygens’ principle and explains
why sharp signals are propagated from a point source.

We will shortly see that this is not the case in two dimensions.

6.7.2 The Kirchhoff formula

Using the fundamental solution, we may derive a formula for the solution of
(6.72) with a general h. Since

h (x) =
∫

R3
δ (x− y)h (y) dy,

we may see h as a superposition of impulses δ (x− y)h (y) localized at y, of
strength h (y). Accordingly, the solution of (6.72) is given by the superposition



6.7 The Cauchy Problem 229

of the corresponding solutions K (x,y,t)h (y), that is

wh (x,t) =
∫

R3
K (x,y,t)h (y) dy =

∫

R3

δ(|x− y| − ct)
4πc |x− y| h (y) dy =

=
∫ ∞

0

δ(r − ct)
4πcr

dr

∫

∂Br(x)

h (σ) dσ =
1

4πc2t

∫

∂Bct(x)

h (σ) dσ

where we have used the formula
∫ ∞

0

δ (r − ct) f (r) dr = f (ct) .

Lemma 6.1 and the above intuitive argument lead to the following theorem:

Theorem 6.3 (Kirchhoff’s formula). Let g ∈ C3
(
R

3
)

and h ∈ C2
(
R

3
)
.

Then,

u (x,t) =
∂

∂t

[
1

4πc2t

∫

∂Bct(x)

g (σ) dσ

]
+

1
4πc2t

∫

∂Bct(x)

h (σ) dσ (6.78)

is the unique solution u ∈ C2
(
R

3 × [0,+∞)
)

of problem (6.71).

According to (6.78), u (x, t) depends upon the data g and h only on the
surface

∂Bct (x) = {|σ − x0| = ct0}
which therefore coincides with the domain of dependence for (x,t). This
surface is the intersection of the space-time cone

Cx0,t0 = {|σ − x0| = c(t0 − t)})
with the hyperplane t = 0. This cone has vertex at (x0, t0) and extends
backward in time (backward characteristic cone).

Assume now that the support of g and h is the compact set D. Then
u (x, t) is different from zero only for tmin < t < tmax where tmin and tmax are
the first and the last time t such that D ∩ ∂Bct (x) �= ∅. In other words, a
disturbance, initially localized inside D, starts affecting the point x at time
tmin and ceases to affect it after time tmax. This is another way to express the
strong Huygens’ principle.

Fix t and consider the union of all the spheres ∂Bct (ξ) as ξ varies on
∂D. The envelope of these surfaces constitutes the wave front and bounds the
support of u, which spreads at speed c-.

6.7.3 Cauchy problem in dimension 2

The solution of the Cauchy problem in two dimensions can be obtained from
Kirchhoff formula, using the so called Hadamard’s method of descent. Consider



230 6 Waves and vibrations

first the problem
{
wtt − c2Δw = 0 x ∈R2, t > 0

w (x, 0) = 0, wt (x,0) = h (x) x ∈R2.
(6.79)

The key idea is to “immerse” the two-dimensional problem (6.79) in a three-
dimensional setting. More precisely, write points in R

3 as (x,x3) and set
h (x,x3) = h (x). The solution U of the three-dimensional problem is given by
Kirchhoff formula:

U (x, x3, t) =
1

4πc2t

∫

∂Bct(x,x3)

h dσ. (6.80)

We claim that, since h does not depend on x3, U is independent of x3 as well,
and therefore the solution of (6.79) is given by (6.80) with, say, x3 = 0.

To prove the claim, note that the spherical surface ∂Bct (x,x3) is a union
of the two hemispheres whose equation are

y3 = F± (y1, y2) = x3 ±
√
c2t2 − r2,

where r2 = (y1 − x1)
2 + (y2 − x2)

2. On both hemispheres we have

dσ =
√

1 + |∇F±|2 dy1dy2

=

√
1 +

r2

c2t2 − r2 dy1dy2 =
ct√

c2t2 − r2 dy1dy2

so that we may write (dy = dy1dy2)

U (x, x3, t) =
1

2πc

∫

Bct(x)

h (y)√
c2t2 − |x− y|2

dy

and U is independent of x3 as claimed. From the above calculations and
recalling Lemma 6.1 we deduce the following theorem.

Theorem 6.4 (Poisson’s formula). Let g ∈ C3
(
R

2
)

and h ∈ C2
(
R

2
)
.

Then,

u (x,t) =
1

2πc

⎧⎨
⎩
∂

∂t

∫

Bct(x)

g (y) dy√
c2t2 − |x− y|2

+
∫

Bct(x)

h (y) dy√
c2t2 − |x− y|2

⎫⎬
⎭

is the unique solution u ∈ C2
(
R

2 × [0,+∞)
)

of the problem

{
utt − c2Δu = 0 x ∈R2, t > 0
u (x, 0) = g (x) , ut (x,0) = h (x) x ∈R2.
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Poisson’s formula displays an important difference with respect to its
three-dimensional analogue, Kirkhhoff’s formula. In fact the domain de-
pendence for the point (x,t) is given by the full circle Bct (x) =
{y: |x− y| < ct}. This entails that a disturbance, initially localized at ξ,
starts affecting the point x at time tmin = |x− ξ| /c. However, this effect does
not vanish for t > tmin, since ξ still belongs to the circle Bct (x) after tmin.

It is the phenomenon one may observe by placing a cork on still water and
dropping a stone not too far away. The cork remains undisturbed until it is
reached by the wave front but its oscillations persist thereafter.

Thus, sharp signals do not exist in dimension two and the strong Huygens
principle does not hold.

Remark 6.2. An examination of Poisson’s formula reveals that the funda-
mental solution for the two-dimensional wave equation is given by

K (x,y,t) =
1

2πc
H (ct− r)√
c2t2 − r2

where r2 = |x− y| and H is the Heaviside function. For y fixed, its support
is the full forward space-time cone, with vertex at (y, 0) and opening θ =
tan−1 c, given by

C∗
y,0 = {(x, t): |x− y| ≤ ct, t > 0} .

6.7.4 Non homogeneous equation. Retarded potentials

The solution of the non-homogeneous Cauchy problem can be obtained via
Duhamel’s method. We give the details for n = 3 only. By linearity it is
enough to derive a formula for the solution of the problem with zero initial
data

{
utt − c2Δu = f (x,t) x ∈R3, t > 0
u (x, 0) = 0, ut (x,0) = 0 x ∈R3.

(6.81)

Assume that f ∈ C2
(
R

3 × [0,+∞)). For s ≥ 0 fixed, let w = w (x, t; s) be
the solution of the problem

{
wtt − c2Δw = 0 x ∈ R3, t ≥ s

w (x, s; s) = 0, wt (x, s; s) = f (x, s) x ∈ R3.

Since the wave equation is invariant under time translations, w is given by
Kirkhhoff’s formula with t replaced by t− s

w (x, t; s) =
1

4πc2(t− s)
∫

∂Bc(t−s)(x)

f (σ, s) dσ.
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Then,

u (x, t) =
∫ t

0

w (x, t; s) ds =
1

4πc2

∫ t

0

ds

(t− s)
∫

∂Bc(t−s)(x)

f (σ, s) dσ (6.82)

is the unique solution u ∈ C2
(
R

3 × [0,+∞)) of (6.81)24.
Formula (6.82) shows that u (x,t) depends on the values of f in the full

backward cone

Cx,t = {(z,s) : |z− x| ≤ c(t− s), 0 ≤ s ≤ t} .
Note that (6.82) may be written in the form

u (x,t) =
1
4π

∫

Bct(x)

1
|x− y|f

(
y,t− |x− y|

c

)
dy (6.83)

which is a so called retarded potential. Indeed, u (x,t) depends on the values
of the source f at the earlier times

t′ = t− |x− y|
c

.

6.8 Numerical methods

6.8.1 Numerical approximation of the one-dimensional wave
equation

We consider the homogeneous Cauchy-Dirichlet wave equation problem on
the unit interval,⎧⎪⎨

⎪⎩

utt − c2uxx = 0 0 < x < 1, t > 0
u(0, t) = u(1, t) = 0 t > 0
u(x, 0) = g(x), ut(x, 0) = h(x) 0 ≤ x ≤ 1.

(6.84)

D’Alembert formula shows that the wave equation is related to a system of
conservation laws. More precisely, the solution of the wave equation can be
obtained as the superposition of propagating waves in opposite directions.
The same conclusion can be obtained from a different point of view that may
be helpful for the numerical approximation. In particular, we consider the
change of variables w1 = ux and w2 = ut, that combined with the identity of
mixed derivatives leads to reformulate the wave equation as follows,

{
uxt = utx

utt − c2uxx = 0
⇒
{
∂tw1 − ∂xw2 = 0
∂tw2 − c2∂xw1 = 0

24 Check it, mimicking the proof in dimension one (Section 6.4.2).
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that is, w(x, t) = [w1(x, t), w2(x, t)] : (0, 1) × R+ → R
2 satisfies a system of

linear conservation laws,

wt − Zwx = 0 where Z =
[

0 −1
−c2 0

]
. (6.85)

Since matrix Z features real eigenvalues μ1,2 = ±c, diagonalization allows to
reformulate (6.85) as a system of independent scalar equations, whose solu-
tions propagate along the real line with opposite velocities ±c. These consid-
erations suggest that the discretization of the wave equation may be addressed
by means of the methods previously used for the approximation of scalar con-
servation laws, provided that (6.85) could be complemented by initial and
boundary conditions compatible with the ones used for the original problem.
While the initial conditions for w1 and w2 are immediately translated from
the initial state of u(t, x),

w2(x, 0) = ut(x, 0) = h(x), w1(x, 0) = ux(x, 0) = g′(x)

the derivation of suitable boundary conditions represents the main limitation
of this approach, because the characteristic variables w1 and w2 only depend
on the space and time derivatives of the primal unknown u. As a result of
that, for Cauchy-Dirichlet problems it is more convenient to address the dis-
cretization of the wave equation in the form (6.84).

We apply a finite difference discretization method defined on the nodes
(xi, tn) = (h · i, τ · n) for i = 0, . . . , N , n ∈ N, uniformly distributed in the
domain (0, 1) × R+ with space and time discretization steps given by h and
τ , respectively. Using the usual centered difference quotients for both space
and time second derivatives,

utt(xi, tn) =
1
τ2

(
u(xi, tn+1)− 2u(xi, tn) + u(xi, tn−1)

)
+O(τ2)

uxx(xi, tn) =
1
h2

(
u(xi+1, t

n)− 2u(xi, tn) + u(xi−1, t
n)
)

+O(h2)

and replacing them into the wave equation we obtain the so called leapfrog
scheme, where λ = τ/h,
⎧⎪⎨
⎪⎩

un+1
i − 2uni + un−1

i = (cλ)2
(
uni+1 − 2uni + uni−1

)
i = 1, . . . , N − 1, n > 1

un+1
0 = un+1

N = 0 n > 1
u0
i = g(xi), u1

i = u0
i + τh(xi) i = 0, . . . , N.

(6.86)
Leapfrog scheme is an explicit method, because un+1

i depends on the solution
at the previous iterative steps solely, and not on solution values at tn+1 in
the neighboring nodes, and it is locally second order accurate. Furthermore
this scheme is prone to a straightforward implementation of Dirichlet bound-
ary conditions. Conversely, the approximation of initial conditions is more
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delicate. In equation (6.86) we have applied a first order one step scheme to
compute the initial values u0

i and u1
i on the basis of the data g(x), h(x). Given

u0
i and u1

i in all nodes, the leapfrog scheme allows us to compute the numerical
solution at any time level tn. However, this solution strategy is slightly sub-
optimal, because the first order schemes used to initialize the method pollute
its global second order accuracy. Furthermore, as for all explicit schemes, the
correct application of the leapfrog method requires to satisfy some stability
condition that restricts the range of space and time steps to be used. In par-
ticular, the scheme must satisfy a CFL condition such that |cλ| ≤ 1. To
overcome the restrictions due to conditional stability, one may switch to an
implicit scheme.

The Newmark scheme is a popular implicit discretization method for
the wave equation,

{
un+1
i − 2uni + un−1

i = (cλ)2

4

(
zn+1
i + 2zni + zn−1

i

)
zni = uni+1 − 2uni + uni−1

(6.87)

complemented by the same initial and boundary conditions already used in
(6.86). Since the term zn+1

i = un+1
i+1 − 2un+1

i + un+1
i−1 couples the unknowns

on different nodes at the new time step tn+1, using the Newmark scheme
requires to solve a linear system of equations at each time step, in order to
simultaneously determine all un+1

i , i = 1, . . . , N − 1. The resulting addi-
tional computational cost is balanced by the unconditional stability of the
scheme. Finally, the following property

z(xi, tn) =
1
4
(
z(xi, tn−1) + 2z(xi, tn) + z(xi, tn+1)

)
+O(τ2)

shows that the Newmark method is second order accurate. Owing to its good
stability properties, the forthcoming numerical tests on the wave equation are
performed using the Newmark method.

6.9 Exercises

6.1 (The violin string modeling). We analyse the Cauchy-Dirichlet prob-
lem ⎧⎨

⎩
utt − c2uxx = 0 0 < x < L, t > 0
u (0, t) = u (L, t) = 0 t ≥ 0
u (x, 0) = g (x) , ut (x, 0) = 0 0 ≤ x ≤ L

with c2 = τ/ρ0 costant, describing the vibrating violin string. Write the for-
mula for the solution using the separation of the variables technique.

6.2. Find the characteristics of the Tricomi equation utt − tuxx = 0.
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6.3. Classify the equation

uxx − yuyy − 1
2
uy = 0

and find its characteristics. Rewrite it in canonical form and find its general
solution.

6.4. Find the characteristics of the equation

t2utt + 2tuxt + uxx − ux = 0.

Write it in canonical form and find its general solution.

6.5. Consider the problem
⎧⎪⎪⎨
⎪⎪⎩

utt − uxx = 0 (0, 1)× (0,+∞)
u(x, 0) = 1− x [0, 1]
ut(x, 0) = 0 [0, 1]
ux(0, t) = ux(1, t) = 0 (0,+∞).

Find the solution and prove that it satisfies the following condition
∫ 1

0

(|ut(x, t)|2 + |ux(x, t)|2)dx = 1.

6.6. Consider the problem
⎧⎪⎪⎨
⎪⎪⎩

utt − uxx = 0 (0, 1)× (0,+∞)
u(x, 0) = 0 [0, 1]
ut(x, 0) = x [0, 1]
u(0, t) = u(1, t) = 0 (0,+∞).

Find the solution. Is it continuous? Calculate the energy associated to the
solution.

6.7 (Forced vibrations). Solve the problem
⎧⎨
⎩
utt − uxx = g(t) sinx (0, π)× (0,+∞)
u(x, 0) = ut(x, 0) = 0 [0, π]
u(0, t) = u(π, t) = 0 (0,+∞).

6.8 (Circular membrane). A perfectly flexible and elastic membrane at
rest has a shape of the circle B1 =

{
(x, y) : x2 + y2 ≤ 1

}
. If the boundary

is fixed and there are no external loads, the vibrations of the membrane are
governed by the following system
⎧⎨
⎩
utt − c2(urr + r−1ur + r−2uθθ) = 0 0 < r < 1, 0 ≤ θ ≤ 2π, t > 0
u(r, θ, 0) = g(r, θ), ut(r, θ, 0) = h(r, θ) 0 < r < 1, 0 ≤ θ ≤ 2π
u(1, θ, t) = 0 0 ≤ θ ≤ 2π, t > 0.

In the case h = 0 and g = g(r), use the method of separation of the variables
to find the solution.
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6.9. Check that the formula (6.22) may be written in the following form

u(x+cξ−cη, t+ξ+η)−u(x+cξ, t+ξ)−u(x−cη, t+η)+u(x, t) = 0. (6.88)

Show that if u is a C2 function and satisfies (6.88), then utt − c2uxx = 0.

6.10 (Membrane with dissipation). Consider the problem
{
utt(x, t) + kut(x, t)− c2Δu(x, t) = 0 x ∈ R2, t > 0
u(x, t) = 0, ut(x, t) = g(x) x ∈ R2.

a) Find α ∈ R such that the function

v(x, t) = eαtu(x, t)

solves an equation without first order terms (but containing a zero degree
term) in R2 × (0,+∞).

b) Find β ∈ R such that the function

w(x1, x2, x3, t) = w(x, x3, t) = eβx3v(x, t)

solves an equation with second order terms only in R3 × (0,+∞).

6.9.1 Numerical simulation of a vibrating string

We apply Newmark scheme for studying the behavior of a vibrating string in
different conditions. We model the string with equations (6.84).

First, we use d’Alembert formula to build up reference exact solutions
and compare them with the numerical approximations. We start from the
case where the initial deformed configuration is given and the string is steady.
Using (6.20) we obtain that the following u(x, t) is a solution of the problem
on the real line,

g(x) = sin(2πx), h(x) = 0 ⇒ u(x, t) =
1
2
(
sin(2π(x+t))+sin(2π(x−t))).

We observe that the displacement of the string vanishes at the points x = i/2
with i ∈ N. For this reason, u(x, t) =

(
sin(2π(x + t)) + sin(2π(x − t))

)
/2 is

also a solution of the Cauchy-Dirichlet problem based on (6.84) with initial
conditions g(x) = sin(2πx) and h(x) = 0. The problem is then discretized
using Newmark scheme with h = τ = 0.05 and the results reported in Fig. 6.8
(left) show the computed displacement of the string. Although the discretiza-
tion step is not particularly fine, we observe an excellent agreement with the
exact solution. Similar conclusions hold true when we study the vibrations
that originate from an undeformed configuration with a given initial velocity.
According to d’Alembert formula the solution of this problem satisfies

g(x) = 0, h(x) = sin(2πx) ⇒ u(x, t) =
1
4π
(
cos(2π(x− t))− cos(2π(x+ t))

)
,
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Fig. 6.8. Numerical approximation of (6.84) with initial conditions g(x) =
sin(2πx), h(x) = 0 (left) and g(x) = sin(2πx), h(x) = 0 (right)

with the following roots x = i/2 for i ∈ N. The corresponding numerical
approximation on the unit interval is depicted in Fig. 6.8 (right).

Let us now consider a string plucked at a specific point, namely x = 0,
which is modeled by a continuous but non differentiable initial state given by

g(x) = max[−4|1− 2x|+ 1, 0], h(x) = 0.

The formal application of d’Alembert formula suggests that the displacement
of the string may be represented as u(x, t) =

(
g(x + t) + g(x − t)

)
/2. This

is indeed a generalized solution of the wave equation. Using a finer com-
putational mesh than for the previous tests, namely using h = τ = 0.02,
we approximate this solution with the Newmark scheme. We observe from
Fig. 6.9 that the weak singularities (discontinuity of the solution derivatives)
propagating along the characteristic lines are smoothed out. Furthermore, tiny
wiggles appear in the plateau between the two diverging peaks.

Fig. 6.9. The generalized solution of (6.84) with the initial state g(x) = max[−4|1−
2x| + 1; 0] and h(x) = 0 (right) and its numerical approximation by the Newmark
scheme (left)
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Fig. 6.10. Fundamental (generalized) solution of the wave equation (right) and its
numerical approximation by the newmark scheme (left)

Finally, let us consider the case where the string is excited at a single
point, as described by the following initial conditions,

g(x) = 0, h(x) = δ(x− 1/2)

where δ(x) denotes an impulse function (a Dirac delta function) located at
the origin such that

H(x) =
∫ x

−∞
δ(y)dy

being H(x) the Heaviside function. Then, the generalized solution of the wave
equation originating from this initial state is again identified by means of the
formal application of d’Alembert formula, and it is often called the funda-
mental solution of the wave equation in one space dimension,

u(x, t) =
1
2
(H(x+ t− 1/2)−H(x− t− 1/2)

)
.

The application of Neumark scheme with h = τ = 0.01 to this case shows
the intrinsic limitations of finite difference schemes to approximate solutions
with strong singularities (jump discontinuity). Indeed, Fig. 6.10 shows that
the spurious oscillations that appear in this case are remarkably larger than
the ones observed for weak discontinuities (see Fig. 6.9).

6.9.2 Numerical simulation of a vibrating membrane

Let us consider an elastic membrane on the unit square Ω = (0, 1) × (0, 1)
whose displacement is constrained on its boudary. Small vibrations of that
system can be modeled by the multi-dimensional wave equation,

⎧⎪⎨
⎪⎩

utt = Δu in Ω × R+

u = 0 on ∂Ω × R+

u(x, y, 0) = g(x, y), ut(x, y, 0) = h(x, y) on Ω
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Fig. 6.11. Numerical simulation of a vibrating membrane with the leapfrog scheme
for different combinations of n,m. Plots correspond to times t1 = Tmn/8 to t7 =
7Tmn/8 from left to right, where the plots of t4 and t5 have been omitted

where for simplicity we consider unitary coefficients, c = 1. For the space
discretization, we apply the five point scheme addressed in Chapter 4. More
precisely, given a uniform computational mesh of Ω with spacing equal to h
on each axis, the discretization of −Δu(t), complemented with homogeneous
Dirichlet boundary conditions, is (1/h2)AU(t) where A ∈ RN×N is a sym-
metric band matrix whose coefficients do not depend on h and U(t) ∈ RN is
the vector that gathers the nodal approximations of u(x, y, t), given a suit-
able ordering of the nodes. For time stepping, to avoid solving a linear system
governed by A at each time step, we apply the leapfrog scheme, because it is
explicit. We carefully select the uniform time discretization step, τ , in order
to satisfy the CFL stability condition, namely |cλ| ≤ 1 where λ = τ/h. Then,
the fully discrete scheme consists in computing a sequence of vectors Un with
n > 1 such that,

{
Un+1 = 2Un −Un−1 − λ2AUn

U0 = G U1 = G + τH

where G and H are the vectors gathering the nodal values of the initial
displacement and velocity g(x, y) and h(x, y), respectively.
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By separation of variables we have shown that, when c = 1, the charac-
teristic modes of vibration of a square membrane with unit side are

umn(x, y, t) =
(
amn cos(λmnt) + bmn sin(λmnt)

)
sin(μmx) sin(νny)

where λmn =
√
π2(m2 + n2), μm = mπ, νn = nπ with n,m ∈ N. Then, if

we excite the undeformed membrane (g(x, y) = 0) with the following initial
velocity

hmn(x, y) = sin(mπx) sin(nπy)

only the mode Tmn = 2/
√
n2 +m2 will appear.

Fig. 6.11 shows the displacement of the membrane for different combina-
tions of n,m and it confirms the good behavior of the leapfrog scheme for the
approximation of this problem.



Part II

Functional Analysis Techniques
for Differential Problems



7

Elements of Functional Analysis

The main purpose in the previous chapters has been to introduce part of
the basic and classical theory of some important equations of mathematical
physics. The emphasis on phenomenological aspects and the connection with
a probabilistic point of view should have conveyed to the reader some intuition
and feeling about the interpretation and the limits of those models.

However, these purposes are somehow in competition with one of the most
important role of modern mathematics, which is to reach a unifying vision of
large classes of problems under a common structure, capable not only of in-
creasing theoretical understanding, but also of providing the necessary flexibil-
ity to guide the numerical methods which will be used to compute approximate
solutions.

This conceptual jump requires a change of perspective, based on the intro-
duction of abstract methods, historically originating from the vain attempts
to solve basic problems (e.g. in electrostatics) at the end of the 19th century.
It turns out that the new level of knowledge opens the door to the solution of
complex problems in modern technology.

These abstract methods, in which analytical and geometrical aspects fuse,
are the core of the branch of Mathematics, called Functional Analysis.

In this chapter, after a brief introduction to the Lebesgue integral and some
of the functional spaces associated to it, we develop the tools of Functional
Analysis, essential for a correct variational formulation of a wide variety of
boundary value problems; in particular, we introduce the basic elements of the
Hilbert spaces theory. The results we present constitute the theoretical basis
for numerical methods such as finite elements or more generally, Galerkin’s
methods, and this makes the theory even more attractive and important.

Salsa S., Vegni F.M.G., Zaretti A., Zunino P.: A Primer on PDEs. Models, Methods, Simulations.
Unitext – La Matematica per il 3+2 65.
DOI 10.1007/978-88-470-2862-3 7, © Springer-Verlag Italia 2013
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7.1 Lebesgue Measure and Integral

7.1.1 A counting problem

Two persons, that we denote by R ed L, must compute the total value of M
coins, ranging from 1 to 50 cents. R decides to group the coins arbitrarily in
piles of, say, 10 coins each, then to compute the value of each pile and finally
to sum all these values. L, instead, decides to partition the coins according to
their value, forming piles of 1-cent coins, of 5-cents coins and so on. Then he
computes the value of each pile and finally sums all their values.

In more analytical terms, let

V : M → N

a value function that associates to each element of M (i.e. each coin) its value.
R partitions the domain of V in disjoint subsets, sums the values of V in
such subsets and then sums everything. L considers each point p in the image
N of V (the value of a single coin), considers the inverse image V −1 (p) (the
pile of coins with the same value p), computes the corresponding value and
finally sums over every p.

These two ways of counting correspond to the strategy behind the defini-
tions of the integrals of Riemann and Lebesgue, respectively. Since V is defined
on a discrete set and is integer valued, in both cases there is no problem in
summing its values and the choice is determined by an efficiency criterion.
Usually, the method of L is more efficient.

In the case of a real (or complex) function f , the “sums of its values”
corresponds to an integration of f . While the construction ofR remains rather
elementary, the one of L turns out to be more complex and requires new tools.
Let us examine the particular case of a bounded and positive function, defined
on an interval [a, b] ⊂ R. Thus, let

f : [a, b]→ [inf f, sup f ] .

To construct the Riemann integral, we partition [a, b] in subintervals I1, . . . , IN
(the piles of R), then we choose in each interval Ik a point ξk and we compute
f (ξk) l (Ik), where l(Ik) is the length of Ik (i.e. the value of the k − th pile).
Now we sum the values f (ξk) l(Ik) and set

(R)
∫ b

a

f = lim
δ→0

N∑
k=1

f (ξk) l(Ik),

where δ = max {l (I1) , . . . , l (IN )}. If the limit is finite and moreover is inde-
pendent of the choice of the points ξk, then this limit defines the Riemann
integral of f in [a, b].

Now, let us examine the Lebesgue strategy. This time we partition the
interval [inf f, sup f ] in subintervals [yk−1, yk] (the values of each coin for L)
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with
inf f = y0 < y1 < . . . < yN−1 < yN = sup f.

Then we consider the inverse images Ek = f−1 ([yk−1, yk]) (the piles of ho-
mogeneous coins) and we would like to compute their . . . length. However, in
general Ek is not an interval or a union of intervals and, in principle, it could
be a very irregular set so that it is not clear what is the length of Ek.

Thus, the need arises to associate with every Ek a measure, which replaces
the length when Ek is an irregular set. This leads to the introduction of the
Lebesgue measure of (practically every) set E, denoted by |E| .

Once we know how to measure Ek (the number of coins in the k− th pile),
we choose an arbitrary point αk ∈ [yk−1, yk] and we compute αk |Ek| (the
value of the k − th pile). Then, we sum all the values αk |Ek| and set

(L)
∫ b

a

f = lim
ρ→0

N∑
k=1

αk |Ek|

where ρ is the maximum among the lengths of the intervals [yk−1, yk]. It can be
seen that under our hypotheses, the limit exists, is finite and is independent
of the choice of αk. Thus, we may always choose αk = yk−1. This remark
leads to the definition of the Lebesgue integral in Section 7.1.3: the number∑N
k=1 yk−1 |Ek| is nothing else that the integral of a simple function, which

approximates f from below and whose range is the finite set y0 < . . . < yN−1.
The integral of f is the supremum of these numbers.

The resulting theory has several advantages with respect to that of Rie-
mann. For instance, the class of integrable functions is much wider and there
is no need to distinguish among bounded or unbounded functions and inte-
gration domains.

Especially important are the convergence theorems presented in Section
7.1.4, which allow the possibility of interchanging the operation of limit and
integration, under rather mild conditions.

7.1.2 Measures and measurable functions

A measure in a set Ω is a set function, defined on a particular class of sub-
sets of Ω called measurable set which “behaves well” with respect to union,
intersection and complementation. Precisely:

Definition 7.1. A collection F of subsets of Ω is called σ−algebra if:

(i) Ω ∈ F ;
(ii) A ∈ F implies Ω\A ∈ F ;
(iii) if {Ak}k∈N ⊂ F then also ∪Ak and ∩Ak belong to F .
Example 7.1. If Ω = R

n, the smallest σ−algebra containing all the open
subsets of Rn is called the Borel σ−algebra and its elements are the Borel
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sets. Typical Borel sets are obtained by countable unions and/or intersections
of open sets.

Definition 7.2. Given a σ−algebra F in a setΩ, a measure on F is a function

μ : F → R

such that:

(i) μ (A) ≥ 0 for every A ∈ F ;

(ii) if A1, A2, . . . are pairwise disjoint sets in F , then

μ (∪k≥1Ak) =
∑
k≥1

μ (Ak) (σ − additivity).

The elements of F are called measurable sets.

The Lebesgue measure in Rn is defined on a σ−algebra M containing the
Borel σ−algebra, through the following theorem.

Theorem 7.1. There exists in Rn a σ−algebra M and a measure

|·|n :M→ [0,+∞]

with the following properties:

1. Each open and closed set belongs to M.
2. If A ∈ M and A has measure zero, every subset of A belongs to M and

has measure zero.
3. If

A = {x ∈Rn : aj < xj < bj ; j = 1, . . . , n}
then |A| =∏n

j=1 (bj − aj) .
The elements ofM are called Lebesgue measurable sets and |·|n (or simply

|·| if no confusion arises) is called the n-dimensional Lebesgue measure. Unless
explicitly said, from now on, measurable means Lebesgue measurable and the
measure is the Lebesgue measure.

Not every subset of Rn is measurable. However, the nonmeasurable ones
are quite . . . pathological1!

Remark 7.1. The sets of measure zero are quite important. Here are some
examples of sets with zero measure: all countable subsets, e.g. the set Q of
rational numbers; straight lines or smooth curves in R2; straight lines, hyper-
planes, smooth curves and surfaces in R3.

Notice that a straight line segment has measure zero in R2 but, of course
not in R.
1 See e.g. Rudin [34].
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We say that a property holds almost everywhere in A ∈ M (in short, a.e.
in A) if it holds at every point of A except that in a subset of measure zero.

For instance, the sequence fn (x) = exp
(−n sin2 x

)
converges to zero a.e.

in R.

The Lebesgue integral is defined for measurable functions, characterized
by the fact that the inverse image of every closed set is measurable.

Definition 7.3. Let A ⊆ Rn be measurable, and f : A → R. We say that f
is measurable if f−1 (C) ∈ F for any closed set C ⊆ R.

If f is continuous, is measurable. The sum and the product of a finite
number of measurable functions are measurable. The pointwise limit of a
sequence of measurable functions is measurable.

If f : A → R, is measurable, we define its essential supremum or least
upper bound by the formula

ess sup f = inf {K : f ≤ K a.e. in A} .

Note that, if f = χ
Q
, the characteristic function of the rational numbers, we

have sup f = 1, but ess sup f = 0, since |Q| = 0.

Every measurable function may be approximated by simple functions.
A function s : A ⊆ Rn → R is said to be simple if its range is constituted by
a finite number of values s1, . . . , sN , attained on measurable sets A1, . . . , AN ,
contained in A. Introducing the characteristic functions χAj

, we may write

s =
N∑
j=1

sjχAj
.

We have the following theorem.

Theorem 7.2. Let f : A → R, be measurable. There exists a sequence {sk}
of simple functions converging pointwise to f in A. Moreover, if f ≥ 0, we
may choose {sk} increasing.

7.1.3 The Lebesgue integral

We define the Lebesgue integral of a measurable function on a measurable set
A. For a simple function s =

∑N
j=1 sjχAj

we set:

∫

A

s =
N∑
j=1

sj |Aj |

with the convention that, if sj = 0 and |Aj | = +∞, then sj |Aj | = 0.
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If f ≥ 0 is measurable, we define
∫

A

f = sup
∫

A

s

where the supremum is computed over the set of all simple functions s such
that s ≤ f in A.

In general, if f is measurable, we write f = f+ − f−, where f+ =
max {f, 0} and f− = max {−f, 0} are the positive and negative parts of f ,
respectively. Then we set:

∫

A

f =
∫

A

f+ −
∫

A

f−

under the condition that at least one of the two integrals in the
right hand side is finite.

If both these integrals are finite, the function f is said to be integrable
or summable in A. From the definition, it follows immediately that a mea-
surable functions f is integrable if and only if |f | is integrable.2

All the functions Riemann integrable in a set A are Lebesgue integrable
as well. An interesting example of non integrable function in (0,+∞) is given
by h (x) = sinx/x. In fact3

∫ +∞

0

|sinx|
x

dx = +∞.

On the contrary, it may be proved that

lim
N→+∞

∫ N

0

sinx
x

dx =
π

2

and therefore the improper Riemann integral of h is finite.

7.1.4 Some fundamental theorems

The following two theorems are among the most important and useful in the
theory of Lebesgue integration.

2 The set of the functions which are Lebesgue integrable in A is denoted with
L1(A); we will be more precise in Section 7.2.1. The set of all the functions which
are Lebesgue integrable in every interval (a, b) is denoted by L1

loc(R).
3 We may write

∫ +∞

0

|sinx|
x

dx =

∞∑

k=1

∫ kπ

(k−1)π

|sinx|
x

dx ≥
∞∑

k=1

1

kπ

∫ kπ

(k−1)π

|sin x| dx =

∞∑

k=1

2

kπ
= +∞.
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Theorem 7.3 (Dominated Convergence Theorem). Let {fk} be a se-
quence of summable functions in A such that fk → f a.e. in A. If there exists
g ≥ 0, summable in A and such that |fk| ≤ g a.e. in A, then f is summable
and

lim
k→∞

∫

A

fk =
∫

A

f .

Theorem 7.4 (Monotone Convergence Theorem). Let {fk} be a se-
quence of nonnegative, measurable functions in A such that

f1 ≤ f2 ≤ . . . ≤ fk ≤ fk+1 ≤ . . . .

Then

lim
k→∞

∫

A

fk =
∫

A

lim
k→∞

fk.

Example 7.2. A typical situations we often encounter in this book is the
following. Let f ∈ L1 (A) and, for ε > 0, set Aε = {|f | > ε}. Then, we have

∫

Aε

f →
∫

A

f as ε→ 0.

This follows from Theorem 7.4 since, for every sequence εj → 0, we have
|f |χAεj

≤ |f | and therefore
∫

Aεj

f =
∫

A

fχAεj
→
∫

A

f as εj → 0.

An important fact is that any summable function may be approximated
by continuous function with compact support.

Theorem 7.5. Let f ∈ L1 (A). Then, for every δ > 0, there exists a continu-
ous function g ∈ C0 (A) such that

∫

A

|f − g| < δ.

The fundamental theorem of calculus extends to the Lebesgue integral in
the following form:

Theorem 7.6 (Differentiation). Let f ∈ L1
loc (R). Then

d

dx

∫ x

a

f (t) dt = f (x) a.e. in x ∈ R.

7.2 Hilbert Spaces

In the next sections we develop some elements of the theory of Hilbert spaces.
This is the natural setting for the formulation and the resolution (both theo-
retical and numerical) of boundary value problems.
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7.2.1 Normed spaces

We briefly recall the notion of normed space. Let X be a linear space over the
scalar field R or C. A norm in X, is a real function

‖·‖ : X → R (7.1)

such that, for each scalar λ and every x,y ∈ X, the following properties hold:

1. ‖x‖ ≥ 0; ‖x‖ = 0 if and only if x = 0 (positivity);
2. ‖λx‖ = |λ| ‖x‖ (homogeneity);
3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (triangular inequality).

A norm is introduced to measure the size (or the “length”) of each vector
x ∈ X, so that properties 1, 2, 3 should appear as natural requirements.

A normed space is a linear space X endowed with a norm ‖·‖. With a
norm is associated the distance between two vectors given by

d (x, y) = ‖x− y‖
which makes X a metric space and allows to define a notion of convergence
in a very simple way.

We say that a sequence {xn} ⊂ X converges to x in X, and we write
xm → x in X, if

d (xm, x) = ‖xm − x‖ → 0 as m→∞.
An important distinction is between convergent sequences and Cauchy se-
quences. A sequence {xm} ⊂ X is a Cauchy sequence if

d (xm, xn) = ‖xm − xn‖ → 0 as m,n→∞.
If xm → x in X, from the triangular inequality, we may write

‖xm − xn‖ ≤ ‖xm − x‖+ ‖xn − x‖ → 0 as m,n→∞
and therefore we deduce

{xm} is convergent implies {xm} is a Cauchy sequence. (7.2)

The converse in not true, in general. Take X = Q, with the usual norm given
by |x| . The sequence of rational numbers

xm =
(

1 +
1
m

)m

is a Cauchy sequence but it is not convergent in Q, since its limit is the
irrational number e.

A normed space in which every Cauchy sequence converges is called com-
plete and deserves a special name.
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Definition 7.4. A complete, normed linear space is called Banach space.

The notion of convergence (or of limit) can be extended to functions from a
normed space into another, always reducing it to the convergence of distances,
that are real functions.

Let X, Y linear spaces, endowed with the norms ‖·‖X and ‖·‖Y , respec-
tively, and let F : X → Y . We say that F is continuous at x ∈ X if

‖F (y)− F (x)‖Y → 0 when ‖y − x‖X → 0

or, equivalently, if, for every sequence {xm} ⊂ X,

‖xm − x‖X → 0 implies ‖F (xm)− F (x)‖Y → 0 as m→∞.
F is continuous in X if it is continuous at every x ∈ X. In particular:

Proposition 7.1. Every norm in a linear space X is continuous in X.

Proof. Let ‖·‖ be a norm in X. From the triangular inequality, we may write

‖y‖ ≤ ‖y − x‖+ ‖x‖ and ‖x‖ ≤ ‖y − x‖+ ‖y‖
whence

|‖y‖ − ‖x‖| ≤ ‖y − x‖ .
Thus, if ‖y − x‖ → 0 then |‖y‖ − ‖x‖| → 0, which is the continuity of the
norm. �

Definition 7.5. Two norms ‖·‖1 and ‖·‖2 defined in X are equivalent if
there exist two positive numbers c1 and c2 such that

c1 ‖x‖2 ≤ ‖x‖1 ≤ c2 ‖x‖2 for every x ∈ X.

A sequence {xn} ⊂ X is fundamental with respect to ‖·‖1 if and only if is
fundamental with respect to ‖·‖2 . In particular, X is complete with respect
to ‖·‖1 if and only if it is complete with respect to ‖·‖2 .

Some examples are in order.

Spaces of continuous functions. Let X = C (A) be the set of (real or
complex) continuous functions on A, where A is a compact subset of Rn,
endowed with the norm (called maximum norm)

‖f‖C(A) = max
A
|f | .

A sequence {fm} converges to f in C (A) if

max
A
|fm − f | → 0 as m→∞,

that is, if fm converges uniformly to f in A. Since a uniform limit of continuous
functions is continuous, C (A) is a Banach space.
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Note that other norms may be introduced in C (A), for instance the least
squares4 or L2 (A) norm

‖f‖L2(A) =
(∫

A

|f |2
)1/2

.

Equipped with this norm C (A) is not complete. Let, for example A = [−1, 1] ⊂
R. The sequence

fm(t) =

⎧⎪⎨
⎪⎩

0 t ≤ 0
mt 0 < t ≤ 1

m

1 t > 1
m

(m ≥ 1) ,

contained in C ([−1, 1]), is a Cauchy sequence with respect to the L2 norm.
In fact (letting m > k),

‖fm − fk‖2L2(A) =
∫ 1

−1

|fm(t)− fk(t)|2 dt = (m− k)2
∫ 1/m

0

t2dt

+
∫ 1/k

0

(1− kt)2 dt

=
(m− k)2

3m3
+

1
3k

<
1
3

(
1
m

+
1
k

)
→ 0 as m, k →∞.

However, fm converges in L2 (−1, 1)−norm (and pointwise) to the Heaviside
function

H(t) =

{
1 t ≥ 0
0 t < 0,

which is discontinuous at t = 0 and therefore does not belong to C ([−1, 1]).
More generally, let X = Ck (A), k ≥ 0 integer, the set of functions contin-

uously differentiable in A up to order k, included.
To denote a derivative of order m, it is convenient to introduce an n−uple

of nonnegative integers, α = (α1, . . . , αn), called multi-index, of length

|α| = α1 + . . .+ αn = m,

and set
Dα =

∂α1

∂xα1
1

. . .
∂αn

∂xαn
n
.

We endow Ck (A) with the norm (maximum norm of order k)

‖f‖Ck(A) = ‖f‖C(A) +
k∑

|α|=1

‖Dαf‖C(A) .

4 See also Section 7.2.2 and Example 7.4.
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If {fn} is a Cauchy sequence in Ck (A), all the sequences {Dαfn} with 0 ≤
|α| ≤ k are Cauchy sequences in C (A). From the theorems on term by term
differentiation of sequences, it follows that the resulting space is a Banach
space.

Remark 7.2. With the introduction of function spaces we are actually mak-
ing a step towards abstraction, regarding a function from a different perspec-
tive. In Calculus we see it as a point map while here we have to consider it as
a single element (or a point or a vector) of a vector space.

Summable and bounded functions. Let Ω be an open set in R
n and

p ≥ 1 a real number. Let X = Lp (Ω) be the set of functions f such that
|f |p is Lebesgue integrable in Ω. Identifying two functions f and g when they
are equal a.e. in Ω, Lp (Ω) becomes a Banach space5 when equipped with the
norm (integral norm of order p)

‖f‖Lp(Ω) =
(∫

Ω

|f |p
)1/p

.

The identification of two functions equal a.e. amounts to saying that an
element of Lp (Ω) is not a single function but, actually, an equivalence class
of functions, different from one another only on subsets of measure zero. At
first glance, this fact could be annoying, but after all, the situation is perfectly
analogous to considering a rational number as an equivalent class of fractions
(2/3, 4/6, 8/12 . . . represent the same number). For practical purposes one
may always refer to the more convenient representative of the class.

Let X = L∞ (Ω) the set of essentially bounded functions in Ω. Recall that
f : Ω → R (or C) is essentially bounded if there exists M such that

|f (x)| ≤M a.e. in Ω. (7.3)

The infimum of all numbers M with the property (7.3) is called essential
supremum of f , and denoted by

‖f‖L∞(Ω) = ess sup
Ω
|f | .

If we identify two functions when they are equal a.e., ‖f‖L∞(Ω) is a norm in
L∞ (Ω), and L∞ (Ω) becomes a Banach space.

• Hölder inequality. The following inequality is of fundamental importance
∣∣∣∣
∫

Ω

fg

∣∣∣∣ ≤ ‖f‖Lp(Ω) ‖g‖Lq(Ω) , (7.4)

where q = p/(p − 1) is the conjugate exponent of p, allowing also the case
p = 1, q = ∞.
5 See e.g. Yoshida [37].
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Note that, if Ω has finite measure and 1 ≤ p1 < p2 ≤ ∞, from (7.4) we
have, choosing g ≡ 1, p = p2/p1 and q = p2/(p2 − p1):

∣∣∣∣
∫

Ω

|f |p1
∣∣∣∣ ≤ |Ω|1/q ‖f‖p1Lp2 (Ω)

and therefore Lp2 (Ω) ⊂ Lp1 (Ω). If the measure of Ω is infinite, this inclusion
is not true, in general; for instance, f ≡ 1 belongs to L∞ (R) but is not in
Lp (R) for 1 ≤ p <∞.

7.2.2 Inner product and Hilbert Spaces

Let X be a linear space over R. An inner or scalar product in X is a function

(·, ·) : X ×X → R

with the following three properties. For every x, y, z ∈ X and scalars λ, μ ∈ R:

1. (x, x) ≥ 0 and (x, x) = 0 if and only if x = 0 (positivity);
2. (x, y) = (y, x) (symmetry);
3. (μx+ λy, z) = μ (x, z) + λ (y, z) (bilinearity).

A linear space endowed with an inner product is called an inner product
space. Property 3 shows that the inner product is linear with respect to its
first argument. From 2, the same is true for the second argument as well.
Then, we say that (·, ·) constitutes a symmetric bilinear form in X. When
different inner product spaces are involved it may be necessary the use of
notations like (·, ·)X , to avoid confusion.

Remark 7.3. If the scalar field is C, then

(·, ·) : X ×X → C

and property 2 has to be replaced by 2bis: (x, y) = (y, x) where the bar denotes
complex conjugation. As a consequence, we have

(z, μx+ λy) = μ (z, x) + λ (z, y)

and we say that (·, ·) is antilinear with respect to its second argument or that
it is a sesquilinear form in X.

An inner product induces a norm, given by

‖x‖ =
√

(x, x). (7.5)

In fact, properties 1 and 2 in the definition of norm are immediate, while
the triangular inequality is a consequence of the following quite important
theorem.
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Theorem 7.7. Let x, y ∈ X. Then:

(1) Schwarz’s inequality:

|(x, y)| ≤ ‖x‖ ‖y‖ . (7.6)

Moreover equality holds in (7.6) if and only if x and y are linearly dependent.

(2) Parallelogram law:

‖x+ y‖2 + ‖x− y‖2 = 2 ‖x‖2 + 2 ‖y‖2 .
The parallelogram law generalizes an elementary result in euclidean plane

geometry: in a parallelogram, the sum of the squares of the sides length equals
the sum of the squares of the diagonals length. The Schwarz inequality implies
that the inner product is continuous; in fact, writing

(w, z)− (x, y) = (w − x, z) + (x, z − y)
we have

|(w, z)− (x, y)| ≤ ‖w − x‖ ‖z‖+ ‖x‖ ‖z − y‖
so that, if w → x and z → y, then (w, z) → (x, y).

Proof (1). We mimic the finite-dimensional proof. Let t ∈ R and x, y ∈ X.
Using the properties of the inner product and (7.5), we may write:

0 ≤ (tx+ y, tx+ y) = t2 ‖x‖2 + 2t (x, y) + ‖y‖2 ≡ P (t) .

Thus, the second degree polynomial P (t) is always nonnegative, whence

(x, y)2 − ‖x‖2 ‖y‖2 ≤ 0

which is the Schwarz inequality. Equality is possible only if tx+ y = 0, i.e. if
x and y are linearly dependent.

Proof (2). Just observe that

‖x± y‖2 = (x± y, y ± y) = ‖x‖2 ± 2 (x, y) + ‖y‖2 . (7.7)

�

Definition 7.6. LetH be an inner product space. We say thatH is a Hilbert
space if it is complete with respect to the norm (7.5), induced by the inner
product.

Two Hilbert spaces H1 and H2 are isomorphic if there exists a linear map
L : H1 → H2 which preserves the inner product, i.e.:

(x, y)H1
= (Lx,Ly)H2

∀x, y ∈ H1.

In particular
‖x‖H1

= ‖Lx‖H2
.
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Example 7.3. Rn is a Hilbert space with respect to the usual inner product

(x,y)
Rn = x · y =

n∑
j=1

xjyj , x = (x1, . . . , xn) , y =(y1, . . . , yn).

The induced norm is

‖x‖ =
√

x · x =
n∑
j=1

x2
j .

More generally, if A = (aij)i,j=1,...,n is a square matrix of order n, symmetric
and positive,

(x,y)A = x ·Ay = Ax · y =
n∑

i,j=1

aijxiyj (7.8)

defines another scalar product in Rn. Actually, every inner product in Rn may
be written in the form (7.8), with a suitable matrix A.
C
n is a Hilbert space with respect to the inner product

x · y =
n∑
j=1

xjyj x = (x1, . . . , xn) ,y =(y1, . . . , yn).

It is easy to show that every real (resp. complex) linear space of dimension
n is isomorphic to Rn (resp. Cn).

Example 7.4. L2(Ω) is a Hilbert space (perhaps the most important one)
with respect to the inner product

(u, v)L2(Ω) =
∫

Ω

uv.

Remark 7.4. If Ω is fixed, we will simply use the notations (u, v)0 instead
of (u, v)L2(Ω) and ‖u‖0 instead of ‖u‖L2(Ω).

Example 7.5. Let l2
C

be the set of complex sequences x = {xm} such that
∞∑
m=1

|xm|2 <∞.

For x = {xm} and y = {ym}, define

(x,y)l2
C

=
∞∑
m=1

xmym.

Then (x,y)l2
C

is an inner product which makes l2
C

a Hilbert space over C.
This space constitutes the discrete analogue of L2(0, 2π). Indeed, each u ∈
L2 (0, 2π) has an expansion in Fourier series (Appendix A)

u(x) =
∑
m∈Z

ûme
imx,
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where

ûm =
1
2π

∫ 2π

0

u (x) e−imxdx.

Note that ûm = û−m, since u is a real function. From Parseval’s identity, we
have

(u, v)0 =
∫ 2π

0

uv = 2π
∑
m∈Z

ûmv̂−m

and

‖u‖20 =
∫ 2π

0

u2 = 2π
∑
m∈Z

|ûm|2 .

Example 7.6. A Sobolev space. It is possible to use the frequency space in-
troduced in the previous example to define the derivative of a function in
L2 (0, 2π) in a weak or generalized sense. Let u ∈ C1 (R), 2π−periodic. The
Fourier coefficients of u′ are given by

û′m = imûm

and we may write

‖u′‖20 =
∫ 2π

0

(u′)2 = 2π
∑
m∈Z

m2 |ûm|2 . (7.9)

Thus, both sequences {ûm} and {mûm} belong to l2
C
. But the right hand side

in (7.9) does not involve u′ directly, so that it makes perfect sense to define

H1
per (0, 2π) =

{
u ∈ L2 (0, 2π) : {ûm} , {mûm} ∈ l2C

}

and introduce the inner product

(u, v)1,2 = (2π)
∑
m∈Z

[
1 +m2

]
ûmv̂−m

which makes H1
per (0, 2π) into a Hilbert space. Since

{mûm} ∈ l2C,
with each u ∈ H1

per (0, 2π) is associated the function v ∈ L2 (0, 2π) given by

v(x) =
∑
m∈Z

imûme
imx.

We see that v may be considered as a generalized derivative of u and
H1
per (0, 2π) as the space of functions in L2 (0, 2π), together with their first

derivatives. Let u ∈ H1
per (0, 2π) and

u(x) =
∑
m∈Z

ûme
imx.
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Since ∣∣ûmeimx
∣∣ = 1

m
m |ûm| ≤ 1

2

(
1
m2

+m2 |ûm|2
)

the Weierstrass test entails that the Fourier series of u converges uniformly in
R. Thus u has a continuous, 2π−periodic extension to all R. Finally observe
that, if we use the symbol u′ also for the generalized derivative of u, the inner
product in H1

per (0, 1) can be written in the form

(u, v)1,2 =
∫ 1

0

(u′v′ + uv).

7.2.3 Projections

Hilbert spaces are the ideal setting to solve problems in infinitely many di-
mensions. They unify through the inner product and the induced norm, both
an analytical and a geometric structure. As we shall shortly see, we may co-
herently introduce the concepts of orthogonality, projection and basis, prove
a infinite-dimensional Pythagoras’ Theorem and introduce other operations,
extremely useful from both a theoretical and practical point of view.

As in finite-dimensional linear spaces, two elements x, y belonging to an
inner product space are called orthogonal or normal if (x, y) = 0, and we
write x⊥y.

Now, if we consider a subspace V of Rn, e.g. a hyperplane through the
origin, every x ∈ R

n has a unique orthogonal projection on V . In fact, if
dimV = k and the unit vectors v1,v2, . . . ,vk constitute an orthonormal basis
in V , we may always find an orthonormal basis in Rn, given by

v1,v2, . . . ,vk,wk+1, . . . ,wn,

where wk+1, . . . ,wn are suitable unit vectors. Thus, if

x =
k∑
j=1

xjvj +
n∑

j=k+1

xjwj ,

the projection of x on V is given by

PV x =
k∑
j=1

xjvj .

On the other hand, the projection PV x can be characterized through the
following property, which does not involve a basis in Rn: PV x is the point in
V that minimizes the distance from x, that is

|PV x− x| = inf
y∈V

|y − x| . (7.10)
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In fact, if y =
∑k
j=1 yjvj , we have

|y − x|2 =
k∑
j=1

(yj − xj)2 +
n∑

j=k+1

x2
j ≥

n∑
j=k+1

x2
j = |PV x− x|2 .

In this case, the “infimum” in (7.10) is actually a “minimum”.
The uniqueness of PV x follows from the fact that, if y∗ ∈ V and

|y∗−x| = |PV x− x| ,
then we must have

k∑
j=1

(y∗j − xj)2 = 0,

whence y∗j = xj for j = 1, . . . , k, and therefore y∗ = PV x. Since

(x− PV x)⊥v, ∀v ∈ V
every x ∈ Rn may be written in a unique way in the form

x = y + z

with y ∈ V and z ∈ V ⊥, where V ⊥ denotes the subspace of the vectors
orthogonal to V .

Then, we say that Rn is direct sum of the subspaces V and V ⊥ and we
write

R
n = V ⊕ V ⊥.

Finally,
|x|2 = |y|2 + |z|2

which is the Pythagoras’ Theorem in Rn.
We may extend all the above consideration to infinite-dimensional Hilbert

spaces H, if we consider closed subspaces V of H. Here closed means with
respect to the convergence induced by the norm. More precisely, a subset
U ⊂ H is closed in H if it contains all the limit points of sequences in U .
Observe that if V has finite dimension k, it is automatically closed, since it
is isomorphic to Rk (or Ck). Also, a closed subspace of a Hilbert space is a
Hilbert space as well, with respect to the inner product in H.

Unless stated explicitly, from now on we consider Hilbert spaces
over R (real Hilbert spaces), endowed with inner product (·, ·) and induced
norm ‖·‖.
Theorem 7.8 (Projection Theorem). Let V be a closed subspace of a
Hilbert space H. Then, for every x ∈ H, there exists a unique element
PV x ∈ V such that

‖PV x− x‖ = inf
v∈V

‖v − x‖ . (7.11)
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Fig. 7.1. Projection Theorem

Moreover, the following properties hold:

1. PV x = x if and only if x ∈ V .
2. Let QV x = x− PV x. Then QV x ∈ V ⊥and

‖x‖2 = ‖PV x‖2 + ‖QV x‖2 .
Proof. Let

d = inf
v∈V

‖v − x‖ .
By the definition of least upper bound, we may select a sequence {vm} ⊂ V ,
such that ‖vm − x‖ → d as m → ∞. In fact, for every integer m ≥ 1 there
exists vm ∈ V such that

d ≤ ‖vm − x‖ < d+
1
m
. (7.12)

Letting m→∞ in (7.12), we get ‖vm − x‖ → d.
We now show that {vm} is a Cauchy sequence. In fact, using the parallel-

ogram law for the vectors vk − x and vm − x, we obtain

‖vk + vm − 2x‖2 + ‖vk − vm‖2 = 2 ‖vk − x‖2 + 2 ‖vm − x‖2 . (7.13)

Since vk+vm

2 ∈ V , we may write

‖vk + vm − 2x‖2 = 4
∥∥∥∥
vk + vm

2
− x
∥∥∥∥

2

≥ 4d2

whence, from (7.13):

‖vk − vm‖2 = 2 ‖vk − x‖2 + 2 ‖vm − x‖2 − ‖vk + vm − 2x‖2
≤ 2 ‖vk − x‖2 + 2 ‖vm − x‖2 − 4d2.

Letting k,m→∞, the right hand side goes to zero and therefore

‖vk − vm‖ → 0

as well. This proves that {vm} is a Cauchy sequence.
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Since H is complete, vm converges to an element w ∈ H which belongs
to V , because V is closed . Using the norm continuity (Proposition 7.1) we
deduce

‖vm − x‖ → ‖w − x‖ = d

so that w realizes the minimum distance from x among the elements in V .
We have to prove the uniqueness of w. Suppose w̄ ∈ V is another element

such that ‖w̄ − x‖ = d. The parallelogram law, applied to the vectors w − x
and w̄ − x, yields

‖w − w̄‖2 = 2 ‖w − x‖2 + 2 ‖w̄ − x‖2 − 4
∥∥∥∥
w + w̄

2
− x
∥∥∥∥

2

≤ 2d2 + 2d2 − 4d2 = 0

whence w = w̄.
We have proved that there exists a unique element w = PV x ∈ V such

that
‖x− PV x‖ = d.

To prove 1, observe that, since V is closed, x ∈ V if and only if d = 0, which
means x = PV x.

To show 2, let QV x = x− PV x, v ∈ V and t ∈ R. Since PV x+ tv ∈ V for
every t, we have:

d2 ≤ ‖x− (PV x+ tv)‖2 = ‖QV x− tv‖2
= ‖QV x‖2 − 2t (QV x, v) + t2 ‖v‖2
= d2 − 2t (QV x, v) + t2 ‖v‖2 .

Erasing d2 and dividing by t > 0, we get

(QV x, v) ≤ t

2
‖v‖2

which forces (QV x, v) ≤ 0; dividing by t < 0 we get

(QV x, v) ≥ t

2
‖v‖2

which forces (QV x, v) ≥ 0. Thus (QV x, v) = 0 which means QV x ∈ V ⊥ and
implies that

‖x‖2 = ‖PV x+QV x‖2 = ‖PV x‖2 + ‖QV x‖2 ,

concluding the proof. �

The elements PV x, QV x are called orthogonal projections of x on V
and V ⊥, respectively. The least upper bound in (7.11) is actually aminimum.
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Moreover thanks to properties 1, 2, we say that H is direct sum of V and V ⊥:

H = V ⊕ V ⊥.

Note that
V ⊥ = {0} if and only if V = H.

Remark 7.5. Another characterization of PV x is the following (see Exercise
7.14): u = PV x if and only if

{
1. u ∈ V
2. (x− u, v) = 0, ∀v ∈ V.

Remark 7.6. It is useful to point out that, even if V is not a closed subspace
of H, the subspace V ⊥ is always closed. In fact, if yn → y and {yn} ⊂ V ⊥,
we have, for every x ∈ V ,

(y, x) = lim
n→∞ (yn, x) = 0

whence y ∈ V ⊥.

Example 7.7. Let Ω ⊂ R
n be a set of finite measure. Consider in L2 (Ω)

the one-dimensional subspace V of constant functions (a basis is given by
f ≡ 1, for instance). Since it is finite-dimensional, V is closed in L2 (Ω) .
Given f ∈ L2 (Ω), to find the projection PV f , we solve the minimization
problem

min
λ∈R

∫

Ω

(f − λ)2.

Since ∫

Ω

(f − λ)2 =
∫

Ω

f2 − 2λ
∫

Ω

f + λ2 |Ω| ,

we see that the minimizer is

λ =
1
|Ω|
∫

Ω

f.

Therefore

PV f =
1
|Ω|
∫

Ω

f and QV f = f − 1
|Ω|
∫

Ω

f.

Thus, the subspace V ⊥ is given by the functions g ∈ L2 (Ω) with zero mean
value. In fact these functions are orthogonal to f ≡ 1:

(g, 1)0 =
∫

Ω

g = 0.
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7.2.4 Orthonormal bases

A Hilbert space is said to be separable when there exists a countable dense
subset ofH. An orthonormal basis in a separable Hilbert space H is a sequence
{wk}k≥1 ⊂ H such that6

{
(wk, wj) = δkj k, j ≥ 1
‖wk‖ = 1 k ≥ 1

and every x ∈ H may be expanded in the form

x =
∞∑
k=1

(x,wk)wk. (7.14)

The series (7.14) is called generalized Fourier series and the numbers
ck = (x,wk) are the Fourier coefficients of x with respect to the basis {wk}.
Moreover (Pythagoras again!):

‖x‖2 =
∞∑
k=1

(x,wk)
2
.

Given an orthonormal basis {wk}k≥1, the projection of x ∈ H on the subspace
V spanned by, say, w1, . . . , wN is given by

PV x =
N∑
k=1

(x,wk)wk.

An example of separable Hilbert space is L2 (Ω), Ω ⊆ Rn. In particular, the
set of functions

1√
2π

,
cosx√
π

,
sinx√
π

,
cos 2x√

π
,

sin 2x√
π

, . . . ,
cosmx√

π
,

sinmx√
π

, . . .

constitutes an orthonormal basis in L2 (0, 2π) (see Appendix A).
It turns out that:

Proposition 7.2. Every separable Hilbert space H admits an orthonormal
basis.

Proof (sketch). Let {zk}k≥1 be dense in H. Disregarding, if necessary, those
elements which are spanned by other elements in the sequence, we may assume
that {zk}k≥1 constitutes an independent set, i.e. every finite subset of {zk}k≥1

is composed by independent elements.
Then, an orthonormal basis {wk}k≥1 is obtained by applying to {zk}k≥1

the following so called Gram-Schmidt process. First, construct by induction a
6 δjk is the Kronecker symbol.
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sequence {w̃}k≥1 as follows. Let w̃1 = z1. Once w̃k−1 is known, we construct
w̃k by subtracting from zk its components with respect to w̃1, . . . , w̃k−1:

w̃k = zk − (zk, w̃k−1)
‖w̃k−1‖2

w̃k−1 − · · · − (zk, w̃1)
‖w̃1‖2

w̃1.

In this way, w̃k is orthogonal to w̃1, . . . , w̃k−1. Finally, set wk = w̃k/ ‖w̃k−1‖.
Since {zk}k≥1 is dense inH, then {wk}k≥1 is dense inH as well. Thus {wk}k≥1

is an orthonormal basis. �

In the applications, orthonormal bases arise from solving particular bound-
ary value problems, often in relation to the separation of variables method.
Typical examples come from the vibrations of a non homogeneous string or
from diffusion in a rod with non constant thermal properties cv, ρ, κ. The first
example leads to the wave equation

ρ (x)utt − τuxx = 0.

Separating variables (u(x, t) = v (x) z (t)), we find for the spatial factor the
equation

τv′′ + λρv = 0.

In the second example we are led to

(κv′)′ + λcvρv = 0.

These equations are particular cases of a general class of ordinary differential
equations of the form

(pu′)′ + qu+ λwu = 0 (7.15)

called Sturm-Liouville equations. Usually one looks for solutions of (7.15) in
an interval (a, b), −∞ ≤ a < b ≤ +∞, satisfying suitable conditions at the end
points. The natural assumptions on p and q are p �= 0 in (a, b) and p, q, p−1

locally integrable in (a, b). The function w plays the role of a weight function,
continuous in [a, b] and positive in (a, b) .

In general, the resulting boundary value problem has non trivial solutions
only for particular values of λ, called eigenvalues. The corresponding solutions
are called eigenfunctions and it turns out that, when suitably normalized,
they constitute an orthonormal basis in the Hilbert space L2

w (a, b), the set of
Lebesgue measurable functions in (a, b) such that

‖u‖2L2
w

=
∫ b

a

u2 (x)w (x) dx <∞,

endowed with the inner product

(u, v)L2
w

=
∫ b

a

u (x) v (x)w (x) dx.
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We list below some examples.

Example 7.8 (Legendre polynomials). Consider the problem
((

1− x2
)
u′
)′

+ λu = 0 in (−1, 1)

with weighted Neumann conditions
(
1− x2

)
u′ (x)→ 0 as x→ ±1.

The differential equation is known as Legendre’s equation. The eigenvalues
are λn = n (n+ 1), n = 0, 1, 2, ... The corresponding eigenfunctions are the
Legendre polynomials, defined by L0 (x) = 1, L1 (x) = x,

(n+ 1)Ln+1 = (2n+ 1)xLn − nLn−1 (n > 1)

or by Rodrigues’ formula

Ln (x) =
1

2nn!
dn

dxn
(
x2 − 1

)n
(n ≥ 0) .

For instance, L2 (x) = (3x2 − 1)/2, L3 (x) = (5x3 − 3x)/2. The normalized
polynomials √

2n+ 1
2

Ln

constitute an orthonormal basis in L2 (−1, 1) (here w (x) ≡ 1). Every function
f ∈ L2 (−1, 1) has an expansion

f (x) =
∞∑
n=0

fnLn (x)

where fn = 2n+1
2

∫ 1

−1
f (x)Ln (x) dx, with convergence in L2 (−1, 1).

Example 7.9 (Hermite polynomials). Consider the problem
{
u′′ − 2xu′ + 2λu = 0 in (−∞,+∞)

e−x
2/2u (x) → 0 as x→ ±∞.

The differential equation is known as Hermite’s equation (see Exercise 7.16)
and may be written in the form (7.15):

(e−x
2
u′)′ + 2λe−x

2
u = 0

which shows the proper weight function w (x) = e−x
2
. The eigenvalues are

λn = n, n = 0, 1, 2, . . .. The corresponding eigenfunctions are the Hermite
polynomials defined by Rodrigues’ formula

Hn (x) = (−1)n ex
2 dn

dxn
e−x

2
(n ≥ 0) .
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For instance

H0 (x) = 1, H1 (x) = 2x, H2 (x) = 4x2 − 2, H3 (x) = 8x3 − 12x.

The normalized polynomials π−1/4 (2nn!)−1/2
Hn constitute an orthonormal

basis in L2
w (R), with w (x) = e−x

2
. Every f ∈ L2

w (R) has an expansion

f (x) =
∞∑
n=0

fnHn (x)

where fn = [π1/22nn!]−1
∫
R
f (x)Hn (x) e−x

2
dx, with convergence in L2

w (R).

Example 7.10 (Bessel functions). After separating variables in the model
for the vibration of a circular membrane the following parametric Bessel equa-
tion of order p arises:

x2u′′ + xu′ +
(
λx2 − p2

)
u = 0 x ∈ (0, a) (7.16)

where p ≥ 0, λ ≥ 0, with the boundary conditions

u (0) finite, u (a) = 0. (7.17)

Equation (7.16) may be written in Sturm-Liouville form as

(xu′)′ +
(
λx− p2

x

)
u = 0

which shows the proper weight function w (x) = x. The simple rescaling z =√
λx reduces (7.16) to the Bessel equation of order p

z2 d
2u

dz2
+ z

du

dz
+
(
z2 − p2

)
u = 0 (7.18)

where the dependence on the parameter λ is removed. The only bounded
solutions of (7.18) are the Bessel functions of first kind and order p, given by

Jp (z) =
∞∑
k=0

(−1)k

Γ (k + 1)Γ (k + p+ 1)

(z
2

)p+2k

where

Γ (s) =
∫ ∞

0

e−tts−1dt (7.19)

is the Euler Γ−function. In particular, if p = n ≥ 0, integer:

Jn (z) =
∞∑
k=0

(−1)k

k! (k + n)!

(z
2

)n+2k

.
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Fig. 7.2. Graphs of J0,J1 and J2

For every p, there exists an infinite, increasing sequence {αpj}j≥1 of positive
zeroes of Jp

Jp (αpj) = 0 (j = 1, 2, . . .).

Then, the eigenvalues of problem (7.16), (7.17) are given by λpj =
(αpj
a

)2

,

with corresponding eigenfunctions upj (x) = Jp

(αpj
a
x
)
. The normalized

eigenfunctions √
2

aJp+1 (αpj)
Jp

(αpj
a
x
)

constitute an orthonormal basis in L2
w (0, a), with w (x) = x. Every function

f ∈ L2
w (0, a) has an expansion in Fourier-Bessel series

f (x) =
∞∑
j=1

fjJp

(αpj
a
x
)
,

where

fj =
2

a2J2
p+1 (αpj)

∫ a

0

xf (x)Jp
(αpj
a
x
)
dx,

convergent in L2
w (0, a).

7.3 Linear Operators and Duality

7.3.1 Linear operators

Let H1 and H2 be Hilbert spaces. A linear operator from H1 into H2 is a
function

L : H1 → H2
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such that7, ∀α, β ∈ R and ∀x, y ∈ H1

L(αx+ βy) = αLx+ βLy.

For every linear operator we define its Kernel, N (L) and Range, R (L), as
follows:

Definition 7.7. The kernel of L, is the pre-image of the null vector in H2

N (L)= {x ∈ H1 : Lx = 0} .
The range of L is the set of all outputs from points in H1

R (L)= {y ∈ H2 : ∃x ∈ H1, Lx = y} .
N (L) and R (L) are linear subspaces of H1 and H2, respectively.

Our main objects will be linear bounded operators.

Definition 7.8. A linear operator L : H1 → H2 is bounded if there exists a
number C such that

‖Lx‖H2
≤ C ‖x‖H1

, ∀x ∈ H1. (7.20)

The number C controls the expansion rate operated by L on the elements
of H1. In particular, if C < 1, L contracts the sizes of the vectors in H1.

If x �= 0, using the linearity of L, we may write (7.20) in the form
∥∥∥∥∥L
(

x

‖x‖H1

)∥∥∥∥∥
H2

≤ C

which is equivalent to

sup
‖x‖H1

=1

‖Lx‖H2
= K <∞, (7.21)

since x/ ‖x‖H1
is a unit vector in H1. Clearly K ≤ C.

Proposition 7.3. A linear operator L : H1 → H2 is bounded if and only if it
is continuous.

Proof. Let L be bounded. From (7.20) we have,∀x, x0 ∈ H1,

‖L (x− x0)‖H2
≤ C ‖x− x0‖H1

so that, if ‖x− x0‖H1
→ 0, also ‖Lx− Lx0‖H2

= ‖L (x− x0)‖H2
→ 0. This

shows the continuity of L.
7 Notation: if L is linear, when no confusion arises, we may write Lx instead of
L (x).
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Let L be continuous. In particular, L is continuous at x = 0 so that there
exists δ such that

‖Lx‖H2
≤ 1 if ‖x‖H1

≤ δ.

Choose now y ∈ H1 with ‖y‖H1
= 1 and let z = δy. We have ‖z‖H1

= δ which
implies

δ ‖Ly‖H2
= ‖Lz‖H2

≤ 1

or
‖Ly‖H2

≤ 1
δ

and (7.21) holds with K ≤ C = 1/δ. �

Given two Hilbert spaces H1 and H2, we denote by

L (H1,H2)

the family of all linear bounded operators from H1 into H2. If H1 = H2 we
simply write L (H).
L (H1,H2) becomes a linear space if we define, for x ∈ H1 and λ ∈ R,

(G+ L) (x) = Gx+ Lx

(λL)x = λLx

for every L,G ∈ L(H1,H1) Also, we may use the number K in (7.21) as a
norm in L (H1,H2)

‖L‖L(H1,H2)
= sup

‖x‖H1
=1

‖Lx‖H2
. (7.22)

When no confusion arises we will write simply ‖L‖ instead of ‖L‖L(H1,H2)
.

Thus, for every L ∈ L (H1,H2), we have

‖Lx‖H2
≤ ‖L‖ ‖x‖H1

.

The resulting space is complete, so that:

Proposition 7.4. Endowed with the norm (7.22), L (H1,H2) is a Banach
space.

Example 7.11. Let A be an m× n real matrix. The map

L : x �−→ Ax

is a linear operator from R
n into Rm (see Exercise 7.1).

Example 7.12. Let V be a closed subspace of a Hilbert space H. The pro-
jections

x �−→ PV x, x �−→ QV x,
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defined in Theorem 7.8, are bounded linear operators from H into H. In fact,
from ‖x‖2 = ‖PV x‖2 + ‖QV x‖2, it follows immediately that

‖PV x‖ ≤ ‖x‖ , ‖QV x‖ ≤ ‖x‖

so that (7.20) holds with C = 1. Since PV x = x when x ∈ V and QV x = x
when x ∈ V ⊥, it follows that ‖PV ‖ = ‖QV ‖ = 1. Finally, observe that

N (PV ) = R (QV ) = V ⊥ and N (QV ) = R (PV ) = V.

Example 7.13. Let V and H be Hilbert spaces with8 V ⊂ H. Considering
an element in V as an element of H, we define the operator IV→H : V → H,

IV→H (u) = u,

which is called embedding of V into H. IV→H is clearly a linear operator and
it is also bounded if there exists a constant C such that

‖u‖H ≤ C ‖u‖V , for every u ∈ V.

In this case, we say that V is continuously embedded in H and we write

V ↪→ H.

For instance, H1
per (0, 2π) ↪→ L2 (0, 2π) .

7.3.2 Functionals and dual space

WhenH2 = R (or C, for complex Hilbert spaces), a linear operator L : H → R

takes the name of functional.

Definition 7.9. The collection of all bounded linear functionals on a Hilbert
space H is called dual space of H and denoted by H∗ (instead of L (H,R)).

Example 7.14. Let H = L2 (Ω), Ω ⊆ Rn and fix g ∈ L2 (Ω). The functional
defined by

Lg : f �−→
∫

Ω

fg

is linear and bounded (see Exercise 7.2).

Example 7.15. A continuous functional is induced by the inner product with
a fixed element in L2 (Ω): let H be a Hilbert space, for fixed y ∈ H, the
functional

L1 : x �−→ (x, y)

is continuous (see Exercise 7.3).

8 The inner products in V and H may be different.
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The possibility to identify the dual space of a Hilbert space H is crucial in
many instances. It’s easy to show that the inner product with a fixed element
y in H defines an element of H∗, whose norm is exactly ‖y‖. From Linear
Algebra it is well known that all linear functionals in a finite-dimensional
space can be represented in that way. Precisely, if L is linear in Rn, there
exists a vector a ∈ Rn such that, for every h ∈ Rn,

Lh = a · h
and ‖L‖ = |a|. The following theorem says that an analogous result holds in
Hilbert spaces.

Theorem 7.9 (Riesz’s Representation Theorem). Let H be a Hilbert
space. For every L ∈ H∗ there exists a unique uL ∈ H such that:

Lx = (uL, x) for every x ∈ H.
Moreover ‖L‖ = ‖uL‖ .

Proof. Let N be the kernel of L. If N = H, then L is the null operator and
uL = 0. If N ⊂ H, then N is a closed subspace of H. In fact, if {xn} ⊂ N
and xn → x, then 0 = Lxn → Lx so that x ∈ N ; thus N contains all its limit
points and therefore is closed.

Then, by the Projection Theorem, there exists z ∈ N⊥, z �= 0. Thus
Lz �= 0 and, given any x ∈ H, the element

w = x− Lx

Lz
z

belongs to N . In fact

Lw = L

(
x− Lx

Lz
z

)
= Lx− Lx

Lz
Lz = 0.

Since z ∈ N⊥, we have

0 = (z, w) = (z, x)− Lx

Lz
‖z‖2

which entails

Lx =
L (z)
‖z‖2 (z, x) .

Therefore if uL = L (z) ‖z‖−2
z, then Lx = (uL, x).

For the uniqueness, observe that, if v ∈ H and

Lx = (v, x) for every x ∈ H,
subtracting this equation from Lx = (uL, x), we infer

(uL − v, x) = 0 for every x ∈ H
which forces v = uL.
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To show ‖L‖ = ‖uL‖, use Schwarz’s inequality

|(uL, x)| ≤ ‖x‖ ‖uL‖
to get

‖L‖ = sup
‖x‖=1

|Lx| = sup
‖x‖=1

|(uL, x)| ≤ ‖uL‖ .

On the other hand,

‖uL‖2 = (uL, uL) = LuL ≤ ‖L‖ ‖uL‖
whence

‖uL‖ ≤ ‖L‖ .
Thus ‖L‖ = ‖uL‖. �

The Riesz’s map R : H∗ → H given by

L �−→ uL

is a canonical isometry, since it preserves the norm:

‖L‖ = ‖uL‖ .
We say that uL is the Riesz element associated with L, with respect to the
scalar product (·, ·). Moreover, H∗ endowed with the inner product

(L1, L2)H∗ = (uL1 , uL2)

is clearly a Hilbert space. Thus, in the end, the Representation Theorem allows
the identification of a Hilbert space with its dual.

Typically, L2 (Ω) or l2 are identified with their duals.

Remark 7.7. Warning : there are situations in which the above canonical
identification requires some care. A typical case occurs when dealing with a
pair of Hilbert spaces V , H such that

V ↪→ H and H∗ ↪→ V ∗.

In this conditions it is possible to identify H and H∗ and write

V ↪→ H ↪→ V ∗,

but at this point the identification of V with V ∗ is forbidden, since it would
give rise to nonsense!

Remark 7.8. A few words about notations. The symbol (·, ·) or (·, ·)H de-
notes the inner product in a Hilbert space H. Let now L ∈ H∗. For the action
of the functional L on an element x ∈ H we used the symbol Lx. Sometimes,
when it is useful or necessary to emphasize the duality (or pairing) between
H and H∗, we can use notations 〈L, x〉∗ or H∗〈L, x〉H .
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7.4 Abstract Variational Problems

7.4.1 Bilinear forms and the Lax-Milgram Theorem

In the variational formulation of boundary value problems a key role is played
by bilinear forms. Given two linear spaces V1, V2, a bilinear form in V1×V2

is a function
a : V1 × V2 → R

satisfying the following properties:

i) For every y ∈ V2, the function

x �−→ a(x, y)

is linear in V1.

ii) For every x ∈ V1, the function

y �−→ a(x, y)

is linear in V2.

When V1 = V2, we simply say that a is a bilinear form in V .

Remark 7.9. In complex inner product spaces we define sesquilinear forms,
instead of bilinear forms, replacing ii) by:

iibis) for every x ∈ V1, the function

y �−→ a(x, y)

is anti-linear9 in V2.

Here are some examples.

• A typical example of bilinear form in a Hilbert space is its inner product.

• The formula

a (u, v) =
∫ b

a

(p(x)u′v′ + q(x)u′v + r(x)uv) dx

where p, q, r are bounded functions, defines a bilinear form in C1 ([a, b]).

More generally, if Ω is a bounded domain in Rn,

a(u,v) =
∫

Ω

(α ∇u · ∇v + ub (x) · ∇v + a0 (x)uv) dx (α > 0) ,

or
a(u,v) =

∫

Ω

α ∇u · ∇v dx +
∫

∂Ω

huv dσ (α > 0) ,

(b, a0, h bounded) are bilinear forms in C1
(
Ω
)
.

9 That is a (x, αy + βz) = αa (x, y) + βa (x, z) .
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• A bilinear form in C2
(
Ω
)

involving higher order derivatives is

a (u, v) =
∫

Ω

Δu Δv dx.

Let V be a Hilbert space, a be a bilinear form in V and F ∈ V ∗. Consider
the following problem, called abstract variational problem:

⎧⎨
⎩

Find u ∈ V
such that

a (u, v) = 〈F, v〉∗ ∀v ∈ V.
(7.23)

As we shall see, many boundary values problems can be recast in this
form. The fundamental result is:

Theorem 7.10 (Lax-Milgram). Let V be a real Hilbert space endowed with
inner product (·, ·) and norm ‖·‖. Let a = a (u, v) be a bilinear form in V . If:

i) a is continuous, i.e. there exists a constant M such that

|a(u, v)| ≤M ‖u‖ ‖v‖ , ∀u, v ∈ V ;

ii) a is V−coercive, i.e. there exists a constant α > 0 such that

a(v, v) ≥ α ‖v‖2 , ∀v ∈ V, (7.24)

then there exists a unique solution u ∈ V of problem (7.23). Moreover, the
following stability estimate holds:

‖u‖ ≤ 1
α
‖F‖V ∗ . (7.25)

Remark 7.10. The coerciveness inequality (7.24) may be considered as an
abstract version of the energy or integral estimates we met in the previous
chapters. Usually, it is the key estimate to prove in order to apply Theorem
7.10.

Remark 7.11. Inequality (7.25) is called stability estimate for the following
reason. The functional F, element of V ∗, encodes the “data” of the problem
(7.23). Since for every F there is a unique solution u(F ), the map

F �−→ u(F )

is a well defined function from V ∗ onto V . Also, everything here has a linear
nature, so that the solution map is linear as well. To check it, let λ, μ ∈ R, F1,
F2 ∈ V ∗ and u1, u2 the corresponding solutions. The bilinearity of a, gives

a(λu1 + μu2, v) = λa(u1, v) + μa(u2, v) =
= λF1v + μF2v.
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Therefore, the same linear combination of the solutions corresponds to a lin-
ear combination of the data; this expresses the principle of superposition for
problem (7.23). Applying now (7.25) to u1− u2, we obtain

‖u1 − u2‖ ≤ 1
α
‖F1 − F2‖V ∗ .

Thus, close data imply close solutions. The stability constant 1/α plays an
important role, since it controls the norm-variation of the solutions in terms
of the variations on the data, measured by ‖F1 − F2‖V ∗ . This entails, in par-
ticular, that the more the coerciveness constant α is large, the more “stable”
is the solution.

Proof (Theorem 7.10). We split it into several steps.

1. Reformulation of problem (7.23). For every fixed u ∈ V , by the continuity
of a, the linear map

v �→ a (u, v)

is bounded in V and therefore it defines an element of V ∗. From Riesz’s
Representation Theorem, there exists a unique A [u] ∈ V such that

a (u, v) = (A[u],v) , ∀v ∈ V. (7.26)

Since F ∈ V ∗ as well, there exists a unique zF ∈ V such that

Fv = (zF ,v) ∀v ∈ V
and moreover ‖F‖V ∗ = ‖zF ‖. Then, problem (7.23) can be recast in the
following way: ⎧⎨

⎩
Find u ∈ V
such that

(A [u] ,v) = (zF ,v) , ∀v ∈ V
which, in turn, is equivalent to finding u such that

A [u] = zF . (7.27)

We want to show that (7.27) has exactly one solution. To do this we show
that

A : V → V

is a linear, continuous, one-to-one, surjective map.

2. Linearity and continuity of A. We repeatedly use the definition of A and
the bilinearity of a. To show linearity, we write, for every u1, u2, v ∈ V and
λ1, λ2 ∈ R,

(A [λ1u1 + λ2u2] ,v) = a (λ1u1 + λ2u2, v) = λ1a (u1, v) + λ2a (u2, v)
= λ1 (A [u1] ,v) + λ2 (A [u2] ,v) = (λ1A [u1] + λ2A [u2] ,v)
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whence
A [λ1u1 + λ2u2] = λ1A [u1] + λ2A [u2] .

Thus A is linear and we may write Au instead of A [u]. For the continuity,
observe that

‖Au‖2 = (Au,Au) = a(u,Au)
≤ M ‖u‖ ‖Au‖

whence
‖Au‖ ≤M ‖u‖ .

3. A is one-to-one and has closed range, i.e.

N (A) = {0} and R (A) is a closed subspace of V.

In fact, the coercivity of a yields

α ‖u‖2 ≤ a (u, u) = (Au, u) ≤ ‖Au‖ ‖u‖
whence

‖u‖ ≤ 1
α
‖Au‖ . (7.28)

Thus, Au = 0 implies u = 0 and hence N (A) = {0}. To prove that R (A) is
closed we have to consider a sequence {ym} ⊂ R (A) such that

ym → y ∈ V
as m→∞, and show that y ∈ R (A). Since ym ∈ R (A) , there exists um such
that Aum = ym. From (7.28) we infer

‖uk − um‖ ≤ 1
α
‖yk − ym‖

and therefore, since {ym} is convergent, {um} is a Cauchy sequence. Since V
is complete, there exists u ∈ V such that

um → u

as m→∞ and the continuity of A yields ym = Aum → Au. Thus Au = y, so
that y ∈ R (A) and R (A) is closed.

4. A is surjective, that is R (A) = V . Suppose R (A) ⊂ V . Since R (A) is a
closed subspace, by the Projection Theorem there exists z �= 0, z ∈ R (A)⊥.
In particular, this implies

0 = (Az, z) = a (z, z) ≥ α ‖z‖2

whence z = 0. That is a contradiction. Therefore R (A) = V .
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5. Solution of problem (7.23). Since A is one-to-one and R (A) = V , there
exists exactly one solution u ∈ V of equation

Au = zF .

From point 1, u is the unique solution of problem (7.23) as well.

6. Stability estimate. From (7.28) with u = u, we obtain

‖u‖ ≤ 1
α
‖Au‖ =

1
α
‖zF ‖ =

1
α
‖F‖V ∗

and the proof is complete. �

7.4.2 Minimization of quadratic functionals

When a is symmetric, i.e. if

a (u, v) = a (v, u) ∀u, v ∈ V,
the abstract variational problem (7.23) is equivalent to a minimization prob-
lem. In fact, consider the quadratic functional

E (v) =
1
2
a (v, v)− 〈F, v〉∗ .

We have:

Theorem 7.11. Let a be symmetric. Then u is solution of problem (7.23) if
and only if u is a minimizer of E, that is

E (u) = min
v∈V

E (v) .

Proof. For every ε ∈ R and every “variation” v ∈ V we have

E (u+ εv)− E (u)

=
{

1
2
a (u+ εv, u+ εv)− 〈F, u+ εv〉∗

}
−
{

1
2
a (u, u)− 〈F, u〉∗

}

= ε {a (u, v)− 〈F, v〉∗}+
1
2
ε2a (v, v) .

Now, if u is the solution of problem (7.23), then a (u, v)−〈F, v〉∗ = 0. Therefore

E (u+ εv)− E (u) =
1
2
ε2a (v, v) ≥ 0

so that u minimizes E. On the other hand, if u is a minimizer of E, then

E (u+ εv)− E (u) ≥ 0,
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which entails
ε {a (u, v)− 〈F, v〉∗}+

1
2
ε2a (v, v) ≥ 0.

This inequality forces (why?)

a (u, v)− 〈F, v〉∗ = 0 ∀v ∈ V (7.29)

and u is a solution of problem (7.23)). �

Letting ϕ (ε) = E (u+ εv), from the above calculations we have

ϕ′(0) = a (u, v)− 〈F, v〉∗ .
Thus, the linear functional

v �−→ a (u, v)− 〈F, v〉∗
appears as the derivative of E at u along the direction v and we write

E′ (u) v = a (u, v)− 〈F, v〉∗ . (7.30)

In Calculus of Variation E′ is called first variation and denoted by δE.
If a is symmetric, the variational equation

E′ (u) v = a (u, v)− 〈F, v〉∗ = 0, ∀v ∈ V (7.31)

is called Euler equation for the functional E. This equation constitutes an
abstract version of the principle of virtual work, while E often represents an
“energy”.

Remark 7.12. A bilinear form a, symmetric and coercive, induces in V the
inner product

(u, v)a = a (u, v) .

In this case, existence, uniqueness and stability for problem (7.23) follow
directly from Riesz’s Representation Theorem. In particular, there exists a
unique minimizer u of E.

7.4.3 Approximation and Galerkin method

The solution u of the abstract variational problem (7.23), satisfies the equation

a (u, v) = 〈F, v〉∗ (7.32)

for every v in the Hilbert space V . In concrete applications, it is important
to compute approximate solutions with a given degree of accuracy and the
infinite dimension of V is the main obstacle. Often, however, V may be written
as a union of finite-dimensional subspaces, so that, in principle, it could be
reasonable to obtain approximate solutions by “projecting” equation (7.32)
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on those subspaces. This is the idea of Galerkin’s method. In principle,
the higher the dimension of the subspace the better should be the degree of
approximation. More precisely, the idea is to construct a sequence {Vk} of
subspaces of V with the following properties:

a) every Vk is finite-dimensional : dimVk = k;

b) Vk ⊂ Vk+1 (actually, not strictly necessary);

c) ∪Vk = V.

To realize the projection, assume that the vectors ψ1, ψ2, . . . , ψk span Vk.
Then, we look for an approximation of the solution u in the form

uk =
k∑
j=1

cjψj , (7.33)

by solving the projected problem

a (uk, v) = 〈F, v〉∗ ∀v ∈ Vk. (7.34)

Since {ψ1, ψ2, . . . , ψk} constitutes a basis in Vk, (7.34) amounts to requiring

a (uk, ψr) = 〈F,ψr〉∗ r = 1, . . . , k. (7.35)

Substituting (7.33) into (7.35), we obtain the k linear algebraic equations

k∑
j=1

cja
(
ψj , ψr

)
= 〈F,ψr〉∗ r = 1, 2, . . . , k (7.36)

for the unknown coefficients c1, c2, . . . , ck. Introducing the vectors

c =

⎛
⎜⎜⎜⎝

c1
c2
...
ck

⎞
⎟⎟⎟⎠ , F =

⎛
⎜⎜⎜⎝

〈F,ψ1〉∗
〈F,ψ2〉∗
...
〈F,ψk〉∗

⎞
⎟⎟⎟⎠

and the matrix A = (arj), with entries

arj = a
(
ψj , ψr

)
, j, r = 1, . . . , k,

we may write (7.36) in the compact form

Ac = F. (7.37)

The matrix A is called stiffness matrix and clearly plays a key role in the
numerical analysis of the problem.
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If the bilinear form a is coercive, A is strictly positive. In fact, let ξ ∈Rk.
Then, by linearity and coercivity

Aξ · ξ =
k∑

r,j=1

arjξrξj =
k∑

r,j=1

a
(
ψj , ψr

)
ξrξj

=
k∑

r,j=1

a
(
ξjψj , ξrψr

)
= a

⎛
⎝

k∑
j=1

ξjψj ,
k∑
r=1

ξrψr

⎞
⎠

≥ α ‖v‖2

where

v =
k∑
j=1

ξjψj∈Vk.

Since {ψ1, ψ2, . . . , ψk} is a basis in Vk, we have v = 0 if and only if ξ = 0.
Therefore A is strictly positive and, in particular, non singular.

Thus, for each k ≥ 1, there exists a unique solution uk ∈ Vk of (7.37). We
want to show that uk → u, as k →∞, i.e. the convergence of the method, and
give a control of the approximation error.

For this purpose, we prove the following lemma, which also shows the role
of the continuity and the coercivity constants (M and α, respectively) of the
bilinear form a.

Lemma 7.1 (Céa). Assume that the hypotheses of the Lax-Milgram Theorem
hold and let u be the solution of problem (7.23). If uk is the solution of problem
(7.35), then

‖u− uk‖ ≤ M

α
inf
v∈Vk

‖u− v‖ . (7.38)

Proof. We have
a (uk, v) = 〈F, v〉∗ , ∀v ∈ Vk

and
a (u, v) = 〈F, v〉∗ , ∀v ∈ Vk.

Subtracting the two equations we obtain

a (u− uk, v) = 0, ∀v ∈ Vk.
In particular, since v − uk ∈ Vk, we have

a (u− uk, v − uk) = 0, ∀v ∈ Vk
which implies

a (u− uk, u− uk) = a (u− uk, u− v) + a (u− uk, v − uk)
= a (u− uk, u− v) .
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Then, by the coercivity of a,

α ‖u− uk‖2 ≤ a (u− uk, u− uk) ≤M ‖u− uk‖ ‖u− v‖
whence,

‖u− uk‖ ≤ M

α
‖u− v‖ . (7.39)

This inequality holds for every v ∈ Vk, with M
α independent of k. Therefore

(7.39) still holds if we take in the right hand side the infimum over all v ∈ Vk. �

Convergence of Galerkin’s method. Since we have assumed that

∪Vk = V,

there exists a sequence {wk} ⊂ Vk such that wk → u as k →∞. Céa’s Lemma
gives, for every k

‖u− uk‖ ≤ M

α
inf
v∈Vk

‖u− v‖ ≤ M

α
‖u− wk‖

whence, as k → +∞
‖u− uk‖ → 0.

7.5 Distributions and Functions

7.5.1 Preliminary concepts

We have seen in Section 3.3.3 the concept of Dirac measure arising in connec-
tion with the fundamental solutions of the diffusion and the wave equations.
Another interesting situation is the following, where the Dirac measure models
a mechanical impulse.

Consider a mass m moving along the x−axis with constant speed vi (see
Fig. 7.3). At time t = t0 an elastic collision with a vertical wall occurs. After
the collision, the mass moves with opposite speed −vi. If v2, v1 denote the
scalar speeds at times t1, t2, t1 < t2, by the laws of mechanics we should have

m(v2 − v1) =
∫ t2

t1

F (t) dt,

Fig. 7.3. Elastic collision at time t = t0
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where F denotes the intensity of the force acting on m. When t1 < t2 < t0 or
t0 < t1 < t2, then v2 = v1 = v or v2 = v1 = −v and therefore F = 0: no force
is acting on m before and after the collision. However, if t1 < t0 < t2, the left
hand side is equal to 2mv �= 0. If we insist to model the intensity of the force
by a function F , the integral in the right hand side is zero and we obtain a
contradiction.

Indeed, in this case, F is a force concentrated at time t0, of intensity 2mv,
that is

F (t) = 2mv δ (t− t0) .
In this chapter we see how the Dirac delta is perfectly included in the theory of
distributions or Schwartz generalized functions. The key idea in this theory is
to describe a mathematical object through its action on smooth test functions
ϕ, with compact support. In the case of the Dirac δ, such action is expressed
by the formula (see Definition 3.2)

∫
δ (x)ϕ (x) dx = ϕ (0)

where, we recall, the integral symbol is purely formal. As we shall shortly see,
the appropriate notation is 〈δ, ϕ〉 = ϕ (0).

Of course, by a principle of coherence, among the generalized functions we
should be able to recover the usual functions of Analysis. This fact implies
that the choice of the test functions cannot be arbitrary. In fact, let Ω ⊆ Rn be
a domain and take for instance a function u ∈ L2 (Ω). Usually u is described
pointwise by the law

x �−→u (x) .

There is however another way to think of u, that is through its action on a
test function ϕ, described by the linear functional

Iu : ϕ �−→ (u, ϕ)L2(Ω) =
∫

Ω

uϕ dx.

We ask: is it possible to reconstruct u from the knowledge of Iu (ϕ), when ϕ
varies on a set of nice functions?

Certainly this is impossible if we use only a restricted set of test functions.
However, it is possible to recover u from the value of Iu (ϕ), when ϕ varies in
a dense set in L2 (Ω). In the next subsection we construct this set and show
how the identification works.

Let us note, however, that the main purpose of introducing the Schwartz
distributions is not restricted to a mere extension of the notion of function but
it relies on the possibility of broadening the domain of calculus in a significant
way, opening the door to an enormous amount of new applications. Here the
key idea is to use integration by parts to carry the derivatives onto the test
functions.

In the first part of this chapter we give the basic concepts of the theory of
Schwartz distributions, mainly finalized to the introduction of Sobolev spaces.
The basic reference is [35].
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7.5.2 Test functions

Recall that, given a continuous function v, defined in a domain Ω ⊆ Rn, the
support of v is given by the closure of the set of points where v is different
from zero

supp(v) = closure of {x ∈Rn : v (x) �= 0} .
Actually, the support or, better, the essential support, is defined also for mea-
surable functions, not necessarily continuous in Ω. Namely, let Z be the union
of the open sets on which v = 0 a.e. Then, the closure of Ω\Z is called the
essential support of v and we use the same symbol supp(v) to denote it.

We say that v is compactly supported in Ω, if supp(v) is a compact subset
of Ω.

Definition 7.10. Denote by C∞
0 (Ω) the set of functions belonging to C∞ (Ω),

compactly supported in Ω. We call test functions the elements of C∞
0 (Ω) .

The elements of Lp(Ω), 1 ≤ p < ∞, can be approximate in Lp norm by
functions in C∞

0 (Ω). Precisely, the following important theorm holds.

Theorem 7.12. C∞
0 (Ω) is dense in Lp (Ω) forevery 1 ≤ p < ∞. That

is, given f ∈ Lp(Ω) there exists a sequence {fk} ⊂ C∞
0 (Ω) such that

‖fk − f‖Lp(Ω) → 0 as k → +∞.

We now go back to our identification problem, in Section 7.5.1. Assume that
u1, u2 ∈ L2(Ω) and that

Iu1 (ϕ) =
∫

Ω

u1ϕ dx =
∫

Ω

u2ϕ dx = Iu2 (ϕ)

for every ϕ ∈ C∞
0 . Then

∫

Ω

(u1 − u2)ϕ dx = 0 (7.40)

for every ϕ ∈ C∞
0 (Ω). Now, given ψ ∈ L2 (Ω), by the density of C∞

0 (Ω) in
L2(Ω), there exists a sequence of test functions {ϕk} such that ‖ϕk − ψ‖0 → 0
as k →∞. Then10,

0 =
∫

Ω

(u− v)ϕk dx→
∫

Ω

(u− v)ψ dx

so that (7.40) holds for every ψ ∈ L2 (Ω).
Choosing ϕ = u1 − u2 in (7.40), we infer

∫

Ω

(u1 − u2)2dx = 0

10 From ∣∣
∣∣

∫

Ω

(u− v) (ϕk − ψ) dx

∣∣
∣∣ ≤ ‖u− v‖0 ‖ϕk − ψ‖0 .
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which implies u1 = u2 a.e. in Ω. Thus, the value of Iu on C∞
0 (Ω) iden-

tifies uniquely u in L2 (Ω). In other words we can identify u with the
functional Iu.

7.5.3 Distributions

We now endow C∞
0 (Ω) with a suitable notion of convergence. Recall that the

symbol

Dα =
∂α1

∂xα1
1

. . .
∂αn

∂xαn
n
, α = (α1, . . . , αn) ,

denotes a derivative of order |α| = α1 + . . .+ αn.

Definition 7.11. Let {ϕk} ⊂ C∞
0 (Ω) and ϕ ∈ C∞

0 (Ω) . We say that

ϕk → ϕ in C∞
0 (Ω) as k → +∞

if the following conditions are fulfilled

1. Dαϕk → Dαϕ uniformly in Ω, ∀α = (α1, . . . , αn);
2. there exists a compact set K ⊂ Ω containing the support of every ϕk.

It is possible to show that the limit so defined is unique. The space C∞
0 (Ω)

is denoted by D (Ω), when endowed with the above notion of convergence.
Following the discussion in the first section, we focus on the linear func-

tionals in D (Ω). If L is one of those, we shall use the bracket (or pairing)
〈L,ϕ〉 to denote the action of L on a test function ϕ.

We say that linear functional

L : D (Ω)→ R

is continuous in D (Ω) if

〈L,ϕk〉 → 〈L,ϕ〉, whenever ϕk → ϕ in D (Ω) . (7.41)

Note that, given the linearity of L, it would be enough to check (7.41) in the
case ϕ = 0.

Definition 7.12. A distribution in Ω is a linear continuous functional in
D (Ω). The set of distributions is denoted by D′ (Ω).

Two distributions F and G coincide when their action on every test func-
tion is the same, i.e. if

〈F,ϕ〉 = 〈G,ϕ〉, ∀ϕ ∈ D (Ω) .

To every u ∈ L2 (Ω) corresponds the functional Iu whose action on ϕ is

〈Iu, ϕ〉 =
∫

Ω

uϕ dx,
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which is certainly continuous in D (Ω). Therefore Iu is a distribution in D′ (Ω)
and we have seen at the end of Section 7.5.1 that Iu may be identified with u.

Thus, the notion of distribution generalizes the notion of function (in
L2 (Ω)) and the pairing 〈·, ·〉 between D (Ω) and D′ (Ω) generalizes the in-
ner product in L2 (Ω).

The same arguments works for every function u ∈ L1
loc (Ω), that is if u is

integrable on every compact subset of Ω.
On the other hand, if u /∈ L1

loc, u cannot represent a distribution. A
typical example is u (x) = 1/x which does not belongs to L1

loc (R).

Example 7.16 (Dirac delta). The Dirac delta at the point y ∈ Rn, i.e.
δy : D (Rn)→ R, whose action is

〈δy, ϕ〉 = ϕ (y) ,

is a distribution D′ (Rn), as it is easy to check. See the Exercise 7.5 to see
different approximation of the Dirac delta.

D′ (Ω) is a linear space. Indeed if α, β are real (or complex) scalars, ϕ ∈
D (Ω) and L1, L2 ∈ D′ (Ω), we define αL1 + βL2 ∈ D′ (Ω) by means of the
formula

〈αL1 + βL2, ϕ〉 = α〈L1, ϕ〉+ β〈L2, ϕ〉.
In D′ (Ω) we may introduce a notion of (weak) convergence: {Lk} converges
to L as k →∞ in D′ (Ω) if

〈Lk, ϕ〉 → 〈L,ϕ〉, ∀ϕ ∈ D (Ω) .

If 1 ≤ p ≤ ∞, we have the continuous embeddings:

Lp (Ω) ↪→ L1
loc (Ω) ↪→ D′ (Ω) .

This means that, if uk → u in Lp (Ω) or in L1
loc (Ω), then11 uk → u in D′ (Ω)

as well.

With respect to this convergence, D′ (Ω) possesses a completeness prop-
erty that may be used to construct a distribution or to recognize that some
linear functional in D (Ω) is a distribution. Precisely, one can prove the fol-
lowing result.

11 For instance, let ϕ ∈ D (Ω). We have, by Hőlder’s inequality:
∣∣
∣∣

∫

Ω

(uk − u)ϕdx

∣∣
∣∣ ≤ ‖uk − u‖Lp(Ω) ‖ϕ‖Lq(Ω)

where q = p/(p−1). Then, if ‖uk − u‖Lp(Ω) → 0, also
∫

Ω
(uk−u)ϕdx →0, showing

the convergence of {uk} in D′ (Ω) .
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Fig. 7.4. A train of impulses

Proposition 7.5. Let {Fk} ⊂ D′ (Ω) such that

lim
k→∞

〈Fk, ϕ〉

exists and is finite for all ϕ ∈ D (Ω). Call F (ϕ) this limit. Then, F ∈ D′ (Ω)
and Fk → F in D′ (Ω) .

In particular, if the numerical series

∞∑
k=1

〈Fk, ϕ〉

converges for all ϕ ∈ D (Ω), then
∑∞

k=1 Fk = F ∈ D′ (Ω).

Example 7.17 (Dirac comb). For every ϕ ∈ D (R), the numerical series

∞∑
k=−∞

〈δ (x− k) , ϕ〉 =
∞∑

k=−∞
ϕ (k)

is convergent, since only a finite number of terms is different from zero12.
From Proposition 7.5, we deduce that the series

comb (x) =
∞∑

k=−∞
δ (x− k) (7.42)

is convergent in D′ (R) and its sum is a distribution called Dirac comb. This
name is due to the fact it models a train of impulses concentrated at the
integers (see Fig. 7.4, using some . . . fantasy).

7.5.4 Calculus

The derivative in the sense of distributions

A central concept in the theory of the Schwartz distributions is the notion of
weak or distributional derivative. Clearly we have to weaken the classical def-
inition, since, for instance, we are going to define the derivative for a function
u ∈ L1

loc, which may be quite irregular.

12 Only a finite number of integers k belongs to the support of ϕ.
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The idea is to carry the derivative onto the test functions, as if we were
using the integration by parts formula.

Let us start from a function u ∈ C1 (Ω). If ϕ ∈ D (Ω), denoting by
ν = (ν1, . . . , νn) the outward normal unit vector to ∂Ω, we have

∫

Ω

ϕ∂xiu dx =
∫

∂Ω

ϕu νi dx−
∫

Ω

u∂xiϕ dx

= −
∫

Ω

u∂xiϕ dx

since ϕ = 0 on ∂Ω. The equation
∫

Ω

ϕ ∂xiu dx = −
∫

Ω

u ∂xiϕ dx,

interpreted in D′ (Ω), becomes

〈∂xiu, ϕ〉 = −〈u, ∂xiϕ〉. (7.43)

Formula (7.43) shows that the action of ∂xiu on the test function ϕ equals
the action of u on the test function −∂xiϕ. On the other hand, formula (7.43)
makes perfect sense if we replace u by any F ∈ D′ (Ω) and it is not difficult
to check that it defines a continuous linear functional in D (Ω). This leads to
the following fundamental notion:

Definition 7.13. Let F ∈ D′ (Ω). The derivative ∂xiF is the distribution
defined by the formula

〈∂xiF,ϕ〉 = −〈F, ∂xiϕ〉, ∀ϕ ∈ D (Ω) .

From (7.43), if u ∈ C1 (Ω) its derivatives in the sense of distributions of u
coincide with the classical ones. This is the reason we keep the same notations
in the two cases.

Note that the derivative of a distribution is always defined! Moreover,
since any derivative of a distribution is a distribution, we deduce the conve-
nient fact that every distribution possesses derivatives of any order
(in D′ (Ω)):

〈DαFk, ϕ〉 = (−1)|α|〈Fk,Dαϕ〉.
For example, the second order derivative

∂xixk
F = ∂xi (∂xk

F )

is defined by
〈∂xixk

F,ϕ〉 = 〈u, ∂xixk
ϕ〉. (7.44)

Not only. Since ϕ is smooth, then ∂xixk
ϕ = ∂xkxiϕ so that (7.44) yields

∂xixk
F = ∂xkxiF.

Thus, for all F ∈ D′ (Ω) we may always reverse the order of differentiation
without any restriction.
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Example 7.18. Let u (x) = H (x), the Heaviside function. In D′ (R) we have
H′ = δ. In fact, let ϕ ∈ D (R) . By definition,

〈H′, ϕ〉 = −〈H, ϕ′〉.
On the other hand, H ∈ L1

loc (R), hence

〈H, ϕ′〉 =
∫

R

H (x)ϕ′ (x) dx =
∫ ∞

0

ϕ′ (x) dx = −ϕ (0)

whence
〈H′, ϕ〉 = ϕ (0) = 〈δ, ϕ〉

or H′ = δ.

Another aspect of the idyllic relationship between calculus and distribu-
tions is given by the following theorem, which expresses the continuity in
D′ (Ω) of every derivative Dα.

Proposition 7.6. If Fk → F in D′ (Ω) then, DαFk → DαF in D′ (Ω) for
any multi-index α.

Proof. Fk → F in D′ (Ω) means that 〈Fk, ϕ〉 → 〈F,ϕ〉, ∀ϕ ∈ D (Ω). In
particular, since Dαϕ ∈ D (Ω),

〈DαFk, ϕ〉 = (−1)|α|〈Fk,Dαϕ〉 → (−1)|α|〈F,Dαϕ〉 = 〈DαF,ϕ〉. �

As a consequence, if
∑∞
k=1 Fk = F in D′ (Ω), then

∞∑
k=1

DαFk = DαF in D′ (Ω) .

Thus, term by term differentiation is always permitted in D′ (Ω).
The following proposition expresses a well known fact for functions, we

omit the rather difficult proof.

Proposition 7.7. Let Ω be a domain in Rn. If F ∈ D′ (Ω) and ∂xjF = 0 for
every j = 1, . . . , n, then F is a constant function.

Gradient, divergence, laplacian

There is no problem to define vector valued distributions. The space of test
functions is D (Ω;Rn), i.e. the set of vectors ϕ =(ϕ1, . . . , ϕn) whose compo-
nents belong to D (Ω).

A distribution F ∈D′ (Ω;Rn) is given by F =(F1, . . . , Fn) with Fj ∈
D′ (Ω), j = 1, . . . , n. The pairing between D (Ω;Rn) and D′ (Ω;Rn) is de-
fined by

〈F,ϕ〉 =
n∑
i=1

〈Fi,ϕi〉. (7.45)
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• The gradient of F ∈ D′ (Ω), Ω ⊂ Rn, is simply

∇F = (∂x1F, ∂x2F, . . . , ∂xnF ) .

Clearly ∇F ∈ D′ (Ω;Rn). If ϕ ∈ D (Ω;Rn), we have

〈∇F ,ϕ〉 =
n∑
i=1

〈∂xiF,ϕi〉 = −
n∑
i=1

〈F, ∂xiϕi〉 = −〈F,divϕ〉

whence
〈∇F ,ϕ〉 = −〈F,divϕ〉 (7.46)

which shows the action of ∇F on ϕ.

• For F ∈ D′ (Ω;Rn), we set

divF =
n∑
i=1

∂xiFi.

Clearly divF ∈D′ (Ω). If ϕ ∈ D (Ω), then

〈divF,ϕ〉 = 〈
n∑

1=1

∂xiFi,ϕ〉 = −
n∑

1=1

〈Fi,∂xiϕ〉 = −〈F,∇ϕ〉

whence
〈divF,ϕ〉 = −〈F,∇ϕ〉. (7.47)

• The Laplace operator is defined in D′ (Ω) by

ΔF =
n∑
i=1

∂xixiF.

If ϕ ∈ D (Ω), then
〈ΔF,ϕ〉 = 〈F ,Δϕ〉 .

Using (7.46), (7.47) we get

〈ΔF,ϕ〉 = 〈F ,div∇ϕ〉 = −〈∇F ,∇ϕ〉 = 〈div∇F ,ϕ〉
whence Δ =div∇ also in D′ (Ω).

Example 7.19. Consider the fundamental solution for the Laplace oper-
ator in R3

u (x) =
1
4π

1
|x| .

Observe that u ∈ L1
loc

(
R

3
)

so that u ∈ D′ (
R

3
)
. We want to show that, in

D′ (
R

3
)
,

−Δu = δ. (7.48)
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First of all, if Ω ⊂ R3 and 0 /∈Ω, we know that u is harmonic in Ω, that is

Δu = 0 in Ω

in the classical sense and therefore also in D′ (
R

3
)
. Thus, let ϕ ∈ D (R3

)
with

0 ∈supp(ϕ). We have, since u ∈ L1
loc

(
R

3
)

〈Δu,ϕ〉 = 〈u,Δϕ〉 =
1
4π

∫

R3

1
|x|Δϕ (x) dx. (7.49)

We would like to carry the laplacian onto 1/ |x|. However, this cannot be done
directly, since the integrand is not continuous at 0. Therefore we exclude a
small sphere Br = Br (0) from our integration region and write

∫

R3

1
|x|Δϕ (x) dx = lim

r→0

∫

BR\Br

1
|x|Δϕ (x) dx (7.50)

where BR = BR (0) is a sphere containing the support of ϕ. An integration
by parts in the ring CR,r = BR\Br yields13

∫

BR\Br

1
|x|Δϕ (x) dx =

∫

∂Br

1
r
∂νϕ (x) dσ−

∫

CR,r

∇
(

1
|x|
)
· ∇ϕ (x) dx

where ν = − x
|x| is the outward normal unit vector on ∂Br. Integrating once

more by parts the last integral, we obtain:
∫

BR\Br

∇
(

1
|x|
)
· ∇ϕ (x) dx =

∫

∂Br

∂ν

(
1
|x|
)
ϕ (x) dσ−

∫

CR,r

Δ

(
1
|x|
)
ϕ (x) dx

=
∫

∂Br

∂ν

(
1
|x|
)
ϕ (x) dσ,

since Δ
(

1
|x|
)

= 0 inside the ring CR,r. From the above computations we infer

∫

BR\Br

1
|x|Δϕ (x) dx =

∫

∂Br

1
r
∂νϕ (x) dσ−

∫

∂Br

∂ν

(
1
|x|
)
ϕ (x) dσ. (7.51)

We have:

1
r

∣∣∣∣
∫

∂Br

∂νϕ (x) dσ
∣∣∣∣ ≤

1
r

∫

∂Br

|∂νϕ (x)| dσ ≤ 4πrmax
R3
|∇ϕ|

and therefore
lim
r→0

∫

∂Br

1
r
∂νϕ (x) dσ = 0.

13 Recall that ϕ = 0 and ∇ϕ = 0 on ∂BR.
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Moreover, since

∂ν

(
1
|x|
)

= ∇
(

1
|x|
)
·
(
− x
|x|
)

=

(
− x

|x|3
)
·
(
− x
|x|
)

=
1
|x|2 ,

we may write
∫

∂Br

∂ν

(
1
|x|
)
ϕ (x) dσ = 4π

1
4πr2

∫

∂Br

ϕ (x) dσ → 4πϕ (0) .

Thus, from (7.51) we get

lim
r→0

∫

BR\Br

1
|x|Δϕ (x) dx = −4πϕ (0)

and finally (7.49) yields

〈Δu,ϕ〉 = −ϕ (0) = −〈δ, ϕ〉

whence −Δu=δ.

Multiplication. Leibniz rule

Let us analyze the multiplication between two distributions. Does it make any
sense to define, for instance, the product δ ·δ = δ2 as a distribution in D′ (R)?

Things are not so smooth. An idea for defining δ2 may be the following:
take a sequence {uk} of functions in L1

loc (R) such that uk → δ in D′, compute
u2
k and set

δ2 = lim
k→∞

u2
k in D′.

Since we may approximate δ in D′ in many ways, it is necessary that the
definition does not depend on the approximating sequence. In other words, to
compute δ2 we must be free to choose any approximating sequence. However,
this is illusory. Indeed choose

uk = kχ[0,1/k].

We have uk → δ in D′ (R) but, if ϕ ∈ D (R), by the Mean Value Theorem we
have ∫

R

u2
kϕ = k2

∫ 1/k

0

ϕ = kϕ (xk)

for some xk ∈ [0, 1/k]. Now, if ϕ (xk) > 0, say, we deduce that
∫

R

u2
kϕ→ +∞, k → +∞

so that
{
u2
k

}
does not converge in D′ (R).
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The method does not work and it seems that there is no other reasonable
way to define δ2. Thus, we simply give up defining δ2 as a distribution or, in
general, the product of a pair of distributions. However, if F ∈ D′ (Ω) and
u ∈ C∞ (Ω), we may define the product uF by the formula

〈uF, ϕ〉 = 〈F, uϕ〉 , ∀ϕ ∈ D (Ω) .

First of all, this makes sense since uϕ ∈ D (Ω). Also, if ϕk → ϕ in D (Ω), then
uϕk → uϕ in D (Ω) and

〈uF, ϕk〉 = 〈F, uϕk〉 → 〈F, uϕ〉 = 〈uF, ϕ〉 .

so that uF is a well defined element of D′ (Ω).

Example 7.20. Let u ∈ C∞ (R). We have

uδ = u (0) δ.

Indeed, if ϕ ∈ D (R),

〈uδ, ϕ〉 = 〈δ, uϕ〉 = u (0)ϕ (0) = 〈u (0) δ, ϕ〉 .

Note that the product uδ makes sense even if u is only continuous. In partic-
ular

xδ = 0.

The Leibniz rule holds: let F ∈ D′ (Ω) and u ∈ C∞ (Ω) ; then

∂xi (uF ) = u ∂xiF + ∂xiu F . (7.52)

In fact, let ϕ ∈ D (Ω); we have:

〈∂xi (uF ) , ϕ〉 = −〈uF, ∂xiϕ〉 = −〈F, u∂xiϕ〉

while

〈u ∂xiF + ∂xiu F, ϕ〉 = 〈∂xiF, uϕ〉+ 〈F,ϕ∂xiu〉
= −〈F, ∂xi (uϕ)〉+ 〈F,ϕ∂xiu〉 = 〈F, u∂xiϕ〉

and (7.52) follows.

Example 7.21. From xδ = 0 and Leibniz formula we obtain

δ + xδ′ = 0.

More generally,

xmδ(k) = 0 in D′ (R) , if 0 ≤ k < m.
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7.6 Sobolev Spaces

Sobolev spaces constitute one of the most relevant functional settings for
the treatment of boundary value problems. Here, we will be mainly concerned
with Sobolev spaces based on L2 (Ω), developing only the theoretical elements
we will need in the sequel14. These are spaces of square summable functions
on a domain Ω in Rn whose distributional derivatives up to a certain level
are still square summable functions. We shall assume that Ω is a bounded
domain whose boundary ∂Ω is sufficiently regular (Lipschitz domains), that
is at almost every point p ∈ ∂Ω the tangent plane and the interior or exterior
normals are well defined. Typical admissible domains are polygons, circular
sectors in R2, polyhedra, cones, cilinders, quite important in several concrete
applications and in the numerical approximation techniques.

7.6.1 The space H1 (Ω)

In our context, one of the most important space is the space of functions in
L2 (Ω) whose first partial distibutional derivatives are still functions in L2(Ω).
To denote this space one uses the symbol15 H1(Ω); thus:

H1(Ω) =
{
v ∈ L2(Ω) : ∇v ∈ L2(Ω;Rn)

}
.

In other words, if v ∈ H1(Ω), every partial derivative ∂xiv is a function
vi ∈ L2(Ω). This means that

〈∂xiv, ϕ〉 = − (v, ∂xiϕ)0 = (vi, ϕ)0 , ∀ϕ ∈ D (Ω)

or, more explicitly,
∫

Ω

v (x) ∂xiϕ (x) dx = −
∫

Ω

vi (x)ϕ (x) dx, ∀ϕ ∈ D (Ω) .

In many applied situations, the Dirichlet integral
∫

Ω

|∇v|2

represents an energy. The functions in H1 (Ω) are therefore associated with
configurations having finite energy. We have:

Theorem 7.13. H1(Ω) is a Hilbert space, continuously embedded in L2(Ω).
The gradient operator is continuous from H1(Ω) into L2(Ω;Rn).

14 We omit the most technical proofs, that can be found, for instance, in the classical
books of Adams [28], or Maz’ya [31].

15 Also H1,2(Ω) or W 1,2 (Ω) are used.
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The inner product and the norm in H1 (Ω) are given, respectively, by

(u, v)H1(Ω) =
∫

Ω

uv dx +
∫

Ω

∇u · ∇v dx.

and
‖u‖2H1(Ω) =

∫

Ω

u2dx +
∫

Ω

|∇u|2 dx.

Remark 7.13. If no confusion arises, the symbol (u, v)1,2 can be used instead
of (u, v)H1(Ω) and ‖u‖1,2 instead of ‖u‖H1(Ω). The numbers 1, 2 in the symbol
‖·‖1,2 stay for “first derivatives in L2”.

Example 7.22. Let Ω = B1 (0) =
{
x ∈R2 : |x| < 1

}
and

u (x) = (− log |x|)a , x �= 0.

We have, using polar coordinates,
∫

B1(0)

u2 = 2π
∫ 1

0

(− log r)2a rdr <∞, for every a ∈ R,

so that u ∈ L2 (B1 (0)) for every a ∈ R. Moreover:

uxi = −axi |x|−2 (− log |x|)a−1 , i = 1, 2,

and therefore
|∇u| =

∣∣∣a (− log |x|)a−1
∣∣∣ |x|−1

.

Thus, using polar coordinates, we get
∫

B1(0)

|∇u|2 =2πa2

∫ 1

0

|log r|2a−2
r−1dr.

This integral is finite only if 2−2a > 1 or a < 1/2. In particular,∇u represents
the gradient of u in the distribution sense as well. We conclude that u ∈
H1 (B1 (0)) only if a < 1/2.

We point out that when a > 0, u is unbounded near 0.

We have affirmed that the Sobolev spaces constitute an adequate func-
tional setting to solve boundary value problems. This point requires some
observations. When we write f ∈ L2 (Ω), we may think of a single function

f : Ω → R (or C),

square summable in the Lebesgue sense. However, if we want to exploit the
Hilbert space structure of L2 (Ω), we need to identify two functions when
they are equal a.e. in Ω. Adopting this point of view, each element in L2 (Ω)
is actually an equivalence class of which f is a representative. The drawback
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here is that it does not make sense anymore to compute the value of f at a
single point, since a point is a set with measure zero!

The same considerations hold for “functions” in H1 (Ω), since

H1 (Ω) ⊂ L2 (Ω) .

On the other hand, if we deal with a boundary value problem, it is clear that
we would like to compute the solution at any point in Ω!

Even more important is the question of the trace of a function on the
boundary of a domain. By trace of f on ∂Ω we mean the restriction of f to
∂Ω. In a Dirichlet or Neumann problem we assign precisely the trace of the
solution or of its normal derivative on ∂Ω, which is a set with measure zero.
Does this make any sense if u ∈ H1 (Ω)?

There are two cases, in which the trace problem may be solved quite
simply: the one-dimensional case and the case of functions with zero trace.
These cases will be enough for our purposes. We start with the first case.

• Characterization of H1(a, b). As Example 7.22 shows, a function in H1 (Ω)
may be unbounded. In dimension n = 1 this cannot occur. In fact, the elements
in H1 (a, b) are continuous functions16 in [a, b].

Moreover, the fundamental theorem of integral calculus holds. Precisely,
we have:

Proposition 7.8. Let u ∈ L2 (a, b) . Then u ∈ H1 (a, b) if and only if u is
continuous in [a, b] and there exists w ∈ L2 (a, b) such that

u(y) = u(x) +
∫ y

x

w (s) ds, ∀x, y ∈ [a, b]. (7.53)

Moreover u′ = w (both a.e. and in the sense of distribution).

Proof. Assume that u is continuous in [a, b] and that (7.53) holds with w ∈
L2 (a, b). Choose x = a. Replacing, if necessary, u by u−u (a), we may assume
u (a) = 0, so that

u(y) =
∫ y

a

w (s) ds, ∀x, y ∈ [a, b].

Let v ∈ D (a, b). We have:

〈u′, v〉 = −〈u, v′〉 = −
∫ b

a

u (s) v′ (s) ds = −
∫ b

a

[∫ s

a

w (t) dt
]
v′ (s) ds =

(exchanging the order of integration)

= −
∫ b

a

[∫ b

t

v′ (s) ds

]
w (t) dt =

∫ b

a

v (t)w (t) dt = 〈w, v〉 .

16 Rigorously: every equivalence class in H1 (a, b) has a continuous representative
in [a, b].
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Thus u′ = w in D′ (a, b) and therefore u ∈ H1 (a, b). From the Lebesgue
Differentiation Theorem we deduce that u′ = w a.e. as well.

Viceversa, let u ∈ H1 (a, b). Define

v (x) =
∫ x

c

u′ (s) ds, c, x ∈ [a, b]. (7.54)

The function v is continuous in [a, b] and the above proof shows that v′ = u′

in D′ (a, b). Then (Proposition 7.7) u = v + C, C ∈ R and therefore u is
continuous in [a, b] as well. Moreover, (7.54) yields

u(y)− u (x) = v(y)− v (x) =
∫ y

x

u′ (s) ds

which is (7.53). �

Since a function u ∈ H1 (a, b) is continuous in [a, b], the value u (x0) at
every point x0 ∈ [a, b] makes perfect sense. In particular the trace of u at the
end points of the interval is given by the values u (a) and u (b).

7.6.2 The spaces H1
0 (Ω) and H1

Γ (Ω)

Let Ω ⊆ Rn. We introduce an important subspace of H1 (Ω).

Definition 7.14. We denote by H1
0 (Ω) the closure of D (Ω) in H1 (Ω).

Thus u ∈ H1
0 (Ω) if and only if there exists a sequence {ϕk} ⊂ D (Ω) such

that ϕk → u in H1 (Ω), i.e. both ‖ϕk − u‖0 → 0 and ‖∇ϕk −∇u‖0 → 0 as
k →∞.

Since the test functions in D (Ω) have zero trace on ∂Ω, every u ∈ H1
0 (Ω)

“inherits” this property and it is reasonable to consider the elements H1
0 (Ω)

as the functions in H1 (Ω) with zero trace on ∂Ω. Clearly, H1
0 (Ω) is a Hilbert

subspace of H1 (Ω).
An important property that holds in H1

0 (Ω), particularly useful in the
solution of boundary value problems, is expressed by the following Poincaré’s
inequality.

Theorem 7.14. Let Ω ⊂ Rn be a bounded domain. There exists a positive
constant CP (Poincaré constant) such that, for every u ∈ H1

0 (Ω),

‖u‖0 ≤ CP ‖∇u‖0 . (7.55)

Proof. We use a strategy which is rather common for proving formulas in
H1

0 (Ω). First, we prove the formula for v ∈ D (Ω); then, if u ∈ H1
0 (Ω), select

a sequence {vk} ⊂ D (Ω) converging to u in norm ‖·‖1,2 as k →∞, that is

‖vk − u‖0 → 0, ‖∇vk −∇u‖0 → 0.
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In particular
‖vk‖0 → ‖u‖0 , ‖∇vk‖0 → ‖∇u‖0 .

Since (7.55) holds for every vk, we have ‖vk‖0 ≤ CP ‖∇vk‖0 .Letting k → ∞
we obtain (7.55) for u. Thus, it is enough to prove (7.55) for v ∈ D (Ω). To
this purpose, from the Gauss Divergence Theorem, we may write

∫

Ω

div
(
v2x
)
dx = 0 (7.56)

since v = 0 on ∂Ω. Now,

div
(
v2x
)

= 2v∇v · x+nv2

so that (7.56) yields
∫

Ω

v2dx = − 2
n

∫

Ω

v∇v · x dx.

Since Ω is bounded, we have max
x∈Ω

|x| = M < ∞; therefore, using Schwarz’s

inequality, we get
∫

Ω

v2dx =
2
n

∣∣∣∣
∫

Ω

v∇v · x dx
∣∣∣∣ ≤

2M
n

(∫

Ω

v2dx
)1/2(∫

Ω

|∇v|2 dx
)1/2

.

Simplyfying, it follows that

‖v‖0 ≤ CP ‖∇v‖0
with CP = 2M/n. �

Inequality (7.55) implies that in H1
0 (Ω) the norm ‖u‖1,2 is equivalent to

‖∇u‖0. Indeed

‖u‖1,2 =
√
‖u‖20 + ‖∇u‖20

and from (7.55),

‖∇u‖0 ≤ ‖u‖1,2 ≤
√
C2
P + 1 ‖∇u‖0 .

Unless explicitly stated, we will choose in H1
0 (Ω)

(u, v)1 = (∇u,∇v)0 and ‖u‖1 = ‖∇u‖0
as inner product and norm, respectively.

In similar way, we may define the space of functions u ∈ H1 (Ω) vanishing
on a relatively open subset Γ ⊂ ∂Ω.

Let V0,Γ be the set of functions in D (Ω) vanishing in a neighborhood of
Γ . Then, we introduce the following set:

Definition 7.15. H1
0,Γ (Ω) is the closure of V0,Γ in H1 (Ω).

Remark 7.14. It is possible to prove that the Poincaré inequality holds in
H1

0,Γ (Ω).
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7.6.3 The dual of H1
0(Ω)

In the applications of the Lax-Milgram Theorem to boundary value problems,
one often needs to identify a given functional F as an element of the dual of
H1

0 (Ω) or, in other words, if F is a linear and continuous functional onH1
0 (Ω).

The dual of H1
0 (Ω) is denoted by a special symbol.

Definition 7.16. We denote by H−1(Ω) the dual of H1
0 (Ω) with the norm

‖F‖−1 = sup
{|Fv| : v ∈ H1

0 (Ω), ‖v‖1 ≤ 1
}
.

The first thing to observe is that, since D (Ω) is dense (by definition) and
continuously embedded in H1

0 (Ω), H−1(Ω) is a space of distributions. This
means two things:

a) if F ∈ H−1(Ω), its restriction to D (Ω) is a distribution;

b) if F,G ∈ H−1(Ω) and Fϕ = Gϕ for every ϕ ∈ D (Ω), then F = G.

To prove a) it is enough to note that if ϕk → ϕ in D (Ω), then ϕk → ϕ in
H1

0 (Ω) as well, and therefore Fϕk → Fϕ. Thus F ∈ D′ (Ω).
To prove b), let u ∈ H1

0 (Ω) and ϕk → u in H1
0 (Ω), with ϕk ∈ D (Ω).

Then, since Fϕk = Gϕk we may write

Fu = lim
k→+∞

Fϕk = lim
k→+∞

Gϕk = Gu

whence F = G.
Thus, H−1(Ω) is in one-to-one correspondence with a subspace of D′ (Ω)

and in this sense we will write

H−1(Ω) ⊂ D′ (Ω) .

Which distributions belong to H−1(Ω)? The following theorem gives a satis-
factory answer.

Theorem 7.15. H−1(Ω) is the set of distributions of the form

F = f0 + divf (7.57)

where f0 ∈ L2(Ω) and f = (f1, . . . , fn) ∈ L2(Ω;Rn). Moreover:

‖F‖−1 ≤ (1 + CP ) {‖f0‖0 + ‖f‖0} . (7.58)

Proof. Let F ∈ H−1(Ω). From Riesz’s Representation Theorem, there exists
a unique u ∈ H1

0 (Ω) such that

(u, v)1 = Fv ∀v ∈ H1
0 (Ω) .

Since
(u, v)1 = (∇u,∇v) = −〈div∇u, v〉
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in D′ (Ω) , it follows that (7.57) holds with f0 = 0 and f = −∇u. Moreover,
‖u‖1 = ‖F‖−1.

Viceversa, let F = f0+div f , with f0 ∈ L2(Ω) and f =(f1, . . . , fn) ∈
L2(Ω;Rn). Then F ∈ D′ (Ω) and, letting Fv = 〈F, v〉, we have;

Fv =
∫

Ω

f0v dx +
∫

Ω

f ·∇v dx ∀v ∈ D (Ω) .

From the Schwarz and Poincaré inequalities, we have

|Fv| ≤ (CP + 1) {‖f0‖0 + ‖f‖0} ‖v‖1 . (7.59)

Thus, F is continuous in theH1
0−norm. It remains to show that F has a unique

continuous extension to all H1
0 (Ω). Take u ∈ H1

0 (Ω) and {vk} ⊂ D (Ω) such
that ‖vk − u‖1 → 0. Then, (7.59) yields

|Fvk − Fvh| ≤ (1 + CP ) {‖f0‖0 + ‖f‖0} ‖vk − vh‖1 .
Therefore {Fvk} is a Cauchy sequence in R and converges to a limit which
is independent of the sequence approximating u (why?) and which we may
denote by Fu. Finally, since

|Fu| = lim
k→∞

|Fvk| and ‖u‖1 = lim
k→∞

‖vk‖1 ,

from (7.59) we get:

|Fu| ≤ (1 + CP ) {‖f0‖0 + ‖f‖0} ‖u‖1
showing that F ∈ H−1 (Ω). �

Theorem 7.15 says that the elements ofH−1(Ω) are represented by a linear
combination of functions in L2(Ω) and their first derivatives (in the sense of
distributions). In particular, L2(Ω) ↪→ H−1(Ω).

Example 7.23. If n = 1, the Dirac δ belongs to H−1(−a, a). Indeed, we have
δ = H′ where H is the Heaviside function, and H ∈ L2(−a, a).

However, if n ≥ 2 and 0 ∈ Ω, δ /∈ H−1(Ω). For instance, let n = 2 and
Ω = B1 (0). Assume δ ∈ H−1(Ω). Then we may write

δ = f0 + div f

for some f0∈L2(Ω) and f ∈L2(Ω;R2). Thus, for every ϕ ∈ D (Ω),

ϕ (0) = 〈δ, ϕ〉 = 〈f0 + div f , ϕ〉 =
∫

Ω

[f0ϕ− f ·∇ϕ] dx.

From Schwarz’s inequality, it follows that

|ϕ (0)|2 ≤
{
‖f0‖20 + ‖f‖20

}
‖ϕ‖21,2

and, using the density of D (Ω) in H1
0 (Ω), this estimate should hold for any

ϕ ∈ H1
0 (Ω) as well. But this is impossible, since in H1

0 (Ω) there are functions
which are unbounded near the origin, as we have seen in Example 7.22.
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Example 7.24. Let Ω be a smooth, bounded domain in Rn. Let u = χΩ be
its characteristic function. Since χΩ ∈ L2 (Rn), the distribution F = ∇χΩ
belongs to H−1 (Rn;Rn). The support of F = ∇χΩ coincides with ∂Ω and its
action on a test ϕ ∈ D (Rn;Rn) is described by the following formula:

〈∇χΩ,ϕ〉 = −
∫

Rn

χΩdiv ϕ dx = −
∫

∂Ω

ϕ · ν dσ.

We may regard F as a “delta uniformly distributed on ∂Ω”.

Remark 7.15. It is important to avoid confusion between H−1 (Ω) and
H1 (Ω)∗, the dual of H1 (Ω). Since, in general, D (Ω) is not dense in H1 (Ω),
the space H1 (Ω)∗ is not a space of distributions. Indeed, although the re-
striction to D (Ω) of every T ∈ H1 (Ω)∗ is a distribution, this restriction does
not identifies T . As a simple example, take f ∈L2 (Ω;Rn) with |f | ≥ c > 0
a.e. and div f = 0. Define

Tϕ =
∫

Ω

f · ∇ϕ dx.

Since |Tϕ| ≤ ‖f‖0 ‖∇ϕ‖0, we infer that T ∈ H1 (Ω)∗. However, the restriction
of T to D (Ω) is the null operator, since in D′ (Ω) we have

〈T, ϕ〉 = −〈div f ,ϕ〉 = 0 ∀ϕ ∈ D (Ω) .

7.6.4 The spaces Hm (Ω) and Hm0 (Ω), m > 1

Involving higher order derivatives, we may construct new Sobolev spaces. Let
N be the number of multi-indexes α = (α1, . . . , αn) such that |α| =∑n

i=1 αi ≤
m.

Denote by Hm(Ω) the Sobolev space of the functions in L2 (Ω), whose
derivatives (in the sense of distributions) up to order m included, are func-
tions in L2 (Ω). Thus:

Hm(Ω) =
{
v ∈ L2(Ω) : Dαv ∈ L2(Ω), ∀α : |α| ≤ m

}
.

We have.

Theorem 7.16. Hm(Ω) is a Hilbert space, continuously embedded in L2(Ω).
The operators Dα, |α| ≤ m, are continuous from Hm(Ω) into L2(Ω).

The inner product and the norm in Hm are given, respectively, by

(u, v)Hm(Ω) = (u, v)m,2 =
∑

|α|≤m

∫

Ω

DαuDαv dx

and
‖u‖2Hm(Ω) = ‖u‖2m,2 =

∑
|α|≤m

∫

Ω

|Dαu|2 dx.
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If u ∈ Hm (Ω), any derivative of u of order k belongs to Hm−k (Ω); more
generally, if |α| = k ≤ m, then

Dαu ∈ Hm−k (Ω)

and the inclusion Hm(Ω) ⊂ Hm−k (Ω), k ≥ 1 is continuous.

Example 7.25. Let B1 (0) ⊂ R
3 and consider u (x) = |x|−a . It is easy to

check that u ∈ H1 (B1 (0)) if a < 1/2. The second order derivatives of u are
given by:

uxixj = a (a+ 2)xixj |x|−a−4 − aδij |x|−a−2
.

Then ∣∣uxixj

∣∣ ≤ |a (a+ 2)| |x|−a−2

so that uxixj ∈ L2 (B1 (0)) if 2a+ 4 < 3, or a < −1
2 . Thus u ∈ H2 (B1 (0)) if

a < −1/2.

An important subspace ofHm (Ω) is the set of functions inHm (Ω) vanish-
ing on ∂Ω together with their normal derivatives up to order m− 1 included.
This space is denoted by Hm

0 (Ω).

7.6.5 Calculus rules

Most calculus rules in Hm are formally similar to the classical ones, although
their proofs are not so trivial. We list here a few of them.

Derivative of a product

Let u ∈ H1(Ω) and v ∈ D (Ω) . Then uv ∈ H1(Ω) and

∇ (uv) = u∇v + v∇u. (7.60)

Formula (7.60) holds if both u, v ∈ H1(Ω) as well. In this case, however,

uv ∈ L1 (Ω) and ∇ (uv) ∈ L1 (Ω;Rn) .

Composition I

Let Ω′ be a domain in Rn. Let u ∈ H1(Ω) and g : Ω′ → Ω be one-to-one and
Lipschitz. Then, the composition

u ◦ g : Ω′ → R

belongs to H1 (Ω′) and

∂xi [u ◦ g] (x) =
n∑
k=1

∂xk
u (g (x)) ∂xigk (x) (7.61)

both a.e. in Ω and in D′ (Ω). In particular, the Lipschitz change of variables
y =g (x) transforms H1 (Ω) into H1 (Ω′).
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Composition II

Let u ∈ H1(Ω) and f : R→R be Lipschitz. Then, the composition

f ◦ u : Ω → R

belongs to H1 (Ω) and

∂xi [f ◦ u] (x) = f ′ (u (x)) ∂xiu (x) (7.62)

both a.e. in Ω and in D′ (Ω).
In particular, choosing respectively

f (t) = |t| , f (t) = max {t, 0} and f (t) = −min {t, 0} ,

it follows that the following functions:

|u| , u+ = max {u, 0} , and u− = −min {u, 0}

all belong to H1(Ω). For these functions, (7.62) yields

∇u+ =
{∇u if u > 0

0 if u ≤ 0 , ∇u− =
{

0 if u ≥ 0
−∇u if u < 0

and∇(|u|) = ∇u++∇u−,∇u = ∇u+−∇u−. As a consequence, if u ∈ H1 (Ω)
is constant in a set K ⊆ Ω, then ∇u = 0 a.e. in K.

7.7 Exercises

7.1. Calculate the norm of the operator introduced in the Example 7.11 in
the page 269.

7.2. Calculate the norm of the operator introduced in the Example 7.14 in
the page 270.

7.3. Calculate the norm of the operator introduced in the Example 7.15 in
the page 270.

7.4. Consider H = L2(0, 1) and let F : H −→ R be the linear functional

F (u) =
∫ 1/2

0

u(t) dt.

Prove that F is well-defined and that F ∈ H ′; then, use the Riesz represen-
tation theorem to calculate ‖F‖H′ .

7.5. Approximate in three different ways the Dirac delta function δ in D′ (Rn).
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7.6. Given u (x) = |x| and S (x) = sign(x). Prove that u′ = S in D′ (R) and
calculate u′′ in D′ (R).

7.7. In distributional sense calculate the derivative of y = arctanx−1.

7.8. Find the second mixed derivative of the distribution H(x, y) = H(x)H(y)
in D′(R2).

7.9. Project x2 on the vector subspace V of L2(0, 1) spanned by the linear
combinations of v1 = 1 and v2 = x. Verify that such projection coincides with
the function of V with minimum distance from x2.

7.10. In L2(−1, 1), calculate the projection of x(t) = et on the subspace V
spanned by t and t2.

7.11. Solve the homogeneous wire problem with fixed boundaries at x = ±1
subject to pointwise forces at x = ±1/2:

{−u′′ = δ(x− 1/2) + δ(x+ 1/2) in (−1, 1)
u(−1) = u(1) = 0.

7.12. Verify that the function

y(x) =
sinh

√
k(1− |x|)

2
√
k cosh

√
k

solves the elastic homogeneous wire problem with fixed boundaries at x = ±1,
subject to a unit pointwise force at x = 0 and to an elastic force proportional
to the displacement, with elastic constant k > 0:

{−u′′ + ku = δ in (−1, 1)
u(−1) = u(1) = 0.

7.13 (Heisenberg Uncertainty Principle). Let ψ ∈ C1 (R) such that
x [ψ (x)]2 → 0 as |x| → ∞ and

∫
R

[ψ (x)]2 dx = 1.
Show that

1 ≤ 2
∫

R

x2 |ψ (x)|2 dx
∫

R

∣∣ψ′ (x)
∣∣2 dx.

If ψ is a Schrödinger wave function, the first factor in the right hand side
measures the spread of the density of a particle, while the second one measures
the spread of its momentum).

7.14. Let H be a Hilbert space and V a closed subspace of H. Show that
u = PV x if and only if

{
1. u ∈ V
2. (x− u, v) = 0, ∀v ∈ V.
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7.15. Let f ∈ L2 (−1, 1). Find the polynomial of degree ≤ n that gives the
best approximation of f in the least squares sense, that is, the polynomial p
that minimizes ∫ 1

−1

(f − q)2

among all polynomials q with degree ≤ n.

7.16 (Hermite’s equation; the quantum mechanics harmonic oscilla-
tor). Consider the equation

w′′ +
(
2λ+ 1− x2

)
w = 0 x ∈ R (7.63)

with w (x)→ 0 as x→ ±∞.

a) Show that the change of variables z = wex
2/2 transforms (7.63) into Her-

mite’s equation for z :
z′′ − 2xz′ + 2λz = 0

with e−x
2/2z (x)→ 0 as x→ ±∞.

b) Consider the Schrödinger wave equation for the harmonic oscillator

ψ′′ +
8π2m

h2

(
E − 2π2mν2x2

)
ψ = 0 x ∈ R

where m is the mass of the particle, E is the total energy, h is the Plank
constant and ν is the vibrational frequency. The physically admissible
solutions are those satisfying the following conditions:

ψ → 0 as x→ ±∞ and ‖ψ‖L2(R) = 1.

Show that there is a solution if and only if

E = hν

(
n+

1
2

)
n = 0, 1, 2....

and, for each n, the corresponding solution is given by

ψn (x) = knHn

(
2π
√
νm/hx

)
exp
(
−2π2νm

h
x2

)

where kn =

(
4πνm

22n (n!)2 h

)1/2

and Hn is the n− th Hermite polynomial.

7.17. Using separation of variables, solve the following steady state diffusion
problem in three dimensions (r, θ, ϕ spherical coordinates, 0 ≤ θ ≤ 2π, 0 ≤
ϕ ≤ π): {

Δu = 0 r < 1, 0 < ϕ < π

u (1, ϕ) = g (ϕ) 0 ≤ ϕ ≤ π.
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7.18. The vertical displacement u of a circular membrane of radius a sat-
isfies the bidimensional wave equation utt = Δu, with boundary condition
u (a, θ, t) = 0. Supposing the membrane initially at rest, write a formal solu-
tion of the problem.

7.19. Let {xk} ⊂ R, xk → +∞. Show that
∑∞
k=1 ckδ (x− xk) converges in

D′(R) for all {ck} ⊂ R.
7.20. Let u (x) = |x| and S (x) = sign(x). Prove that u′ = S in D′ (R) .

7.21. Prove that xmδ(k) = 0 in D′ (R), if 0 ≤ k < m.

7.22. Let n = 3 and F ∈ D′ (Ω;R3
)
. Define curl F ∈ D′ (Ω;R3

)
by the

formula

curl F =(∂x2F3 − ∂x3F2, ∂x3F1 − ∂x1F3, ∂x1F2 − ∂x2F1) .

Check that, for all ϕ = (ϕ1, ϕ2, ϕ3) ∈ D
(
Ω;R3

)
,

〈curl F,ϕ〉 = 〈F,curl ϕ〉 .

7.23. Show that if
u (x1, x2) = − 1

π
ln(x2

1 + x2
2)

then
−Δu = δ, in D′ (

R
2
)
.
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Variational formulation of elliptic problems

8.1 Elliptic Equations

Poisson’s equation Δu = f is the simplest among the elliptic equations, ac-
cording to the classification in Section 6.5.1, at least in dimension two. This
type of equations plays an important role in the modelling of a large variety
of phenomena, often of stationary nature. Typically, in drift, diffusion and
reaction models, like those considered in the preceding part of this book, a
stationary condition corresponds to a steady state, with no more dependence
on time.

Elliptic equations appear in the theory of electrostatic and electromagnetic
potentials or in the search of vibration modes of elastic structures as well (e.g.
through the method of separation of variables for the wave equation).

Let us define precisely what we mean by elliptic equation in dimension n.
Let Ω ⊆ R

n be a domain, A (x) = (aij (x)) a square matrix of order
n, b(x) = (b1 (x) , ..., bn (x)), c(x) = (c1 (x) , ..., cn (x)) vector fields in Rn,
a0 = a0(x) and f = f(x) real functions. An equation of the form

−
n∑

i,j=1

∂xi

(
aij (x)uxj

)
+

n∑
i=1

∂xi (bi(x)u) +
n∑
i=1

ci(x)uxi + a0 (x)u = f (x)

(8.1)
or

−
n∑

i,j=1

aij (x)uxixj +
n∑
i=1

bi (x)uxi + a0 (x)u = f (x) (8.2)

is said to be elliptic in Ω if A is positive in Ω, i.e. if the following ellipticity
condition holds:

n∑
i,j=1

aij (x) ξiξj > 0, ∀x ∈ Ω, ∀ξ ∈ Rn, ξ �= 0.

Salsa S., Vegni F.M.G., Zaretti A., Zunino P.: A Primer on PDEs. Models, Methods, Simulations.
Unitext – La Matematica per il 3+2 65.
DOI 10.1007/978-88-470-2862-3 8, © Springer-Verlag Italia 2013
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We say that (8.1) is in divergence form since it mat be written as

−div(A (x)∇u)︸ ︷︷ ︸
diffusion

+ div(b(x)u) + c (x) · ∇u︸ ︷︷ ︸
transport

+ a0 (x)u︸ ︷︷ ︸
reaction

= f (x)︸ ︷︷ ︸
external source

(8.3)

which emphasizes the particular structure of the higher order terms. Usually,
the first term models the diffusion in heterogeneous or anisotropic media,
when the constitutive law for the flux function q is given by the Fourier or
Fick law:

q = −A∇u.
Here u may represent a temperature or the concentration of a substance.
Thus, the term −div(A∇u) is associated with thermal or molecular diffusion.
The matrix A is called diffusion matrix ; the dependence of A on x denotes
anisotropic diffusion.

The examples in Chapter 2 explain the meaning of the other terms in
equation (8.3). In particular, div(bu) models convection or transport and cor-
responds to a flux function given by

q = bu.

The vector b has the dimensions of a velocity. Think, for instance, of the
fumes emitted by a factory installation, which diffuse and are transported by
the wind. In this case b is the wind velocity. Note that, if divb = 0, then
div(bu) reduces to b · ∇u which is of the same form of the third term c · ∇u.

The term a0u models reaction. If u is the concentration of a substance, a0

represents the rate of decomposition (a0 > 0) or growth (a0 < 0).
Finally, f represents an external action, distributed in Ω, e.g. the rate of

heat per unit mass supplied by an external source.
If the entries aij of the matrix A and the component bj of b are all

differentiable, we may compute the divergence of both A∇u and bu, and
reduce (8.1) to the non-divergence form

−
n∑

i,j=1

aij (x)uxixj +
n∑
k=1

b̃k (x)uxk
+ c̃ (x)u = f (x)

where

b̃k (x) =
n∑
i=1

∂xiaik (x) + bk (x) + ck (x) and c̃ (x) = divb (x) + a0 (x) .

However, when the aij or the bj are not differentiable, we must keep the
divergence form and interpret the differential equation (8.3) in a suitable
weak sense.

A non-divergence form equation is also associated with diffusion phe-
nomena through stochastic processes which generalize the Brownian motion,
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called diffusion processes. Thus, the steady state case is a solution of a non-
divergence form equation.

We develop the basic theory of elliptic equations in divergence form, re-
casting the most common boundary value problems within the functional
framework of the abstract variational problems of Section 7.4. This functional
setting turns out to be very well adapted to implement numerical approxima-
tion procedures, such as Galerkin method.

8.2 The Poisson Problem

Assume we are given a domain Ω ⊂ Rn and two real functions a0, f : Ω → R.
We want to determine a function u satisfying the equation

−Δu+ a0u = f in Ω

and one of the usual boundary conditions on ∂Ω.

The Poisson problem models a variety of stationary phenomena. For in-
stance, if n = 2, u can be interpreted as the equilibrium position of a perfectly
elastic membrane under a distributed charge f .

A Dirichlet condition (u = g on ∂Ω) means that the boundary of the
membrane keeps an assigned position. A Robin condition (∂νu + βu = g
on ∂Ω, β > 0) corresponds to a membrane whose boundary is subject to
an elastic restoring force. When β = 0 (Neumann condition) the membrane
boundary is free to move along a vertical guide.

When u describes the equilibrium concentration of a substance, a Dirichlet
condition prescribes the boundary concentration, while a Neumann condition
prescribes its flux through the boundary.

Let us examine what we mean by solving the above Poisson problem. The
obvious part is the final goal: we want to show existence, uniqueness and
stability of the solution; then, based on these results, we want to compute the
solution by Numerical Analysis approximation methods.

Less obvious is the meaning of solution. In fact, in principle, every problem
may be formulated in several ways and a different notion of solution is asso-
ciated with each way. What is important in the applications is to select the
“most efficient notion” for the problem under examination, where “efficiency”
may stand for the best compromise between simplicity of both formulation
and theoretical treatment, sufficient flexibility and generality, adaptability to
numerical methods.

Here is a (non exhaustive!) list of various notions of solution for the Poisson
problem.

Classical solutions are twice continuously differentiable functions; the
differential equation and the boundary conditions are satisfied in the usual
pointwise sense.
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Strong solutions belong to the Sobolev space H2 (Ω). Thus, they possess
derivatives in L2(Ω) up to the second order, in the sense of distributions.

The differential equation is satisfied in the pointwise sense, a.e. with re-
spect to the Lebesgue measure in Ω, while the boundary condition is satisfied
in the sense of traces.

Distributional solutions belong to L1
loc (Ω) and the equation holds in

the sense of distributions, i.e.:
∫

Ω

{−uΔϕ+ a0(x)uϕ} dx =
∫

Ω

fϕdx, ∀ϕ ∈ D (Ω) .

The boundary condition is satisfied in a very weak sense.

Weak or variational solutions belong to the Sobolev space H1 (Ω). The
boundary value problem is recast within the framework of the abstract varia-
tional theory developed in Section 7.4. Often the new formulation represents
a version of the principle of virtual work.

Clearly, all these notions of solution must be connected by a coherence
principle, which may be stated as follows: if all the data (domain, boundary
data, forcing terms) and the solution are C∞, all the above notions must be
equivalent. Thus, the non-classical notions constitute a generalization of the
classical one.

An important task, with consequences in the error control in numerical
methods, is to establish the optimal degree of regularity of a non-classical
solution.

More precisely, let u be a non-classical solution of the Poisson problem.
The question is: how much does the regularity of the data a0, f and of the
domain Ω affect the regularity of the solution?

An exhaustive answer requires rather complicated tools. In the sequel we
shall indicate only the most relevant results.

The theory for classical and strong solutions is well established and can
be found in specialized books (see the references). From the numerical point
of view, the method of finite differences best fits the differential structure of
the problem and aims at approximating classical solutions.

The distributional theory is well developed, is quite general, but is not the
most appropriate framework for solving boundary value problems.

Indeed, the sense in which the boundary values are attained is one of the
most delicate points, when one is willing to widen the notion of solution.

For our purposes, the most convenient notion of solution is the last one: it
leads to a quite flexible formulation with a sufficiently high degree of generality
and a basic theory solely relying on the Lax-Milgram Theorem (Section 7.4).
Moreover, the analogy (and often the coincidence) with the principle of virtual
work indicates a direct connection with the physical interpretation.
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Finally, the variational formulation is the most natural one to implement
the Galerkin method (finite elements, spectral elements, etc...), widely used
in the numerical approximation of the solutions of boundary value problems.

To present the main ideas behind the variational formulation, we start
from one-dimensional problems with an equation slightly more general than
Poisson’s equation.

8.3 Diffusion, Drift and Reaction (n = 1)

8.3.1 The problem

We shall derive the variational formulation of the following problem:
⎧⎪⎨
⎪⎩

−(p(x)u′)′︸ ︷︷ ︸
diffusion

+ q (x)u′︸ ︷︷ ︸
transport

+ r(x)u︸ ︷︷ ︸
reaction

= f (x) , in the interval (a, b)

boundary conditions at x = a and x = b.

(8.4)

We may interpret (8.4) as a stationary problem of diffusion, drift and reac-
tion.

The main steps for the weak formulation are the following:

a) Select a space of smooth test functions, adapted to the boundary conditions.

b) Multiply the differential equation by a test function and integrate over
(a, b).

c) Carry one of the derivatives in the divergence term onto the test function
via an integration by parts, using the boundary conditions and obtaining
an integral equation.

d) Interpret the integral equation as an abstract variational problem (Section
7.4) in a suitable Hilbert space. In general, this is a Sobolev space, given
by the topological closure of the space of test functions.

8.3.2 Dirichlet conditions

We start by analyzing homogeneous Dirichlet conditions:
{
−(p(x)u′)′ + q (x)u′ + r(x)u = f (x) , in (a, b)

u (a) = u (b) = 0.
(8.5)

Assume first that p ∈ C1 ([a, b]), with p > 0, and q, r, f ∈ C ([a, b]).
Let u ∈ C2 (a, b) ∩ C ([a, b]) be a classical solution of (8.5). We select

C1
0 (a, b) as the space of test functions. These test functions have a continuous

derivative and compact support in (a, b). In particular, they vanish at the end
points.



312 8 Variational formulation of elliptic problems

Now we multiply the equation by an arbitrary v ∈ C1
0 (a, b) and integrate

over (a, b). We find

−
∫ b

a

(pu′)′vdx+
∫ b

a

[qu′ + ru]vdx =
∫ b

a

fvdx. (8.6)

Integrating by parts the first term and using v (a) = v (b) = 0, we get

−
∫ b

a

(pu′)′vdx =
∫ b

a

pu′v′dx− [pu′v]ba =
∫ b

a

pu′v′dx.

From (8.6) we derive the integral equation
∫ b

a

[pu′v′ + qu′v + ruv]dx =
∫ b

a

fvdx, ∀v ∈ C1
0 (a, b) . (8.7)

Thus, (8.5) implies (8.7).
On the other hand, assume that (8.7) is true. Integrating by parts in the

reverse order, we recover (8.6), which can be written in the form
∫ b

a

{−(pu′)′ + q (x)u′ + r(x)u− f (x)} vdx = 0 ∀v ∈ C1
0 (a, b) .

The arbitrariness of v entails1

−(p(x)u′)′ + q (x)u′ + r(x)u− f (x) = 0 in (a, b)

i.e. the original differential equation.
Thus, for classical solutions, the two formulations (8.5) and (8.7)

are equivalent. Observe that equation (8.7):

• involves only one derivative of u;
• makes perfect sense even if p, q, r and f are merely locally integrable;
• transforms (8.5) into an integral equation, valid on an infinite-dimensional

space of test functions.

These features lead to the following functional setting:

a) we enlarge the class of test functions to H1
0 (a, b), which is the closure of

C1
0 (a, b) in H1−norm;

b) we look for a solution belonging to H1
0 (a, b), in which the homogeneous

Dirichlet conditions are already included.

Thus, the weak or variational formulation of problem (8.5) is:
Determine u ∈ H1

0 (a, b) such that

∫ b

a

{pu′v′ + qu′v + ruv} dx =
∫ b

a

fvdx, ∀v ∈ H1
0 (a, b). (8.8)

1 If g ∈ C ([a, b]) and
∫ b

a
gvdx = 0 for every v ∈ C1

0 (a, b), then g ≡ 0 (exercise).
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If we introduce the bilinear form

B (u, v) =
∫ b

a

{pu′v′ + qu′v + ruv} dx

and the linear functional

Lv =
∫ b

a

fv dx,

equation (8.8) can be recast as

B (u, v) = Lv, ∀v ∈ H1
0 (a, b).

Then existence, uniqueness and stability follow from the Lax-Milgram The-
orem 7.10, under rather natural hypotheses on p, q, r, f . Recall that, by
Poincaré’s inequality (7.55) we have

‖u‖0 ≤ CP ‖u′‖0 ,

so that we may choose in H1
0 (a, b) the norm

‖u‖1 = ‖u′‖0
equivalent to ‖u‖1,2 = ‖u‖0 + ‖u′‖0.

Proposition 8.1. Assume that p, q, q′, r ∈ L∞(a, b) and f ∈ L2(a, b). If

p (x) ≥ α > 0 and − 1
2
q′ (x) + r (x) ≥ 0 a.e. in (a, b), (8.9)

then (8.8) has a unique solution u ∈ H1
0 (a, b). Moreover

‖u′‖0 ≤
CP
α
‖f‖0 . (8.10)

Proof. Let us check that the hypotheses of the Lax-Milgram Theorem hold,
with V = H1

0 (a, b).
Continuity of the bilinear form B. We have:

|B (u, v)| ≤
∫ b

a

{‖p‖L∞ |u′v′|+ ‖q‖L∞ |u′v|+ ‖r‖L∞ |uv|} dx.

Using the Schwarz and Poincaré inequalities, we obtain

|B (u, v)| ≤ ‖p‖L∞ ‖u′‖0 ‖v′‖0 + ‖q‖L∞ ‖u′‖0 ‖v‖0 + ‖r‖L∞ ‖u‖0 ‖v‖0
≤ (‖p‖L∞ + CP ‖q‖L∞ + C2

P ‖r‖L∞
) ‖u′‖0 ‖v′‖0

so that B is continuous in V .
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Coerciveness of B. We may write:

B (u, u) =
∫ b

a

{
p(u′)2 + qu′u + ru2

}
dx

≥ α ‖u′‖20 +
1
2

∫ b

a

q
(
u2
)′
dx+

∫ b

a

ru2dx

(integrating by parts) = α ‖u′‖20 +
∫ b

a

{
−1

2
q′ + r

}
u2dx

(from (8.9)) ≥ α ‖u′‖20
and therefore B is V−coercive.
Continuity of L in V . The Schwarz and Poincaré inequalities yield

|Lv| =
∣∣∣∣∣
∫ b

a

fv dx

∣∣∣∣∣ ≤ ‖f‖0 ‖v‖0 ≤ CP ‖f‖0 ‖v′‖0 .

so that ‖L‖V ∗ ≤ CP ‖f‖0.
Then, the Lax-Milgram Theorem gives existence, uniqueness and the sta-

bility estimate (8.10). �

Remark 8.1. If q = 0, the bilinear form B is symmetric. From Theorem 7.11,
in this case the weak solution minimizes in H1

0 (a, b) the “energy functional”

J (u) =
∫ b

a

{
p (u′)2 + ru2 − 2fu

}
dx.

Then, equation (8.8) coincides with the Euler equation of J :

J ′ (u) v = 0, ∀v ∈ H1
0 (a, b) .

Remark 8.2. In the case of nonhomogeneous Dirichlet conditions, e.g. u (a) =
A, u (b) = B, set w = u− y, where y = y (x) is the straight line through the
points (a,A), (b,B), given by

y (x) = A+ (x− a) B −A
b− a .

Then, the variational problem for w is
∫ b

a

[pw′v′ + qw′v + rwv]dx =
∫ b

a

(Fv +Gv′) dx ∀v ∈ H1
0 (a, b) (8.11)

with

F (x) = f (x) +
B −A
b− a q (x)− r(x)

(
A+ (x− a) B −A

b− a
)

and

G (x) =
B −A
b− a p (x) .
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8.3.3 Neumann conditions

We now derive the weak formulation of the Neumann problem
{
−(p(x)u′)′ + q (x)u′ + r(x)u = f (x) , in (a, b)
−p (a)u′ (a) = A, p (b)u′ (b) = B.

(8.12)

The boundary conditions prescribe the outward flux at the end points. This
way of writing the Neumann conditions, with the presence of the factor p in
front of the derivative, is naturally associated with the divergence structure
of the diffusion term.

Again, assume first that p ∈ C1 ([a, b]), with p > 0, and q, r, f ∈ C0 ([a, b]).
A classical solution u has a continuous derivative up to the end points so that
u ∈ C2 (a, b) ∩ C1 ([a, b]).

As space of test functions, we choose C1 ([a, b]). Multiplying the equation
by an arbitrary v ∈ C1 ([a, b]) and integrating over (a, b), we find again

−
∫ b

a

(pu′)′vdx+
∫ b

a

[qu′ + ru]vdx =
∫ b

a

fvdx. (8.13)

Integrating by parts the first term and using the Neumann conditions, we get

−
∫ b

a

(pu′)′vdx =
∫ b

a

pu′v′dx− [pu′v]ba =
∫ b

a

pu′v′dx− v (b)B − v (a)A.

Then (8.13) becomes

∫ b

a

[pu′v′ + qu′v + ruv]dx− v (b)B − v (a)A =
∫ b

a

fvdx, (8.14)

for every v ∈ C1 ([a, b]).
Thus, (8.12) implies (8.14). If the choice of the test functions is correct,

we should be able to recover the classical formulation from (8.14).
Indeed, let us start recovering the differential equation. Since

C1
0 (a, b) ⊂ C1 ([a, b]) ,

(8.14) clearly holds for every v ∈ C1
0 (a, b). Then, (8.14) reduces to (8.7) and

we deduce, as before,

−(pu′)′ + qu′ + ru− f = 0, in (a, b) . (8.15)

Let us now use the test functions which do not vanish at the end points.
Integrating by parts the first term in (8.14) we have:

∫ b

a

pu′v′dx = −
∫ b

a

(pu′)′v dx+ p (b) v (b)u′ (b)− p (a) v (a)u′ (a) .
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Inserting this expression into (8.14) and taking into account (8.15) we find:

v (b) [p (b)u′ (b)−B]− v (a) [p (a)u′ (a) +A] = 0.

The arbitrariness of the values v (b) and v (a) forces

p (b)u′ (b) = B, −p (a)u′ (a) = A,

recovering the Neumann conditions as well.
Thus, for classical solutions, the two formulations (8.12) and (8.14)

are equivalent.
Enlarging the class of test functions to H1(a, b), which is the closure of

C1 ([a, b]) in H1−norm, we may state the weak or variational formulation
of problem (8.12) as follows:

Determine u ∈ H1(a, b) such that, ∀v ∈ H1(a, b),

∫ b

a

{pu′v′ + qu′v + ruv} dx =
∫ b

a

fv dx+ v (b)B + v (b)A. (8.16)

We point out that the Neumann conditions are encoded in equation (8.16),
rather than forced by the choice of the test functions, as in the Dirichlet
problem.

Introducing the bilinear form

B (u, v) =
∫ b

a

{pu′v′ + qu′v + ruv} dx

and the linear functional

Lv =
∫ b

a

fv dx+ v (b)B + v (a)A,

equation (8.16) can be recast in the abstract form

B (u, v) = Lv, ∀v ∈ H1(a, b).

Again, existence, uniqueness and stability of a weak solution follow from the
Lax-Milgram Theorem, under rather natural hypotheses on p, q, r, f .

Recall that if v ∈ H1(a, b), the Proposition 7.8 yields to the estimate

v(x) ≤ C∗ ‖v‖
1,2

(8.17)

for every x ∈ [a, b], with C∗ =
√

2 max
{
(b− a)−1/2, (b− a)1/2} .



8.3 Diffusion, Drift and Reaction (n = 1) 317

Proposition 8.2. Assume that:

i) p, q, r ∈ L∞(a, b) and f ∈ L2(a, b);

ii) p (x) ≥ α0 > 0, r (x) ≥ c0 > 0 a.e. in (a, b) and

K0 ≡ min {α0, c0} − 1
2
‖q‖L∞ > 0.

Then, (8.16) has a unique solution u ∈ H1(a, b). Furthermore

‖u‖1,2 ≤ K−1
0 {‖f‖0 + C∗(|A|+ |B|)} . (8.18)

Proof. Let us check that the hypotheses of the Lax-Milgram Theorem hold,
with V = H1(a, b).
Continuity of the bilinear form B. We have:

|B (u, v)| ≤
∫ b

a

{‖p‖L∞ |u′v′|+ ‖q‖L∞ |u′v|+ ‖r‖L∞ |uv|} dx.

Using Schwarz’s inequality, we easily get

|B (u, v)| ≤ (‖p‖L∞ + ‖q‖L∞ + ‖r‖L∞) ‖u‖1,2 ‖v‖1,2
so that B is continuous in V .
Coerciveness of B. We have

B (u, u) =
∫ b

a

{
p(u′)2 + qu′u + ru2

}
dx.

The Schwarz inequality gives
∣∣∣∣∣
∫ b

a

qu′u dx

∣∣∣∣∣ ≤ ‖q‖L∞ ‖u′‖0 ‖u‖0 ≤
1
2
‖q‖L∞

{
‖u′‖20 + ‖u‖20

}
.

Then, by ii),

B (u, u) ≥ (α0 − 1
2
‖q‖L∞) ‖u′‖20 + (c0 − 1

2
‖q‖L∞) ‖u‖20 ≥ K0 ‖u‖21,2

so that B is V−coercive.
Continuity of L in V . Schwarz’s inequality and (8.17) yield

|Lv| ≤ ‖f‖0 ‖v‖0 + |v (b)B + v (a)A| ≤
≤ {‖f‖0 + C∗ (|A|+ |B|)} ‖v‖1,2

whence ‖L‖V ∗ ≤ ‖f‖0 + C∗ (|A|+ |B|).
Then, the Lax-Milgram Theorem gives existence, uniqueness and the sta-

bility estimate (8.18). �
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Remark 8.3. In general, without the condition like c(x) ≥ c0 > 0 we cannot
expect existence and uniqueness of a solution. In fact, suppose, p = 1, q =
r = 0. The problem reduces to

{
u′′ = f in (a, b)

−u′ (a) = A, u′ (b) = B.
(8.19)

Hypothesis ii) is not satisfied (since r = 0). If u is a solution of the problem
and k ∈ R, also u + k is a solution of the same problem. We cannot expect
uniqueness. Not even we may prescribe f , A, B arbitrarily, if we want that a
solution exists. In fact, integrating the equation u′′ = f over (a, b), we deduce
that the Neumann data and f must satisfy the compatibility condition

B +A =
∫ b

a

f (x) dx. (8.20)

If (8.20) does not hold, the problem has no solution. Thus, to have existence
and uniqueness we must require that:

a) (8.20) holds;
b) select a solution (e.g.) with zero mean value in (a, b).

Condition (8.20) is indeed quite natural. Problem (8.19), with A = B = 0,
describes an elastic chord whose end points are free to slide along a vertical
guide; in this case (8.20) becomes

∫ b

a

f(x) dx = 0

which expresses the obvious fact that in equilibrium conditions the total dis-
tributed charge on the chord must vanish.

Remark 8.4. Notice that the Neumann condition is incorporated into the
variational formulation of the problem and for this reason they are considered
as natural conditions. On the opposite, a Dirichlet condition is prescribed at
the beginning so that it constitutes a forced condition.

8.3.4 Robin and mixed conditions

Suppose that the boundary conditions in problem (8.12) are:

−p (a)u′ (a) = A, p (b)u′ (b) + hu (b) = B (h > 0, constant)

where, for simplicity, the Robin condition is imposed at x = b only. With small
adjustments, we may repeat the same computations made for the Neumann
conditions. The weak formulation is:

Determine u ∈ H1 (a, b) such that, ∀v ∈ H1 (a, b) ,
∫ b

a

{pu′v′ + qu′v + ruv} dx+hu (b) v (b) =
∫ b

a

fvdx+v (b)B+v (a)A. (8.21)
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Introducing the bilinear form

B̃ (u, v) =
∫ b

a

{pu′v′ + qu′v + ruv} dx+ hu (b) v (b)

we may write our problem in the abstract form

B̃ (u, v) = Lv ∀v ∈ H1 (a, b) .

We have:

Proposition 8.3. Assume that i) and ii) of Proposition 8.2 hold and that
h > 0. Then, (8.21) has a unique solution u ∈ H1(a, b). Furthermore

‖u‖1,2 ≤ K−1
0 {‖f‖0 + C∗(|A|+ |B|)} .

Proof. Let V = H1(a, b). Since

B̃ (u, u) = B (u, u) + hu2 (b) ≥ K0 ‖u‖21,2
and

∣∣∣B̃ (u, v)
∣∣∣ ≤ |B (u, v)|+ h |u (b) v (b)|
≤ (‖p‖L∞ + ‖q‖L∞ + ‖r‖L∞ + h(C∗)2

) ‖u‖1,2 ‖v‖1,2 ,

B̃ is continuous and V−coercive. The conclusion follows easily. �

Mixed conditions. The weak formulation of mixed problems does not
present particular difficulties. Suppose, for instance, we assign at the end
points the conditions

u (a) = 0, p (b)u′ (b) = B.

Thus, we have a mixed Dirichlet-Neumann problem. The only relevant ob-
servation is the choice of the functional setting. Since u (a) = 0, we have to
choose V = H1

0,a, the space of functions v ∈ H1 (a, b), vanishing at x = a.
The Poincaré inequality holds in H1

0,a, so that we may choose ‖u′‖0 as the
norm in H1

0,a. Moreover, the following inequality

v(x) ≤ C∗∗ ‖v′‖0 (8.22)

holds2 for every x ∈ [a, b], with C∗∗ = (b− a)1/2.
The weak formulation is: find u ∈ H1

0,a such that

∫ b

a

{pu′v′ + qu′v + ruv} dx =
∫ b

a

fvdx+ v (b)B, ∀v ∈ H1
0,a. (8.23)

2 Since v (a) = 0, we have v (x) =
∫ x

a
v′ so that |v (x)| ≤ √

b− a ‖v′‖0.
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We have:

Proposition 8.4. Assume that i) and ii) of Proposition 8.1 hold. Then,
(8.23) has a unique solution u ∈ H1

0,a. Furthermore

‖u′‖0 ≤ K−1
0 {CP ‖f‖0 + C∗∗ |B|} .

We leave the proof as an exercise.

8.4 Variational Formulation of Poisson’s Problem

Guided by the one-dimensional case, we now analyze the variational formula-
tion of Poisson’s problem in dimension n > 1.

8.4.1 The Dirichlet problem

Let Ω ⊂ Rn be a bounded domain. We examine the following problem
{
−Δu+ a0 (x)u = f in Ω

u = 0 on ∂Ω.
(8.24)

To achieve a weak formulation, we first assume that a0 and f are smooth
and that u ∈ C2 (Ω) ∩ C0

(
Ω
)

is a classical solution of (8.24). We select
C1

0 (Ω) as the space of test functions, having continuous first derivatives and
compact support in Ω. In particular, they vanish in a neighborhood of ∂Ω.
Let v ∈ C1

0 (Ω) and multiply the Poisson equation by v. We get
∫

Ω

{−Δu+ a0u− f } v dx = 0. (8.25)

Integrating by parts and using the boundary condition, we obtain
∫

Ω

{∇u · ∇v + a0uv} dx =
∫

Ω

fv dx, ∀v ∈ C1
0 (Ω) . (8.26)

Thus (8.24) implies (8.26).
On the other hand, assume (8.26) is true. Integrating by parts in the

reverse order we return to (8.25), which entails −Δu+ a0u −f = 0 in Ω.
Thus, for classical solutions, the two formulations (8.24) and (8.26)

are equivalent.
Observe that (8.26) only involves first order derivatives of the solution and

of the test function. Then, enlarging the space of test functions to H1
0 (Ω),

closure of C1
0 (Ω) in the norm ‖u‖1 = ‖∇u‖0, we may state the weak formu-

lation of problem (8.24) as follows:
Determine u ∈ H1

0 (Ω) such that
∫

Ω

{∇u · ∇v + a0uv} dx =
∫

Ω

fv dx, ∀v ∈ H1
0 (Ω) . (8.27)
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Introducing the bilinear form

B (u, v) =
∫

Ω

{∇u · ∇v + a0uv} dx

and the linear functional
Lv =

∫

Ω

fv dx,

equation (8.27) corresponds to the abstract variational problem

B (u, v) = Lv, ∀v ∈ H1
0 (Ω) .

Then, the well-posedness of this problem follows from the the Lax-Milgram
Theorem under the hypothesis a0 ≥ 0. Precisely:

Theorem 8.1. Assume that f ∈ L2 (Ω) and that 0 ≤ a0 (x) ≤ γ0 a.e. in Ω.
Then, problem (8.27) has a unique solution u ∈ H1

0 (Ω). Moreover

‖∇u‖0 ≤
CP
α
‖f‖0 .

Proof. We check that the hypotheses of the Lax-Milgram Theorem hold, with
V = H1

0 (Ω).

Continuity of the bilinear form B. The Schwarz and Poincaré inequalities
yield:

|B (u, v)| ≤ ‖∇u‖0 ‖∇v‖0 + γ0 ‖u‖0 ‖v‖0
≤ (1 + C2

P γ0

) ‖∇u‖0 ‖∇v‖0
so that B is continuous in H1

0 (Ω).

Coerciveness of B. It follows from

B (u, u) =
∫

Ω

|∇u|2 dx +
∫

Ω

a0u
2dx ≥ α ‖∇u‖20

since a0 ≥ 0.

Continuity of L. The Schwarz and Poincaré inequalities give

|Lv| =
∣∣∣∣
∫

Ω

fv dx
∣∣∣∣ ≤ ‖f‖0 ‖v‖0 ≤ CP ‖f‖0 ‖∇v‖0 .

Hence L ∈ H−1 (Ω) and ‖L‖H−1(Ω) ≤ CP ‖f‖0. The conclusions follow from
the Lax-Milgram Theorem. �

Remark 8.5. Suppose that c = 0 and that u represents the equilibrium po-
sition of an elastic membrane. Then B (u, v) represents the work done by the
elastic internal forces, due to a virtual displacement v. On the other hand
Lv expresses the work done by the external forces. The weak formulation
(8.27) states that these two works balance, which constitutes a version of the
principle of virtual work.
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Furthermore, due to the symmetry of B, the solution u of the problem
minimizes in H1

0 (Ω) the Dirichlet functional

E (u) =
∫

Ω

|∇u|2 dx
︸ ︷︷ ︸

internal elastic energy

−
∫

Ω

fu dx
︸ ︷︷ ︸

external potential energy

which represents the total potential energy. Equation (8.27) constitutes
the Euler equation for E.

Thus, in agreement with the principle of virtual work, u minimizes the
potential energy among all the admissible configurations.

Similar observations can be made for the other types of boundary condi-
tions.

Non homogeneous Dirichlet conditions. A nonhomogeneous Dirichlet condi-
tion can be prescribed selecting g ∈ H1 (Ω) and asking that u− g ∈ H1

0 (Ω).
In this way we ask in a weak sense that u− g = 0 on ∂Ω. Then, setting

w = u− g
we are reduced to homogeneous boundary conditions. In fact, w ∈ H1

0 (Ω) and
is a solution of the equation∫

Ω

{∇w · ∇v dx+ a0wv} dx =
∫

Ω

Fv dx, ∀v ∈ H1
0 (Ω)

where F = f−∇g−a0g ∈ L2(Ω). The Lax-Milgram Theorem yields existence,
uniqueness and the stability estimate

‖∇w‖0 ≤ CP {‖f‖0 + (1 + a0) ‖g‖1,2}. (8.28)

Thus, for u we can write

‖u‖1,2 ≤ (1 + CP ) ‖∇w‖0 + ‖g‖1,2
≤ (1 + CP )CP {‖f‖0 + (1 + a0) ‖g‖1,2}.

8.4.2 Neumann, Robin and mixed problems

Let Ω ⊂ R
n be a bounded, Lipschitz domain. We examine the following

problem:
{−Δu+ a0 (x)u = f in Ω

∂νu = g on ∂Ω (8.29)

where α > 0 is constant and ν denotes the outward normal unit vector to
∂Ω. As usual, to derive a weak formulation, we first assume that a0, f and g
are smooth and that u ∈ C2 (Ω)∩C1

(
Ω
)

is a classical solution of (8.29). We
choose C1

(
Ω
)

as the space of test functions, having continuous first deriva-
tives up to ∂Ω. Let v ∈ C1

(
Ω
)
, arbitrary, and multiply the Poisson equation
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by v. Integrating over Ω, we get
∫

Ω

{−Δu+ a0u} v dx =
∫

Ω

fv dx. (8.30)

An integration by parts gives

−
∫

∂Ω

∂νu vdσ +
∫

Ω

{∇u · ∇v + a0uv} dx =
∫

Ω

fv dx, ∀v ∈ C1
(
Ω
)
.

(8.31)
Using the Neumann condition we may write
∫

Ω

{∇u · ∇v + a0uv} dx =
∫

Ω

fv dx+
∫

∂Ω

gv dσ ∀v ∈ C1
(
Ω
)
. (8.32)

Thus (8.29) implies (8.32).
On the other hand, suppose that (8.32) is true. Integrating by parts in the

reverse order, we find
∫

Ω

{−Δu+ a0u− f } v dx+
∫

∂Ω

∂νu vdσ =
∫

∂Ω

gv dσ, (8.33)

for every ∀v ∈ C1
(
Ω
)
. Since C1

0 (Ω) ⊂ C1
(
Ω
)

we may insert any v ∈ C1
0 (Ω)

into (8.33), to get
∫

Ω

{−Δu+ a0u− f } v dx = 0.

The arbitrariness of v ∈ C1
0 (Ω) entails −Δu+ a0u −f = 0 in Ω. Therefore

(8.33) becomes
∫

∂Ω

∂νu vdσ =
∫

∂Ω

gv dσ ∀v ∈ C1
(
Ω
)

and the arbitrariness of v ∈ C1
(
Ω
)

forces ∂νu = g, recovering the Neumann
condition as well.

Thus, for classical solutions, the two formulations (8.29) and (8.32)
are equivalent.

Recall now that C1
(
Ω
)

is dense in H1 (Ω), which therefore constitutes the
natural Sobolev space for the Neumann problem. Then, enlarging the space
of test functions to H1 (Ω), we may give the weak formulation of problem
(8.29) as follows.

Determine u ∈ H1 (Ω) such that

∫

Ω

{∇u · ∇v + a0uv} dx =
∫

Ω

fvdx+
∫

∂Ω

gvdσ, ∀v ∈ H1 (Ω) . (8.34)

Again we point out that the Neumann condition is encoded in (8.34) and
not explicitly expressed as in the case of Dirichlet boundary conditions. Since
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we used the density of C1
(
Ω
)

in H1 (Ω) and the trace of v on ∂Ω, some
regularity of the domain (Lipschitz is enough) is needed, even in the variational
formulation. Introducing the bilinear form

B (u, v) =
∫

Ω

{∇u · ∇v + a0uv} dx (8.35)

and the linear functional

Lv =
∫

Ω

fv dx+
∫

∂Ω

gvdσ, (8.36)

(8.34) may be formulated as the abstract variational problem

B (u, v) = Lv, ∀v ∈ H1
0 (Ω) .

We state the well-posedness of this problem under reasonable hypotheses
on the data.

Theorem 8.2. Let Ω ⊂ R
n be a bounded, Lipschitz domain, f ∈ L2 (Ω),

g ∈ L2 (∂Ω) and 0 < c0 ≤ a0 (x) ≤ γ0 a.e.in Ω.
Then, problem (8.34) has a unique solution u ∈ H1 (Ω). Moreover,

‖u‖1,2 ≤
1

min {α, c0}
{
‖f‖0 + Cα ‖g‖L2(∂Ω)

}
.

Along the proof, we use the following (important) the trace inequality

‖v‖L2(∂Ω) ≤ C (n,Ω) ‖v‖1,2 . (8.37)

We don’t give here formal details about the trace theory, although we’ve
proved this inequality in dimension 1 (see [28] and [37]).

Proof. We check that the hypotheses of the Lax-Milgram Theorem hold, with
V = H1(Ω).

• Continuity of the bilinear form B. The Schwarz inequality yields:

|B (u, v)| ≤ ‖∇u‖0 ‖∇v‖0 + γ0 ‖u‖0 ‖v‖0
≤ (1 + γ0) ‖u‖1,2 ‖v‖1,2

so that B is continuous in H1 (Ω).

• Coerciveness of B. It follows from

B (u, u) =
∫

Ω

|∇u|2 dx +
∫

Ω

a0u
2dx ≥ min {1, c0} ‖u‖21,2

since a0 (x) ≥ c0 > 0 a.e. in Ω.
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• Continuity of L. From Schwarz’s inequality and (8.37) we get:

|Lv| ≤
∣∣∣∣
∫

Ω

fv dx
∣∣∣∣+
∣∣∣∣
∫

∂Ω

gv dσ

∣∣∣∣ ≤ ‖f‖0 ‖v‖0 + ‖g‖L2(∂Ω) ‖v‖L2(∂Ω)

≤
{
‖f‖0 + C ‖g‖L2(∂Ω)

}
‖v‖1,2 .

Therefore L is continuous in H1 (Ω) with

‖L‖H1(Ω)∗ ≤ ‖f‖L2(Ω) + C ‖g‖L2(∂Ω) .

The conclusion follows from the Lax-Milgram Theorem. �

Remark 8.6. As in the one-dimensional case, without the condition a0 (x) ≥
c0 > 0, neither the existence nor the uniqueness of a solution is guaranteed.
Let, for example, a0 = 0. Then two solutions of the same problem differ by a
constant. A way to restore uniqueness is to select a solution with, e.g., zero
mean value, that is ∫

Ω

u (x) dx =0.

The existence of a solution requires the following compatibility condition on
the data f and g ∫

Ω

f dx+α
∫

∂Ω

g dσ = 0, (8.38)

obtained by substituting v = 1 into the equation
∫

Ω

α∇u · ∇v dx =
∫

Ω

fv dx+α
∫

∂Ω

gv dσ.

Note that, since Ω is bounded, the function v = 1 belongs to H1 (Ω).
If a0 = 0 and (8.38) does not hold, problem (8.29) has no solution. Vicev-

ersa, we shall see later that, if this condition is fulfilled, a solution exists.
If g = 0, (8.38) has a simple interpretation. Indeed problem (8.29) is a

model for the equilibrium configuration of a membrane whose boundary is
free to slide along a vertical guide. The compatibility condition

∫
Ω
fdx = 0

expresses the obvious fact that, at equilibrium, the resultant of the external
loads must vanish.

8.5 Eigenvalues of the Laplace operator

8.5.1 Separation of variables revisited

Using the method of separation of variables, in the first part of the book,
we have constructed solutions of boundary value problems by superposition
of special solutions. However, explicit computations can be performed only
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when the geometry of the relevant domain is quite particular. What may we
say in general? Let us consider an example from diffusion.

Suppose we have to solve the problem
⎧⎨
⎩
ut = Δu (x, y) ∈ Ω, t > 0
u (x, y, 0) = g (x, y) (x, y) ∈ Ω
u (x, y, t) = 0 (x, y) ∈ ∂Ω, t > 0

where Ω is a bounded bi-dimensional domain. Let us look for solutions of the
form

u (x, y, t) = v (x, y)w (t) .

Substituting into the differential equation, with some elementary manipula-
tions, we obtain

w′ (t)
w (t)

=
Δv (x, y)
v (x, y)

= −λ,

where λ is a constant, which leads to the two problems

w′ + λw = 0 t > 0 (8.39)

and {−Δv = λv in Ω
v = 0 on ∂Ω. (8.40)

A number λ such that there exists a non trivial solution v of (8.40) is called
a Dirichlet eigenvalue of the operator −Δ in Ω and v is a corresponding
eigenfunction. Now, the original problem can be solved if the following two
properties hold:

a) There exists a sequence of (real) eigenvalues λk with corresponding eigen-
vectors uk. Solving (8.39) for λ = λk yields

wk (t) = ce−λkt c ∈ R.
b) The initial data g can be expanded is series of eigenfunctions:

u(x, y) =
∑

gkuk (x, y) .

Then, the solution is given by

u (x, y, t) =
∑

gke
−λktuk (x, y)

where the series converges in some suitable sense.

In particular, condition b) requires that the set of Dirichlet eigenfunctions
of −Δ constitutes a basis in the space of initial data. Thus, for instance,
we may consider the Dirichlet eigenfunctions for the Laplace operator in a
domain Ω, i.e. the non trivial solutions of the problem

{−Δu = λu in Ω
u = 0 on ∂Ω. (8.41)
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A weak solution of problem (8.41) is a function u ∈ H1
0 (Ω) such that

a (u, v) ≡ (∇u,∇v)0 = λ (u, v)0 ∀v ∈ H1
0 (Ω) .

The following theorem holds.

Theorem 8.3. Let Ω be a bounded domain. Then, there exists in L2 (Ω)
an orthonormal basis {uk}k≥1 consisting of Dirichlet eigenfunctions for the
Laplace operator. The corresponding eigenvalues {λk}k≥1 are all positive and
may be arranged in an increasing sequence

0 < λ1 < λ2 ≤ · · · ≤ λk ≤ · · ·
with λk → +∞.

The sequence
{
uk/

√
λk
}
k≥1

constitutes an orthonormal basis in H1
0 (Ω),

with respect to the scalar product (u, v)1 = (∇u,∇v)0.
Remark 8.7. Let u ∈ L2 (Ω) and denote by ck = (u, uk)0 the Fourier co-
efficients of u with respect to the orthonormal basis {uk}k≥1. Then we may
write

u =
∞∑
k=1

ckuk and ‖u‖20 =
∞∑
k=1

c2k.

Note that
‖∇uk‖20 = (∇uk,∇uk)0 = λk (uk, uk)0 = λk.

Thus, u ∈ H1
0 (Ω) if and only if

‖∇u‖20 =
∞∑
k=1

λkc
2
k <∞. (8.42)

Moreover, (8.42) implies that, for every u ∈ H1
0 (Ω),

‖∇u‖20 ≥ λ1

∞∑
k=1

c2k = λ1 ‖u‖20 .

We deduce the following variational principle for the first Dirichlet
eigenvalue:

λ1 = min

{∫
Ω
|∇u|2∫
Ω
u2

: u ∈ H1
0 (Ω) , u non identically zero

}
. (8.43)

The quotient in (8.43) is called Raiyeigh’s quotient.

Similar theorems hold for the other types of boundary value problems as
well. For instance, the Neumann eigenfunctions for the Laplace operator in
Ω are the non trivial solutions of the problem
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{
−Δu = μu in Ω
∂νu = 0 on ∂Ω.

The following theorem holds.

Theorem 8.4. If Ω is a bounded Lipschitz domain, there exists in L2 (Ω)
an orthonormal basis {uk}k≥1 consisting of Neumann eigenfunctions for the
Laplace operator. The corresponding eigenvalues form a non decreasing se-
quence {μk}k≥1, with μ1 = 0 and μk → +∞.

Moreover, the sequence {uk/√μk + 1}k≥1 constitutes an orthonormal

basis in H1 (Ω), with respect to the scalar product (u, v)1,2 = (u, v)0 +
(∇u,∇v)0.

8.5.2 An asymptotic stability result

The results in the last subsection may be used sometimes to prove the asymp-
totic stability of a steady state solution of an evolution equation as time
t→ +∞.

As an example consider the following problem for the heat equation. Sup-
pose that u ∈ C2,1

(
Ω × [0,+∞)

)
is the (unique) solution of

⎧⎪⎨
⎪⎩

ut −Δu = f (x) x ∈Ω, t > 0
u (x,0) = u0 (x) x ∈Ω
u (σ,t) = 0 σ ∈ ∂Ω, t > 0

where Ω is a smooth, bounded domain. Denote by u∞ = u∞ (x) the solution
of the stationary problem

{
−Δu∞ = f in Ω

u∞ = 0 on ∂Ω.

Proposition 8.5. For t ≥ 0, we have

‖u (·, t)− u∞‖0 ≤ e−λ1t
{‖u0‖0 + C2

P ‖f‖0
}

(8.44)

where λ1 is the first Dirichlet eigenvalue for the Laplace operator in Ω.

Proof. Set g (x) = u0 (x) − u∞ (x). The function w (x,t) = u (x,t) − u∞ (x)
solves the problem

⎧⎪⎨
⎪⎩

wt −Δw = 0 x ∈Ω, t > 0
w (x,0) = g (x) x ∈Ω
w (σ,t) = 0 σ ∈ ∂Ω, t > 0.

(8.45)
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Let us use the method of separation of variables and look for solutions of the
form w (x,t) = v (x) z (t). We find

z′ (t)
z (t)

=
Δv (x)
v (x)

= −λ

with λ constant. Thus we are lead to the eigenvalue problem
{−Δv = λv in Ω

v = 0 on ∂Ω.

From Proposition 7.2, there exists in L2 (Ω) an orthonormal basis {uk}k≥1

consisting of eigenvectors, corresponding to a sequence of non decreasing
eigenvalues {λk}, with λ1 > 0 and λk → +∞. Then, if gk = (g, uk)0, we
can write

g =
∞∑
1

gkuk and ‖g‖20 =
∞∑
k=1

g2
k.

As a consequence, we find zk (t) = e−λkt and finally

w (x,t) =
∞∑
1

e−λktgkuk (x) .

Thus,

‖u (·, t)− u∞‖20 = ‖w (·, t)‖20
=

∞∑
k=1

e−2λktg2
k

and since λk > λ1 for every k, we deduce that

‖u (·, t)− u∞‖20 ≤
∞∑
k=1

e−2λ1tg2
k = e−2λ1t ‖g‖20 .

Theorem 8.1 yields, in particular

‖u∞‖0 ≤ C2
P ‖f‖0 ,

and hence

‖g‖0 ≤ ‖u0‖0 + ‖u∞‖0
≤ ‖u0‖0 + C2

P ‖f‖0
giving (8.44). �

Proposition 8.5 implies that the steady state u∞ is asymptotically stable
in L2 (Ω)−norm as t → +∞. The speed of convergence to the steady state
is exponential and it is determined by the first eigenvalue λ1.
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8.6 Equations in Divergence Form

8.6.1 Basic assumptions

In this section we consider boundary value problems for elliptic operators with
general diffusion and transport terms. Let Ω ⊂ Rn be a bounded domain
and set

Lu = −div (A (x)∇u) + div(b(x)u) + c (x) · ∇u+ a0 (x)u (8.46)

where A =(aij)i,j=1,...,n, b = (b1, ..., bn), c = (c1, ..., cn) and a0 is a real func-
tion.

Throughout this section, we will assume that the following hypotheses
hold.

1. The differential operator L is uniformly elliptic, i.e. there exist positive
numbers α and M such that:

α |ξ|2 ≤ A (x) ξ · ξ ≤M |ξ|2 , ∀ξ ∈ Rn, a.e. in Ω. (8.47)

2. The coefficients b, c and a0 are all bounded:

|b (x)| ≤ β, |c (x)| ≤ γ, |a0 (x)| ≤ γ0, a.e. in Ω. (8.48)

The uniform ellipticity condition (8.47) states that A is positive definite
matrix in Ω; α is called ellipticity constant. We point out that at this level
of generality, we allow discontinuities also of the diffusion matrix A, of the
transport coefficients b and c, in addition to the reaction coefficient a0.

We want to extend to these type of operators the theory developed so far.
The uniform ellipticity is a necessary requirement. In this section, we indicate
some sufficient conditions assuring the well-posedness of the usual boundary
value problems, based on the use of the Lax-Milgram Theorem.

As in the preceding sections, we start from the homogeneous Dirich-
let problem. Nonhomogeneous Dirichlet conditions can be treated as in Re-
mark 8.2.

8.6.2 Dirichlet problem

Consider the problem
{
Lu = f + div f in Ω
u = 0 on ∂Ω

(8.49)

where f ∈ L2 (Ω) and f ∈ L2 (Ω;Rn).
A comment on the right hand side of (8.49) is in order. We have denoted

by H−1 (Ω) the dual of H1
0 (Ω). We know (Theorem 7.15) that every element

F ∈ H−1 (Ω) can be identified with an element in D′ (Ω) of the form

F = f + div f .
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Moreover
‖F‖H−1(Ω) ≤ ‖f‖0 + ‖f‖0 . (8.50)

Thus, the right hand side of (8.49) represents a generic element of H−1 (Ω).
To derive a variational formulation of (8.49), we first assume that all the

coefficients and the data f , f are smooth. Then, we multiply the equation by
a test function v ∈ C1

0 (Ω) and integrate over Ω:
∫

Ω

[−div(A∇u− bu) v] dx +
∫

Ω

[c·∇u+ a0u] v dx =
∫

Ω

[f + divf ] vdx.

Integrating by parts, we find, since v = 0 on ∂Ω
∫

Ω

[−div(A∇u− bu) v] dx =
∫

Ω

[A∇u · ∇v − bu · ∇v] dx

and ∫

Ω

v div f dx = −
∫

Ω

f ·∇v dx.

Thus, the resulting equation is
∫

Ω

{A∇u · ∇v − bu · ∇v + cv·∇u + a0uv} dx =
∫

Ω

{fv − f ·∇v } dx (8.51)

for every v ∈ C1
0 (Ω).

It is not difficult to check that for classical solutions, the two formu-
lations (8.49) and (8.51) are equivalent.

We now enlarge the space of test functions to H1
0 (Ω) and introduce the

bilinear form

B (u, v) =
∫

Ω

{A∇u · ∇v − bu · ∇v + cv·∇u + a0uv} dx

and the linear functional

Fv =
∫

Ω

{fv − f ·∇v } dx.

Then, the weak formulation of problem (8.49) is the following:

Determine u ∈ H1
0 (Ω) such that

B (u, v) = Fv, ∀v ∈ H1
0 (Ω) . (8.52)

A set of hypotheses that ensure the well-posedness of the problem is indicated
in the following proposition.
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Proposition 8.6. Assume that hypotheses (8.47) and (8.48) hold and that
f ∈ L2 (Ω), f ∈ L2 (Ω;Rn). Then if b and c have Lipschitz components and

1
2
div (b− c) + a0 ≥ 0, a.e. in Ω, (8.53)

problem (8.52) has a unique solution. Moreover, the following stability esti-
mate holds:

‖u‖1 ≤
1
α
{‖f‖0 + ‖f‖0} . (8.54)

Proof. We apply the Lax-Milgram Theorem with V = H1
0 (Ω). The continuity

of B in V follows easily. In fact, the Schwarz inequality and the bounds in
(8.48) give:

∣∣∣∣
∫

Ω

A∇u · ∇v dx
∣∣∣∣ ≤
∫

Ω

n∑
i,j=1

∣∣aij∂xiu ∂xjv
∣∣ dx

≤ M

∫

Ω

|∇u| |∇v| dx ≤M ‖∇u‖0 ‖∇v‖0 .

Moreover, using Poincaré’s inequality as well,
∣∣∣∣
∫

Ω

[bu · ∇v − cv · ∇u] dx
∣∣∣∣ ≤ (β + γ)CP ‖∇u‖0 ‖∇v‖0

and ∣∣∣∣
∫

Ω

a0uv dx
∣∣∣∣ ≤ γ0

∫

Ω

|u| |v| dx ≤ γ0C
2
P ‖∇u‖0 ‖∇v‖0 .

Thus, we can write

|B (u, v)| ≤ (M + (β + γ)Cp + γC2
p

) ‖∇u‖0 ‖∇v‖0
which shows the continuity of B. Let us analyze the coerciveness of B. We
have:

B (u, u) =
∫

Ω

{
A∇u · ∇u− (b− c)u·∇u+ a0u

2
}
dx.

Observe that, since u = 0 on ∂Ω, integrating by parts we obtain
∫

Ω

(b− c)u·∇u dx =
1
2

∫

Ω

(b− c) · ∇u2dx = −1
2

∫

Ω

div(b− c) u2dx.

Therefore, from (8.47) and (8.53), it follows that

B (u, u) ≥ α

∫

Ω

|∇u|2 dx+
∫

Ω

[
1
2
div(b− c)+a0

]
u2dx ≥α ‖∇u‖20

so that B is V−coercive. Since we already know that F ∈ H−1 (Ω), the
Lax-Milgram Theorem and (8.50) give existence, uniqueness and the stability
estimate (8.54). �
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Remark 8.8. If A is symmetric and b = c = 0, the solution u is a minimizer
in H1

0 (Ω) for the “energy” functional

E (u) =
∫

Ω

{
A∇u · ∇u+ cu2 − fu} dx.

The equation (8.52) constitutes the Euler equation for E.

In general we cannot prove that the bilinear form B is coercive. What we
may affirm is that B is weakly coercive, i.e. there exists λ0 ∈ R such that:

B̃ (u, v) = B (u, v) + λ0 (u, v)0 ≡ B (u, v) + λ0

∫

Ω

uv dx

is coercive. In fact, from the elementary inequality

|ab| ≤ εa2 +
1
4ε
b2, ∀ε > 0,

we get

∣∣∣∣
∫

Ω

(b− c)u · ∇u dx
∣∣∣∣ ≤ (β + γ)

∫

Ω

|u·∇u| dx ≤ ε ‖∇u‖20 +
(β + γ)2

4ε
‖u‖20 .

Therefore:

B̃ (u, u) ≥ α ‖∇u‖20 + λ0 ‖u‖20 − ε ‖∇u‖20 −
(

(β + γ)2

4ε
+ γ

)
‖u‖20 . (8.55)

If we choose ε = α/2 and λ0 = (β + γ)2/4ε+ γ, we obtain

B̃ (u, u) ≥ α

2
‖∇u‖20

which shows the coerciveness of B̃. We will use this condition in the next
chapter.

8.6.3 Neumann problem

Let Ω be a bounded, Lipschitz domain. The Neumann condition for an oper-
ator in the divergence form (8.46) assigns on ∂Ω the flux naturally associated
with the operator. This flux is composed by two terms: A∇u · ν, due to the
diffusion term −divA∇u, and −bu·ν, due to the convective term div(bu),
where ν is the outward unit normal on ∂Ω. We set

∂Lν u ≡ (A∇u− bu) · ν =
n∑

i,j=1

aij∂xju νi − u
∑
j

bjνj .
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We call ∂Lν u conormal derivative of u. Thus, the correct Neumann problem is:
{
Lu = f in Ω
∂Lν u = g on ∂Ω

(8.56)

with f ∈ L2 (Ω) and g ∈ L2 (∂Ω). The variational formulation of problem
(8.56) may be obtained by the usual integration by parts technique. It is
enough to note, that, multiplying the differential equation Lu = f by a test
function v ∈ H1 (Ω) and using the Neumann condition, we get, formally

∫

Ω

{(A∇u− bu)∇v + (c·∇u)v + a0uv} dx =
∫

Ω

fv dx+
∫

∂Ω

gv dσ.

Introducing the bilinear form

B (u, v) =
∫

Ω

{(A∇u− bu)∇v + (c·∇u)v + a0uv} dx (8.57)

and the linear functional

Fv =
∫

Ω

fv dx+
∫

∂Ω

gv dσ,

we are led to the following weak formulation, that can be easily checked to
be equivalent to the original problem, when all the data are smooth.

Determine u ∈ H1 (Ω) such that

B (u, v) = Fv, ∀v ∈ H1 (Ω) . (8.58)

If the size of b− c is small enough, problem (8.58) is well-posed, as the fol-
lowing proposition shows.

Proposition 8.7. Assume that hypotheses (8.47) and (8.48) hold and that
f ∈ L2 (Ω), g ∈ L2 (∂Ω). If a0 (x) ≥ c0 > 0 a.e. in Ω and

α0 ≡ min {α− (β + γ)/2, c0 − (β + γ)/2} > 0, (8.59)

then, problem (8.58) has a unique solution. Moreover, the following stability
estimate holds:

‖u‖1,2 ≤
1
α0

{
‖f‖0 + C (n,Ω) ‖g‖L2(∂Ω)

}
.

Proof (sketch). Since

|B (u, v)| ≤ (M + β + γ + γ0) ‖u‖1,2 ‖v‖1,2
B is continuous in H1 (Ω). Moreover, we may write

B (u, u) ≥ α

∫

Ω

|∇u|2 dx−
∣∣∣∣
∫

Ω

[(b− c)·∇u] u dx
∣∣∣∣+
∫

Ω

a0u
2dx.
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From Schwarz’s inequality and the inequality 2ab ≤ a2 + b2, we obtain
∣∣∣∣
∫

Ω

[(b− c)·∇u] u dx
∣∣∣∣ ≤ (β + γ) ‖∇u‖0 ‖u‖0 ≤

(β + γ)
2

‖u‖21,2 .

Thus, if (8.59) holds, we get B (u, u) ≥ α0 ‖u‖21,2 and therefore B is coercive.
Finally, using the trace inequality (8.37), it is not difficult to check that F ∈
H1 (Ω)∗, with

‖F‖H1(Ω)∗ ≤ ‖f‖0 + C (n,Ω) ‖g‖L2(∂Ω) . �

8.6.4 Robin and mixed problems

The variational formulation of the problem
{

Lu = f in Ω
∂Lν u+ hu = g on ∂Ω

(8.60)

is obtained by replacing the bilinear form B in problem (8.58), by

B̃ (u, v) = B (u, v) +
∫

∂Ω

huv dσ.

If 0 ≤ h (x) ≤ h0 a.e. on ∂Ω, Proposition 8.7 still holds for problem (8.60).

As for the Neumann problem, in general the bilinear form B is only weakly
coercive.

Mixed Dirichlet-Neumann problem. Let ΓD be a non empty relatively
open subset of ∂Ω and ΓN = ∂Ω\ΓD. Consider the mixed problem

⎧⎨
⎩
Lu = f in Ω
u = 0 on ΓD

∂Lν u = g on ΓN .

As in Section 8.4.2, the correct functional setting is H1
0,ΓD

(Ω) with the norm
‖u‖H1

0,ΓD
(Ω) = ‖∇u‖0. Introducing the linear functional

Fv =
∫

Ω

fv dx+
∫

ΓN

gv dσ,

the variational formulation is the following: Determine u ∈ H1
0,ΓD

(Ω) such
that

B (u, v) = Fv, ∀v ∈ H1
0,ΓD

(Ω) . (8.61)
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Proceeding as in Proposition 8.6, we may prove the following result.

Proposition 8.8. Assume that hypotheses (8.47) and (8.48) hold and that
f ∈ L2 (Ω), g ∈ L2 (ΓN ). If b and c have Lipschitz components and

(b− c) · ν ≤ 0 a.e. on ΓN ,
1
2
div (b− c) + a0 ≥ 0, a.e. in Ω,

then problem (8.61) has a unique solution u ∈ H1
0,ΓD

(Ω). Moreover, the
following stability estimate holds:

‖u‖1 ≤
1
α

{
‖f‖0 + C ‖g‖L2(∂Ω)

}
.

8.7 A Control Problem

Control problems are more and more important in modern technology. We
give here an application of the variational theory we have developed so far,
to a fairly simple temperature control problem.

8.7.1 Structure of the problem

Suppose that the temperature u of a homogeneous body, occupying a smooth
bounded domain Ω ⊂ R3, satisfies the following stationary conditions:

{Lu ≡ −Δu+ div (bu) = z in Ω
u = 0 on ∂Ω (8.62)

where b ∈C1
(
Ω;R3

)
is given, with divb ≥ 0 in Ω.

In (8.62) we distinguish two types of dependent variables: the control
variable z, that we take in H = L2 (Ω), and the state variable u.

Coherently, (8.62) is called the state system. Given a control z, from
Proposition 8.6, (8.62) has a unique weak solution

u [z] ∈ V = H1
0 (Ω) .

Thus, setting

a (u, v) =
∫

Ω

(∇u · ∇v − ub·∇v) dx,

u [z] satisfies the state equation

a (u [z] , v) = (z, v)0 ∀v ∈ V (8.63)

and
‖u [z]‖1 ≤ ‖z‖0 . (8.64)

Our problem is to choose the source term z in order to minimize
the “distance” of u from a given target state ud.
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Of course there are many ways to measure the distance of u from ud. If
we are interested in a distance which involves u and ud over an open subset
Ω0 ⊆ Ω, a reasonable choice may be

J (u, z) =
1
2

∫

Ω0

(u− ud)2 dx +
β

2

∫

Ω

z2dx (8.65)

where β > 0.
J (u, z) is called cost functional or performance index. The second

term in (8.65) is called penalization term; its role is, on one hand, to avoid
using “too large” controls in the minimization of J , on the other hand, to
assure coerciveness for J , as we shall see later on.

Summarizing, we may write our control problem in the following way:
Find (u∗, z∗) ∈ H × V , such that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

J (u∗, z∗) = min
(u,z)∈V×H

J (u, z)

under the conditions

Lu = z in Ω, u = 0 on ∂Ω.

(8.66)

If (u∗, z∗) is a minimizing pair, u∗ and z∗ are called optimal state and
optimal control, respectively.

Remark 8.9. When the control z is defined in an open subset Ω0 of Ω, we
say that it is a distributed control. In some cases, z may be defined only on
∂Ω and then is called boundary control.

Similarly, when the cost functional (8.65) involves the observation of u
in Ω0 ⊆ Ω, we say that the observation is distributed. On the other hand,
one may observe u or ∂νu on Γ ⊆ ∂Ω. These cases correspond to boundary
observations and the cost functional has to take an appropriate form.

The main questions to face in a control problem are:

• establish existence and/or uniqueness of an optimal pair (u∗, z∗);
• derive necessary and/or sufficient optimality conditions;
• construct algorithms for the numerical approximation of (u∗, z∗).

8.7.2 Existence and uniqueness of an optimal pair

Given z ∈ H, we may substitute into J the unique solution u = u [z] of (8.63)
to get the functional

J̃ (z) = J (u [z] , z) =
1
2

∫

Ω0

(u [z]− ud)2 dx +
β

2

∫

Ω

z2dx,

depending only on z. Thus, our minimization problem (8.66) is reduced to
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find an optimal control z∗ ∈ H such that

J̃ (z∗) = min
z∈H

J̃ (z) . (8.67)

Once z∗ is known, the optimal state is given by u∗ = u [z∗].
The strategy to prove existence and uniqueness of an optimal control is

to use the relationship between minimization of quadratic functionals and
abstract variational problems corresponding to symmetric bilinear forms, ex-
pressed in Theorem 7.11. The key point is to write J̃ (z) in the following
way:

J̃ (z) =
1
2
b (z, z) + Lz + q (8.68)

where q ∈ R (irrelevant in the optimization) and:

• b (z, w) is a bilinear form in H, symmetric, continuous and H−coercive;

• L is a linear, continuous functional in H.
Then, by Theorem 7.11, there exists a unique minimizer z∗ ∈ H. Moreover
z∗ is the minimizer if and only if z∗ satisfies the Euler equation (see (7.31))

J̃ ′ (z∗)w = b (z∗, w)− Lw = 0 ∀w ∈ H. (8.69)

This procedure yields the following result.

Theorem 8.5. There exists a unique optimal control z∗ ∈ H. Moreover, z∗

is optimal if and only if the following Euler equation holds (u∗ = u [z∗]):

J̃ ′ (z∗)w =
∫

Ω0

(u∗ − ud)u [w] dx+β
∫

Ω

z∗w = 0 ∀w ∈ H. (8.70)

Proof. According to the above strategy, we write J̃ (z) in the form (8.68).
First note that the map z �→ u [z] is linear. In fact, if α1, α2 ∈ R, then

u [α1z1 + α2z2] is the solution of Lu [α1z1 + α2z2] = α1z1 + α2z2u1. Since L
is linear,

L (α1u [z1] + α2u [z2]) = α1Lu [z1] + α2Lu [z2] = α1z1 + α2z2

and therefore, by uniqueness, u [α1z1 + α2z2] = α1u [z1] + α2u [z2].
As a consequence,

b (z, w) =
∫

Ω0

u [z]u [w] dx+β
∫

Ω

zw (8.71)

is a bilinear form and
Lw =

∫

Ω0

u [w]ud dx (8.72)

is a linear functional in H.
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Moreover, b is symmetric (obvious), continuous and H−coercive. In fact,
from (8.64) and the Schwarz and Poincaré inequalities, we have, since Ω0 ⊆ Ω,

|b (z, w)| ≤ ‖u [z]‖L2(Ω0)
‖u [w]‖L2(Ω0)

+ β ‖z‖0 ‖w‖0
≤ (C2

P + β) ‖z‖0 ‖w‖0
which gives the continuity of b. The H−coerciveness of b follows from

b (z, z) =
∫

Ω0

u2 [z] dx+β
∫

Ω

z2 ≥ β ‖z‖20 .

Finally, from (8.64) and Poincaré’s inequality,

|Lw| ≤ ‖ud‖L2(Ω0)
‖u [w]‖L2(Ω0)

≤ CP ‖ud‖0 ‖w‖0 ,
and we deduce that L is continuous in H.

Now, if we set: q =
∫
Ω0
u2
d dx, it is easy to check that

J̃ (z) =
1
2
b (z, z)− Lz + q.

Then, Theorem 7.11 yields existence and uniqueness of the optimal control
and Euler equation (8.69) translates into (8.70) after simple computations. �

8.7.3 Lagrange multipliers and optimality conditions

The Euler equation (8.70) gives a characterization of the optimal control z∗

but it is not suitable for its computation.
To obtain more manageable optimality conditions, let us change point of

view by regarding the state equation Lu [z] = −Δu+div(bu) = z, with u = 0
on ∂Ω, as a constraint for our minimization problem. Then, the key idea is
to introduce a multiplier p ∈ V , to be chosen suitably later on, and formally3

write J̃ (z) in the augmented form

1
2

∫

Ω0

(u [z]− ud)2 dx +
β

2

∫

Ω

z2dx+
∫

Ω

p [z − Lu [z]] dx. (8.73)

In fact, we have just added zero. Since z �−→ u [z] is a linear map,

L̃z =
∫

Ω

p (z − Lu [z]) dx

is a linear functional inH and therefore Theorem 8.5 yields the Euler equation

J̃ ′ (z∗)w =
∫

Ω0

(u∗ − ud)u [w] dx +
∫

Ω

(p+ βz∗)w dx−
∫

Ω

p Lu [w] dx = 0

(8.74)
3 It can be proved that actually u belongs to H2 (Ω) so that Lu is well defined as

a function in L2 (Ω) and the integral makes sense.
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for every w ∈ H. Now we integrate twice by parts the last term, recalling that
u [w] = 0 on ∂Ω. We find

∫

Ω

pLu [w] dx =
∫

∂Ω

p (−∂νu [w] + (b · ν)u [w]) dσ

+
∫

Ω

(−Δp− b · ∇p)u [w] dx

= −
∫

∂Ω

p ∂νu [w] dσ +
∫

Ω

L∗p u [w] dx,

where the operator L∗ = −Δ− b · ∇ is the formal adjoint of L.
Now we choose the multiplier: let p∗ be the solution of the following ad-

joint problem {
L∗p = (u∗ − ud)χΩ0

in Ω
p = 0 on ∂Ω.

(8.75)

Using (8.75), the Euler equation (8.74) becomes

J̃ ′ (z∗)w =
∫

Ω

(p∗ + βz∗)w dx =0 ∀w ∈ H, (8.76)

equivalent to p∗ + βz∗ = 0.
Summarizing, we have proved the following result:

Theorem 8.6. The control z∗ and the state u∗ = u (z∗) are optimal if and
only if there exists a multiplier p∗ ∈ V such that z∗, u∗ and p∗ satisfy the
following optimality conditions

⎧⎪⎨
⎪⎩

Eu∗ = −Δu∗ + div (bu∗) = z∗ in Ω, u∗ = 0 on ∂Ω
E∗p∗ = −Δp∗ − b · ∇p∗ = (u∗ − ud)χΩ0

in Ω, p∗ = 0 on ∂Ω
p∗ + βz∗ = 0. (Euler equation).

Remark 8.10. The optimal multiplier p∗ is also called adjoint state.

Remark 8.11. We may generate the state and the adjoint equations in weak
form, introducing the Lagrangian L = L (u, z, p), given by

L (u, z, p) = J (u, z)− a (u, p) + (z, p)0.

Notice that L is linear in p, therefore4

L′
p (u∗, z∗, p∗) v = −a (u∗, v) + (z∗, v)0 = 0

4 L′
p, L′

z and L′
u denote the derivatives of the quadratic functional L with respect

to p, z, u, respectively.
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corresponds to the state equation. Moreover

L′
u (u∗, z∗, p∗)ϕ = J ′

u (u∗, z∗)ϕ− a(ϕ, p∗)
= (u∗ − ud, ϕ)L2(Ω0)

− a∗(p∗, ϕ) = 0

generates the adjoint equation, while

L′
z (u∗, z∗, p∗)w = β (w, z∗)0 + (w, p∗)0 = 0

constitutes Euler equation.

Remark 8.12. It is interesting to examine the behavior of J̃ (z∗) as β → 0.
In our case it is possible to show that J̃ (z∗)→ 0 as β → 0.

Remark 8.13 (An iterative algorithm). From Euler equation (8.76) and
the Riesz Representation Theorem, we infer that

p∗ + βz∗ is the Riesz element associated with J̃ ′ (z∗) ,

called the gradient of J at z∗ and denoted by the usual symbol ∇J (z∗) or
by δz (z∗, p∗). Thus, we have

∇J (z∗) = p∗ + βz∗.

It turns out that −∇J (z∗) plays the role of the steepest descent direction for
J , as in the finite-dimensional case. This suggests an iterative procedure to
compute a sequence of controls {zk}k≥0, convergent to the optimal one.

Select an initial control z0. If zk is known (k ≥ 0), then zk+1 is computed
according to the following scheme.

1. Solve the state equation a (uk, v) = (zk, v)0, ∀v ∈ V.
2. Knowing uk, solve the adjoint equation

a∗ (pk, ϕ) = (uk − ud, ϕ)L2(Ω0)
∀ϕ ∈ V.

3. Set
zk+1 = zk − τk∇J (zk) (8.77)

and select the relaxation parameter τk in order to assure that

J (zk+1) < J (zk) . (8.78)

Clearly, (8.78) implies the convergence of the sequence {J (zk)}, though in
general not to zero. Concerning the choice of the relaxation parameter, there
are several possibilities. For instance, if β � 1, we know that the optimal
value J (z∗) is close to zero and then we may chose

τk = J (zk) |∇J (zk)|−2
.

With this choice, (8.77) is a Newton type method:

zk+1 = zk − ∇J (zk)
|∇J (zk)|2

J (zk) .
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8.8 Numerical methods

8.8.1 The finite element method in one space dimension

We have introduced in the previous chapter the Galerkin method, that is
an approximation method of the abstract variational problem B(u, v) = Lv,
based on a sequence of finite-dimensional subspaces Vk ⊂ V . The finite ele-
ment method is characterized by a particular definition of the subspaces Vk.
We will develop here the main lines of this method applied to the discretiza-
tion of second order boundary value problems on the interval (xa, xb), where
in general the space V can be identified with H1(xa, xb).

These preliminary considerations already show that the finite element
method relies on completely different theoretical foundations than finite differ-
ence schemes. While the latter provide a nodal based approximation, without
guarantees on the behavior of the numerical solution between the nodes, the
approximation properties of finite element method can be defined and ana-
lyzed at any point on the domain. Anyway, for simple problems as the ones
that we will address in this section, the two families of methods share some
similarities.

For the definition of subspaces Vk we start from a uniform partition of
(xa, xb), in k subintervals

[xa, xb] =
k⋃
i=1

[xi−1, xi], xi = h · i, h = (xb − xa)/k.

In this context, we say that xi are the vertexes of the partition. The space
of finite elements of degree r on this partition is defied as the collec-
tion of continuous functions whose restriction on each interval [xi−1, xi] is a
polynomial function of degree less or equal to r, namely

Xr
k = {vk ∈ C0(xa, xb) : vk|(xi−1,xi) ∈ Pr(xi−1, xi), for i = 1, . . . , k}

where the notation Pr(xi−1, xi) stands for the space of polynomial functions
of degree less or equal to r on (xi−1, xi). Clearly, Xr

k(xa, xb) is a finite-dimen-
sional function space where dim(Xr

k) = Nr
k is affected by both parameters k

and r. Then, the finite element method consists to determine uk ∈ Xr
k(xa, xb)

such that,
B(uk, vk) = Lvk, ∀vk ∈ Vk.

Now, we aim to reformulate the previous discrete problem as a linear sys-
tem of algebraic equations, that could then be solved by a suitable algorithm.
From Chapter 7, we remind that the Galerkin method is equivalent to de-
termine a vector of coefficients, c = {cj}N

r
k

j=1, such that Akrc = Fkr with
Akr ∈ RNr

k×Nr
k , Fkr ∈ RNr

k where,

uk =
Nr

k∑
j=1

cjψj , Akr,ij = B(ψj , ψi), Fkr,i = Lψi.
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According to this equivalent problem formulation, we observe that a suit-
able basis of the finite element space Xr

k(xa, xb) should satisfy the following
criteria:

a) The support of each basis element, namely ψi, should be small so as to
supp(ψi)∩ supp(ψj) = ∅ for as many indexes as possible. By this way, we
a priori know that the matrix coefficient Akr vanishes because Akr,ij =
a(ψj , ψi) = 0. On the one hand, this strategy reduces the computational
cost for building Akr. On the other hand, since Akr is likely to be a narrow
banded matrix, it will be possible to use efficient algorithms to solve the
corresponding linear system.

b) We look for a Lagrangian basis. Namely, provided that each basis element
refers ψi to a special point x̂i ∈ (xa, xb), called node, a basis is Lagrangian
if ψi(x̂j) = δij , where δij is Kronecker’s symbol. As a result of that, for
any vk =

∑Nr
k

i=1 ciψi the coefficients of the expansion satisfy ci = vk(x̂i).

Fig. 8.1 shows an example of functions v1
k ∈ X1

k(0, 1) and v2
k ∈ X2

k(0, 1)
defined on a uniform partition of (0, 1) in k = 4 elements, while in Fig. 8.2
we depict some elements of a Lagrangian basis of X1

k(0, 1) (left) and X2
k(0, 1)

(right). We observe that in the linear case, nodes and vertexes of the partition
coincide. The number of degrees of freedom of the linear finite element space
is thus dim(X1

k(0, 1)) = N1
k = k + 1. Furthermore, each element of the La-

grangian basis is a piecewise linear function with unit value in one particular
node and vanishing in all other nodes of the mesh.

For the case of quadratic elements, since a second order polynomial is
uniquely defined by fixing it on 3 points, we observe that the set of nodes must
be richer than the vertexes of the partition. In particular, it is sufficient to
complement the vertexes with the midpoints of each interval in order to obtain
a complete set of interpolation nodes that uniquely characterize quadratic
finite element functions. As a result of that, we easily conclude that for the one-
dimensional case dim(X2

k(0, 1)) = N2
k = 2k+1 and in general dim(Xr

k(0, 1)) =
Nr
k = rk + 1. Numbering nodes from left to right, Fig. 8.2 (right) shows the
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Fig. 8.1. Linear (r = 1, left) and quadratic (r = 2 right) finite element functions
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Fig. 8.2. Linear (r = 1, left) and quadratic (r = 2 right) Lagrangian basis functions
for the finite element method

components ψ4, ψ5, ψ6 of the Lagrangian basis for X2
k(0, 1). In particular,

ψ4, ψ6 are related to the element midpoints and are depicted by a dashed
line, while ψ5 refers to a node coinciding with a vertex and is depicted with
continuous line.

The numerical approximation of boundary conditions with the finite el-
ement method is completely analogous with their treatment at the level of
the abstract variational problem. Homogeneous Dirichlet boundary conditions
are enforced into the definition of the discrete space Vk in order to satisfy
Vk ⊂ V = H1

0 (xa, xb). To this aim, we define a new discrete space

Xr
k,0(xa, xb) = {vk ∈ Xr

k(xa, xb) : vk(xa) = vk(xb) = 0} ⊂ H1
0 (xa, xb)

where we have removed the basis components related to nodes x0 = xa and
xrk = xb from the original finite element space Xr

k(xa, xb). Non homogeneous
Dirichlet conditions are reformulated as homogeneous conditions plus a right
hand side term by means of their lifting on the entire domain. This technique is
straightforwardly extended at the discrete level, provided that a discrete lifting
is applied, i.e. a lifting belonging to Xr

k(xa, xb). Finally, the discretization of
Neumann and Robin conditions do not require any particular care, because
they are naturally embedded into the bilinear form.

8.8.2 Error analysis of the finite element method

The Céa Lemma shows that the Galerkin method is convergent provided that
the family of approximation spaces Vk becomes dense in V = H1(xa, xb).
Namely, given u ∈ V the solution of the abstract variational problem, we
know that

‖u− uk‖H1 ≤ M

α
inf

vk∈Vk

‖u− vk‖H1 . (8.79)
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By consequence, we require that the discrete approximation spaces Vk satisfy
the following approximation property

lim
k→∞

inf
vk∈Vk

‖v − vk‖H1 = 0, ∀v ∈ H1(xa, xb). (8.80)

In this section we analyze how, for a fixed value of the polynomial degree r,
the finite element spaces Xr

k(xa, xb) satisfy property (8.80) when k increases,
or similarly, the partition of the domain (xa, xb) is refined by decreasing the
characteristic mesh size h. Furthermore, we aim to determine the asymptotic
order of convergence, that is the largest value of the exponent p such that

lim
k→∞

‖u− uk‖H1 = lim
k→∞

C((xb − xa)/k)p = lim
h→0

Chp

being C a generic positive constant independent on k, h. The following The-
orem5 is at the basis of the approximation properties of the finite element
method.

Theorem 8.7. For any value of the polynomial degree r ≥ 1 there exists a
positive constant Cr, uniformly independent on k, h such that, for any v ∈
Hs(xa, xb) with s ≥ 2 it holds

inf
vk∈Xr

k

‖v − vk‖H1 ≤ Crh
l‖v‖Hl+1 where l = min[s− 1, r], h =

xb − xa
k

.

(8.81)

This shows that the finite element space Xr
k(xa, xb) satisfy (8.80) provided

that the solution to be approximated is regular enough. More precisely, an a
priori error estimate for the finite element method is obtained by combining
inequalities (8.79) and (8.81), leading to the following result.

Corollary 8.1. Provided that problem B(u, v) = Lv admits a regular solution
u ∈ Hs(xa, xb) with s ≥ 2, then the finite element approximation of degree
r ≥ 1 satisfies,

‖u− uk‖H1 ≤ C(M,α, r)hl‖u‖Hl+1 (8.82)

where
l = min[s− 1, r] and C(M,α, r) = Cr

M

α
.

Conversely, when no more than u ∈ H1(xa, xb) can be guaranteed, the asymp-
totic order of convergence with respect to the characteristic mesh size can be
arbitrarily low.

5 For a proof, we remand the interested reader to Quarteroni [42].
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8.8.3 The finite element method for the approximation of
advection, diffusion, reaction problems

We aim to use the finite element method for the approximation of problem
(8.4), that for the sake of clarity is reported below, complemented with ho-
mogeneous Dirichlet boundary conditions,

− (p(x)u′)′ + q(x)u′ + r(x)u = f(x), in (xa, xb), (8.83)

where u(xa) = u(xb) = 0, with p(x), q(x) ∈ C1([0, 1]) with p(x) ≥ a0 > 0
and r(x), f(x) ∈ C0([0, 1]), whose variational formulation consists to find
u ∈ H1

0 (xa, xb) such that

B(u, v) =
∫ xb

xa

(p(x)u′v′ + q(x)u′v + r(x)uv)dx = Lv =
∫ xb

xa

f(x)vdx,

∀v ∈ H1
0 (xa, xb).

Then, at the discrete level, we look for uk ∈ Xr
k,0(xa, xb) such that B(uk, ψi) =

Fψi for any i = 1, . . . , rk + 1.
We notice that Corollary 8.1 is applicable also to this case and in particular

the values of continuity and coercivity constants of the bilinear form, M and
α respectively, depend on p, q, r as follows,

M =
(‖p‖L∞ + CP ‖q‖L∞ + C2

P ‖r‖L∞
)
, α = a0.

Accordingly, the a priori error estimate constant C(M,α, r) may become ar-
bitrarily large. By consequence, either the mesh characteristic size is chosen
to be be small enough, or the approximation is not satisfactory. In particular,
the more the advection terms dominate over the diffusion one, the more the
scheme becomes unstable. This effect is emphasized in Fig. 8.3 where we
show the solution obtained approximating (8.83) and u(0) = 0, u(1) = 1 by
means of linear finite elements. On the left, we show the comparison between
approximations obtained when p = 10−2, q = 1, r = 0, using uniform meshes
characterized by h = 0.1 and h = 0.01 identified by dashed and continuous
lines respectively. On the right, we perform similar numerical tests for a reac-
tion dominated problem with p = 10−2, q = 0, r = 10. When the mesh is not
refined enough, spurious numerical oscillations clearly appear in both cases.

To stabilize the finite element method, we analyze the scheme at the level of
the algebraic nodal equations. To this purpose, we first subdivide the bilinear
form B(u, v) into diffusion, transport and reaction terms,

Bp(u, v) =
∫ xb

xa

p(x)u′v′dx, Bq(u, v) =
∫ xb

xa

q(x)u′vdx,

Br(u, v) =
∫ xb

xa

r(x)uv.
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Fig. 8.3. Numerical instability of the finite element method for advection and reac-
tion dominated problems, depicted on the left and right panels respectively. Dashed
line corresponds to the approximation obtained using h = 0.1, while continuous line
corresponds to the numerical solution with h = 0.01, which turns out to be very
accurate

and in the case of linear finite elements the corresponding algebraic equations
become,

Bp(uk, ψi) = ci−1

∫ xi

xi−1

p(x)ψ′
i−1ψ

′
i + ci

∫ xi+1

xi−1

p(x)(ψ′
i)

2 + ci+1

∫ xi+1

xi

p(x)ψ′
i+1ψ

′
i

= − p
h

(
ci−1 − 2ci + ci+1

)
,

Bq(uk, ψi) = ci−1

∫ xi

xi−1

q(x)ψ′
i−1ψi + ci

∫ xi+1

xi−1

q(x)ψ′
iψi + ci+1

∫ xi+1

xi

q(x)ψ′
i+1ψi

=
q

2
(
ci+1 − ci−1

)
,

Br(uk, ψi) = ci−1

∫ xi

xi−1

r(x)ψi−1ψi + ci

∫ xi+1

xi−1

r(x)ψ2
i + ci+1

∫ xi+1

xi

r(x)ψi+1ψi

=
r

6
h
(
ci+1 + 4ci + ci−1

)
.

Since we are using a Lagrangian basis to represent the discrete space, the un-
known coefficients ci coincide with the nodal values of the finite element func-
tion, namely ci = uk(xi) = ui. By multiplying by h the above expressions, it
emerges that, for uniform partitions, the one-dimensional linear finite element
approximation of diffusion and transport terms coincide with the correspond-
ing finite difference schemes, while the two families of methods differ in the
approximation of reaction terms.

From Chapter 2, we know that for transport dominated problems it is more
convenient to discretize qu′ using a one sided difference ratio. This observation
gives rise to the upwind scheme, where the one-sided approximation of the
first order derivative is suitably chosen according to the sign of q. Shifting to
one-sided schemes does not apply to the finite element framework. However,
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we have put into evidence that the upwind scheme is equivalent to a centered
difference scheme modified with an artificial diffusion term. In particular,
for q > 0 we easily see that

q
(
ui − ui−1

)
h

=
q
(
ui+1 − ui−1

)
2h

− qh

2

(
ui+1 − 2ui + ui−1

)
h2

.

Then, for one-dimensional and linear finite elements, the correct amount of
artificial diffusion that allows us to stabilize the method is equivalent to
h‖q‖L∞/2 and the stabilized scheme consists to find ûk ∈ X1

k(xa, xb) such
that

B̂(ûk, vk) = Lvk, ∀vk ∈ X1
k,0(xa, xb)

where

B̂(uk, vk) = B(uk, vk) +
h‖q‖L∞

2

∫ xb

xa

u′kv
′
kdx.

The finite element method turn out to be unstable also for the approxi-
mation of reaction dominated problems. In this context, the mass lumping
technique is often used to cure the instabilities. For linear finite elements,
it corresponds to modify the nodal equations of the scheme, namely replac-
ing (ui+1 + 4ui + ui−1)/6 with the single value ui. The error introduced by
this modification can be thoroughly analyzed and, in conclusion, it does not
substantially affect the convergence of the scheme6.

8.8.4 The finite element method in two space dimensions

First, we address the problem of partitioning two-dimensional domains into
elements. The simplest case, consists in subdividing a polygonal domain Ω ⊂
R

2 into triangles. However, not all possible partitions are admissible for the
construction of a finite element space. The following requirements must be
satisfied by any admissible triangulation:

a) all elements K of the partition are triangles. We assume K is an open set;
b) for any distinct K1,K2 we have K1 ∩K2 = ∅;
c) if K1 ∩K2 = E �= ∅, then E is either an entire face or a vertex;
d) the diameter of each element K, i.e. hK = diam(K), is upper bounded,

namely there exists h > 0 such that hk < h.

The value h is called the characteristic mesh size. Furthermore, a triangulation
is called quasi-uniform when it satisfies the following additional constraints:

e) there exists a constant C > 1 such that for any K the radii of the inner
circle and outer circle with respect to K, i.e. ρK and hK respectively,
satisfy 1 < hK/ρK < C;

f) there exist two constants C, c > 0 such that for any K it holds ch < hK <
Ch.

6 For further details, we refer to Section 5.5, Chapter 5, Quarteroni [42].
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Fig. 8.4. A uniform (left) and quasi-uniform (right) partitions. We see that the
finite element method easily adapts to generic configurations of the domain

The collection of all triangles of the partition is usually denoted as Th. In
Fig. 8.4 we show an example of uniform partition on the left and quasi uniform
partition on the right.

To build up the finite element method in two space dimensions, we denote
by Pr(K) the space of polynomial functions with maximum degree less or
equal to r over the triangle K. Then the finite element space of degree r over
the mesh Th is given by

Xr
k = {vk ∈ C0(Ω) : vk|K ∈ Pr(K), ∀K ∈ Th}

whose dimension is denoted as Nr
k = dim(Xr

k). As an instance, for linear finite
elements in two space dimensions N1

k is equivalent to the number of vertexes
of the computational mesh. This conclusion naturally emerges when looking
at the construction of a Lagrangian basis for the linear finite element space.
Reasoning as for the one-dimensional case, the Lagrangian basis is given by
the collection of functions that vanish in all but one vertex of the mesh. A
component of such basis is depicted in Fig. 8.5 and according to their shape,
these are often called hat functions.

The fundamental properties of the finite element method that we have
presented for the approximation of one-dimensional problems also apply to
multiple space dimensions. In particular Theorem 8.7 and Corollary 8.1 still
hold true, but particular care should be devoted to check the regularity re-
quirement for the exact solution to be approximated, namely u ∈ Hs(Ω) with
s ≥ 2. Indeed, it is sufficient to consider a second order problem over a non
convex polygonal domain to violate the previous regularity condition7. In the
forthcoming section, we will investigate the behaviour of the finite element
method in these sub-optimal regularity conditions8.
7 See Salsa [13].
8 For a detailed analysis of the finite element method we refer the interested reader

to Quarteroni, Valli [45].
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Fig. 8.5. A Lagrangian basis function of a two-dimensional linear finite element
space

8.9 Exercises

8.1. Consider the following boundary value problem
⎧⎨
⎩
−u′′ = 5x− 1 in (−1, 2)
u(−1) = 1/2
u′(2) = 2.

(8.84)

Write the associated variational formulation and determine existence, unique-
ness and stability of the solution.

8.2. Analyze the following boundary value problem
{−(μ(x)u′)′ + (β(x)u)′ + σ(x)u = f(x) a < x < b
u(a) = 0, μ(b)u′(b) = β(b)u(b) (8.85)

where a, b ∈ R and μ, β, σ are given functions, with μ ≥ μ0 > 0. Introduce the
functional spaces in order to write the variational formulation of the problem
and prove that it is well-posed, under suitable assumptions on the data.

8.3. Consider the function

f(x) =

⎧⎪⎨
⎪⎩

2π2 sinπx 0 ≤ x <
1
2

2π2 sinπx− 6
(

1
2
− x
)

+
(

1
2
− x
)3 1

2
≤ x ≤ 1.

Determine the functional spaces and write the variational formulation associ-
ated to the problem

{−u′′ + π2u = f(x) 0 < x < 1
u(0) = 0, u(1) = −1/8.
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Prove that the problem is well-posed and verify that

u(x) =

⎧⎪⎨
⎪⎩

sinπx 0 ≤ x <
1
2

sinπx+
(

1
2
− x
)3 1

2
≤ x ≤ 1

is the variational solution. Deduce the regularity of the solution in terms of
Sobolev spaces.

8.4. Analyze the following elliptic problem
{−Δu+ σu = f in Ω
αu+∇u · n = g on ∂Ω (8.86)

where Ω is an open, bonded, smooth domain in R2, n is the outward normal
unit vector to ∂Ω, f = f(x) and g = g(x) are assigned functions and α, σ are
real constants, where σ > 0.

Write the variational formulation of the problem, introducing suitable as-
sumptions on the data, and give sufficient conditions for the well-posedness.

8.5. Consider Ω = [0, π]× [0, 1], where ∂Ω = ΓD ∪ ΓN with

ΓN =
{
(x1, x2) ∈ R2 : x1 = π, 0 < x2 < 1

}

∪{(x1, x2) ∈ R2 : 0 < x1 < π, x2 = 1
}

and let n be the outward normal unit vector to ∂Ω. The function f ∈ L2(Ω)
and the vector

b =
[

x2
2

sinx1

]

are assigned; consider the problem
⎧⎨
⎩
−Δu+ b · ∇u = f(x, y) in Ω
∇u · n = 0 on ΓN
u = 0 on ΓD.

Write the weak formulation and prove existence and uniqueness of the solu-
tion, verifying the hypothesis of the Lax-Milgram Lemma. Then, give an a
priori estimate of the solution.

8.6 (A simple system). Consider the problem
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−αΔu+ βv = f/2 in Ω
αΔv + βu = −f/2 in Ω
u+ v = 2 on ΓD
u− v = 0 on ΓD
∇(u+ v) · n = 0 on ΓN
∇(u− v) · n = 0 on ΓN
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where Ω ⊂ R2, ∂Ω = ΓN ∪ΓD, f is a function defined on Ω, α > 0 and β ≥ 0
are constants (ΓN ∩ΓD = ∅). Find the variational formulation of the problem
in the suitable functional spaces and find sufficient conditions on the data for
the well-posedness.

8.7. Write the weak formulation of the following problem
{

cosx u′′ − sinx u′ − xu = 1 0 < x < π/6

u′ (0) = −u (0) , u (π/6) = 0.

Discuss existence and uniqueness and derive a stability estimate.

8.8 (Transmission conditions I). Consider the problem
{

(p (x)u′)′ = f in (a, b)
u (a) = u (b) = 0 (8.87)

where f ∈ L2 (a, b), p (x) = p1 > 0 in (a, c) and p (x) = p2 > 0 in (c, b), where
a < c < b.

Show that problem (8.87) has a unique weak solution in H1 (a, b), satisfy-
ing the conditions

⎧⎨
⎩

p1u
′′ = f in (a, c)

p2u
′′ = f in (c, b)

p1u
′ (c−) = p2u

′ (c+) .

Observe the jump of the derivative of u at x = c.

8.9 (Transmission conditions II). Let Ω1 and Ω be bounded, Lipschitz
domains in Rn such that Ω1 ⊂⊂ Ω. Let Ω2 = Ω\Ω1. In Ω1 and Ω2 consider
the following bilinear forms

ak (u, v) =
∫

Ωk

Ak (x)∇u · ∇v dx (k = 1, 2)

with Ak uniformly elliptic. Assume that the entries of Ak are continuous in
Ωk, but that the matrix

A (x) =
{

A1 (x) in Ω1

A2 (x) in Ω2

may have a jump across Γ = ∂Ω1. Let u ∈ H1
0 (Ω) be the weak solution of

the equation

a (u, v) = a1 (u, v) + a2 (u, v) = (f, v)0 ∀v ∈ H1
0 (Ω) ,

where f ∈ L2 (Ω).

a) Which boundary value problem does u satisfy?

b) Which conditions on Γ do express the coupling between u1 and u2?
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8.10. Let Ω = (0, 1)× (0, 1) ⊂ R2. Prove that the functional

E (v) =
1
2

∫

Ω

{
|∇v|2 − xv

}
dxdy

has a unique minimizer u ∈ H1
0 (Ω). Write the Euler equation and find an

explicit formula for u.

8.11 (Distributed observation and control, Neumann conditions).
Let Ω ⊂ R

n be a bounded, smooth domain and Ω0 an open (non empty)
subset of Ω. Set V = H1 (Ω) ,H = L2 (Ω) and consider the following control
problem: minimize the cost functional

J (u, z) =
1
2

∫

Ω0

(u− ud)2 dx +
β

2

∫

Ω

z2dx

over (u, z) ∈ H1 (Ω)× L2 (Ω), with state system
{
Lu = −Δu+ a0u = z in Ω

∂νu = g on ∂Ω
(8.88)

where a0 is a positive constant, g ∈ L2 (∂Ω) and z ∈ L2 (Ω).

a) Show that there exists a unique minimizer.

b) Write the optimality conditions: adjoint problem and Euler equations.

8.12 (Distributed observation and boundary control, Neumann con-
ditions). Let Ω ⊂ Rn be a bounded, smooth domain. Consider the following
control problem: minimize the cost functional

J (u, z) =
1
2

∫

Ω

(u− ud)2 dx+
β

2

∫

∂Ω

z2dx

over (u, z) ∈ H1 (Ω)× L2 (∂Ω), with state system
{
−Δu+ a0u = f in Ω

∂νu = z on ∂Ω

where a0 is a positive constant, f ∈ L2 (Ω) and z ∈ L2 (∂Ω).

a) Show that there exists a unique minimizer.

b) Write the optimality conditions: adjoint problem and Euler equations.

8.9.1 Approximation of boundary conditions in the finite element
method

Let us consider the variational formulation of the problem addressed in Exer-
cise 8.2 with (a, b) = (0, 1), that is

∫ 1

0

(
μu′v′ − βuv′ + σuv)dx =

∫ 1

0

fvdx
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Fig. 8.6. Numerical solution of the problem described in 8.9.1 with β = −1 (left)
and β = −10 (right)

arising from a constant coefficient an advection, diffusion, reaction equation
complemented with a homogeneous Dirichlet condition on x = 0 and a Robin
condition −μu′+βu = 0 on x = 1. Let us consider its approximation by means
of piecewise linear finite elements. For the treatment of Dirichlet boundary
conditions on xa = 0 we introduce the discrete space,

X1
k,{0}(0, 1) = {vk ∈ X1

k(0, 1) : vk(0) = 0}
while −μu′ + βu = 0 is enforced weakly, since it is the natural condition
associated to the advection-diffusion operator. Then, the finite element ap-
proximation consists on finding uk ∈ X1

k,{0}(0, 1) such that

∫ 1

0

(
μu′kv

′
k − βukv′k + σukvk)dx =

∫ 1

0

fvkdx.

On the left panel of Fig. 8.6 we plot the solution obtained with coefficients
μ = 1, β = −1, σ = 1 and f = 1, while on the right the advective term
is increased up to β = −10. We also notice that on xb = 1, the solution
features a positive value but a negative slope, in agreement with the condition
−μu′ + βu = 0.

8.9.2 Approximation of Robin boundary conditions

We address problem proposed in Exercise 8.4 on the unit circle Ω, with σ = 0.
The Robin boundary condition −∇u · n = αu − g is treated by substituting
αu − g into the boundary integral on ∂Ω, after integration by parts. For
this reason, additional terms appear on the left and right hand side of the
variational formulation,

(∇uk,∇vk)L2(Ω) + (αuk, vk)L2(∂Ω) = (f, vk)L2(Ω) + (g, vk)L2(∂Ω).

We address two possible combinations of coefficients. In the case α = 1, g =
y, f = 0 the solution of the problem is u(x, y) = 1

2y. Indeed, the Laplace
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Fig. 8.7. Numerical solution of the problem described in Exercise 8.4 with α =
1, g = y, f = 0 (left) and α = 1, g = y, f = 10 (right)

equation is trivially satisfied, as well as the Robin condition since n = x i+y j
on the unit circle and ∇u · n = 1

2y = g − αu. As shown in Fig. 8.7 (left),
the numerical solution, computed on a piecewise linear finite element space
X1
h(Ω), nicely fits to the exact one. More precisely, since u(x, y) = 1

2y ∈
X1
h(Ω), the numerical solution is exact up to machine precision in this case.

In the second test case we set f = 10. Fig. 8.7 (right) shows that, as
expected, the solution of the problem is no longer linear.

8.9.3 Approximation of a system of equations

We address, as an example, the approximation of the system of equations of
Exercise 8.6, restricted, for simplicity, to the case of homogeneous Dirichlet
boundary conditions. The main difficulty in the application of the standard
finite element method to this case consists in the treatment of the boundary
conditions, because they combine values of the two unknown u and v. However,
it is possible to reformulate the system at hand in a more convenient form
by adding and subtracting the governing equations. By this way, we obtain a
new system for the unknowns z1 = u+ v and z2 = u− v, more precisely

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−αΔz1 − βz2 = f in Ω
−αΔz2 + βz1 = 0 in Ω
z1 = 0 on ΓD
z2 = 0 on ΓD
∇z1 · n = 0 on ΓN
∇z2 · n = 0 on ΓN .

In this form the system can be more easily discretized by means of finite
elements. To this purpose, we define Ω as the unit square, where on the
vertical sides we set Dirichlet conditions, ΓD, and on the horizontal sides we
set Neumann conditions, ΓN . Then, given the finite element space X1

k,ΓD
(Ω),
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Fig. 8.8. The two components of the numerical solution of the problem described
in 8.9.3 with α = 0.1, β = 1, f = x+ y

we aim to find zk,1, zk,2 ∈ X1
k,ΓD

(Ω) such that
{

(α∇zk,1,∇vk,1)− (βzk,2, vk,1) = (f, vk,1), ∀ vk,1 ∈ X1
k,ΓD

(Ω),
(α∇zk,2,∇vk,2) + (βzk,1, vk,2) = 0, ∀ vk,2 ∈ X1

k,ΓD
(Ω).

At the matrix level, this system is equivalent to
[
A11 A12

A12 A22

]
·
[
Z1

Z2

]
=
[
F1

F2

]

where the matrix blocks are A11,ij = A22,ij = (α∇ψj ,∇ψi), A12,ij =
−(βψj , ψi), A21 = −AT12, the right hand side is F1,i = (f, ψi) and Z1, Z2

are the vectors of degrees of freedom to be determined by solving the system.
Setting α = 0.1, β = 1 and f(x, y) = x + y the numerical solution of the
system is reported in Fig. 8.8, where zk,1 is depicted on the left and zk,2 on
the right.

8.9.4 Effect of problem regularity on the convergence of the finite
element method

Let us consider the Poisson problem defined on a circular sector Sσ, with
unit radius and angular coordinate −σ/2 < θ < σ/2 where σ is a given value
0 < σ < 2π. Denoting by Γ 1

σ the sides of the sector and by Γ 2
σ the circular

perimeter, we aim to approximate uσ, solution of the following problem,
⎧⎪⎨
⎪⎩

Δuσ = 0 in Sσ
uσ = 0 on Γ 1

σ

uσ = cos(θπ/σ) on Γ 2
σ

(8.89)

that is uσ = rπ/σ cos(θπ/σ) with θ ∈ (−σ/2, σ/2). Indeed, uσ satisfies the
boundary conditions and Δuσ = 0, because uσ is the real part of the olomorfic
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Table 8.1. Convergence rates of the linear finite element method applied to the
approximation of (8.89) for different values of σ

�
��h
σ 1

2
π 5

4
π 3

2
π 7

4
π

‖ûσ − uk‖H1 p ‖ûσ − uk‖H1 p ‖ûσ − uk‖H1 p ‖ûσ − uk‖H1 p

0.1250 9.434880e-02 – 5.240410e-02 – 1.106750e-01 – 1.822270e-01 –

0.0625 4.663180e-02 1.017 3.135850e-02 0.741 7.495930e-02 0.562 1.186980e-01 0.618

0.0312 2.343740e-02 0.993 1.824140e-02 0.782 4.797670e-02 0.644 8.455800e-02 0.489

function z
π
σ . Furthermore, owing to Lax-Milgram Lemma we assert that uσ ∈

H1(Sσ), but uσ /∈ H2(Sσ) when σ < π. The latter conclusion can be proved
by observing that in any neighborhood of the origin we have ∂xxu � rπ/σ−2

and thus ∫

Sσ

|∂xxuσ|2dxdy �
∫ σ/2

−σ/2

∫ 1

0

r2π/σ−4rdrdθ.

The integral on the right hand side is bounded provided that 2π/σ − 3 > −1
namely σ < π. Conversely, when σ > π we have ∂xyuσ /∈ L2(Sσ) that is
uσ /∈ H2(Sσ) and the more σ approaches 2π, the less regular is the solution.

In order to practically quantify the convergence rate of the finite element
method, we solve the problem at hand over a sequence of progressively re-
fined grids, characterized by parameters h1 > h2. Then, an estimate of the
convergence rate is given by the value p such that

p =
(

log
(‖uσ − uk,1‖H1

‖uσ − uk,2‖H1

))(
log
(h1

h2

))−1

.

Since the first order derivatives of uσ are singular in the origin, the true error
‖uσ − uk‖H1 can not be easily evaluated. We use the value ‖ûσ − uk‖H1

instead, where ûσ is the piecewise linear interpolant of uσ on a mesh that is
four times more refined than the one used to compute uk. In view of Theorem
8.7, we expect that when a piecewise linear approximation is sought, the
numerical solution converges linearly to uσ if σ < π, while the convergence
rate progressively decreases when σ is larger than π, as confirmed by the
results reported in Table 8.1.



9

Weak formulation of evolution problems

9.1 Parabolic Equations

In Chapter 3 we have considered the diffusion equation and some of its gen-
eralizations, as in the reaction-diffusion model (Section 3.3.4). This kind of
equation belongs to the class of parabolic equations, that we have already clas-
sified in spatial dimension 1, in Section 6.5, and that we are going to define
in a more general setting.

Let Ω ⊂ R
n be a bounded Lipschitz domain, T > 0 and consider the

space-time cylinder QT = Ω × (0, T ). Let A = A (x) be a square matrix of
order n, b = b (x) a vector in1

R
n, c = c(x) and f = f(x,t) real functions.

We consider equations of the type

ut + Lu = f (9.1)

where
Lu = −div(A∇u) + b · ∇u+ cu.

t T=

TQ

Ω

t T=

TQ

Ω

Fig. 9.1. Space-time cylinder

1 For simplicity we consider time-independent coefficients.

Salsa S., Vegni F.M.G., Zaretti A., Zunino P.: A Primer on PDEs. Models, Methods, Simulations.
Unitext – La Matematica per il 3+2 65.
DOI 10.1007/978-88-470-2862-3 9, © Springer-Verlag Italia 2013
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The operator L is called parabolic if

A (x) ξ · ξ > 0 a.e. in Ω, ∀ξ ∈ Rn, ξ �= 0.

For parabolic equations we may repeat the arguments concerning elliptic
equations in Sections 8.1 and 8.2. Also in this case, different notions of so-
lutions may be given, with the obvious corrections due to the evolutionary
nature of (9.1). For identical reasons, we develop the theory for divergence
form equations. Thus, given f in QT and g ∈ L2 (Ω) , we want to determine
a solution u, of the parabolic equation

ut + Lu = f in QT

satisfying an initial (or Cauchy) condition

u (x,0) = g (x) in Ω

and one of the usual boundary conditions (Dirichlet, Neumann, mixed or
Robin) on the lateral boundary ST = ∂Ω × [0, T ].

To emphasize the ideas and to reduce the technical complexity, we will
work with some degree of regularity of the data, which is actually not strictly
necessary.

9.2 The Heat Equation

The star among parabolic equations is clearly the heat equation. We use
this equation to introduce a possible weak formulation of the most common
initial-boundary value problems.

9.2.1 The Cauchy-Dirichlet problem

Suppose we are given the problem
⎧⎪⎨
⎪⎩

ut − αΔu = f (x, t) inQT
u = 0 inΩ
u (x,0) = g (x) onST = ∂Ω × (0, T )

(9.2)

where α > 0. We assume that f ∈ L2 (QT ) and2 g ∈ V = H1
0 (Ω). Recall that,

by Poincaré inequality, we can choose the following inner product and norm
in V

(ϕ,ψ)0 = (∇ϕ,∇ψ)0 =
∫

Ω

∇ϕ · ∇ψdx

‖ϕ‖0 = ‖∇ϕ‖0 =
(∫

Ω

|∇ϕ|2 dx
)1/2

.

2 Also g ∈ H1 (Ω) is admissible.
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To find a weak formulation we first proceed formally. We multiply the
diffusion equation by a smooth function v = v (x), vanishing at the boundary
of Ω to take into account the homogeneous Dirichlet condition, and integrate
over Ω. We find:

∫

Ω

ut (x,t) v (x) dx− α
∫

Ω

Δu (x,t) v (x) dx =
∫

Ω

f (x,t) v (x) dx.

Integrating by parts the second term, since v = 0 on ∂Ω, we get, for t ∈ (0, T )
∫

Ω

ut (x,t) v (x) dx + α

∫

Ω

∇u (x,t) · ∇v (x) dx =
∫

Ω

f (x,t) v (x) dx. (9.3)

This looks like what we did for elliptic equations, except for the presence
of ut. Moreover, here we will have somehow to take into account the initial
condition. Which could be a correct functional setting for the solution u?

Due to the homogeneous Dirichlet conditions, it is natural to require that
the function x �→ u (x, t) belongs to V for at least a.e. t ∈ (0, T ). Moreover
since we will need later on to perform an integration in time of (9.3) over
(0, T ) we end up to require that u ∈ H1

0,ST
(QT ) where

H1
0,ST

(QT ) =
{
u : u, ut, |∇u| ∈ L2 (QT ) , u = 0 on ST

}
.

Notice that by the Poincaré inequality,
∫ T

0

∫

Ω

u2dxdt ≤ C2
P

∫ T

0

∫

Ω

|∇u|2 dxdt.

Thus H1
0,ST

(QT ) is a Hilbert space with inner product and norm given by

(u, v)H1
0,ST

(QT ) =
∫ T

0

∫

Ω

∇u · ∇v dxdt,

‖u‖H1
0,ST

(QT ) =

(∫ T

0

∫

Ω

|∇u|2 dxdt
)1/2

.

Accordingly, we choose our test functions v ∈ V.
Let us examine the initial conditions. Look at the real function

U : t �−→
∫

Ω

|∇u (x, t)|2 dx.

We will show that U is continuous in [0, T ]. To express this fact we say that

u ∈ C ([0, T ] ;V ) .

Therefore, the initial condition u (0) = g means that
∫

Ω

(∇u (x, t)−∇g (x))2 dx→ 0 as t→ 0. (9.4)
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It turns out that C ([0, T ] ;V ) is a Banach space with the norm given by

‖u‖C([0,T ];V ) = max
t∈[0,T ]

(∫

Ω

|∇u (x, t)|2 dx
)1/2

.

Note that, by Poincaré inequality, we also have u ∈ C ([0, T ] ;L2 (Ω)
)

and
∫

Ω

(u (x,t)− g (x))2 dx→ 0 as t→ 0.

In conclusion, we are lead to the following definition.

Definition 9.1. A weak solution to problem (9.2) is a function u ∈ H1
0,ST

(QT ) such that:

i) For every v ∈ V ,
∫

Ω

ut (x, t) v (x) dx + α

∫

Ω

∇u (x, t) · ∇v (x) dx =
∫

Ω

f (x, t) v (x) dx

for a.e. t ∈ (0, T ).

ii) u (x,t) = g (x) in Ω, in the sense of (9.4).

Remark 9.1. We leave it to the reader to check that if a weak solution u is
smooth, i.e. u ∈ C2,1

(
QT
)
, then u is actually a classical solution.

We prove the following theorem.

Theorem 9.1. There exists a unique weak solution u of (9.2). Moreover the
following stability estimates hold:

max
t∈[0,T ]

∫

Ω

|∇u (x, t)|2 dx ≤ ‖g‖21 +
1
α

∫ T

0

∫

Ω

f2 (x,s) dxds (9.5)

and ∫ T

0

∫

Ω

u2
t (x,s) dxds ≤ α ‖g‖21 +

∫ T

0

∫

Ω

f2 (x,s) dxds. (9.6)

Note in particular how the first estimate deteriorates as α approaches to
zero, when f in not identically zero.

To prove Theorem 9.1, we shall use the so-called Faedo-Galerkin method,
also convenient for the numerical approximations techniques. Let us explain
briefly the general strategy, that consists in the following 4 steps.

1. Galerkin approximations. First discretize in space and construct a se-
quence of approximating functions um by solving a system of ordinary
differential equations.

2. Energy estimates. Prove that suitable norms of {um} are controlled by the
norms of the data f and g in their respective spaces.
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3. Existence of a weak solution. Prove that {um} , or at least a subsequence
of it, converges in a suitable sense to a weak solution u ∈ H1

0,ST
(QT ) .

4. Uniqueness and stability. Show that u is the unique weak solution of prob-
lem (9.2) and that it depends continuously from the data f and g (energy
estimates for u).

9.2.2 Galerkin approximations

Select a sequence of smooth functions {wk}∞k=1 constituting3

an orthogonal basis in V = H1
0 (Ω)

and
an orthonormal basis in L2 (Ω) .

In particular, we can write

g =
∞∑
k=1

ĝkwk

where ĝk =
∫
Ω
gwk dx and the series converges in V .

Note that, since (∇wh,∇wk)0 = 0 if h �= k, letting λk = ‖∇wk‖20, we have

‖g‖21 =
∞∑
k=1

λkĝ
2
k. (9.7)

Moreover

f (x, t) =
∞∑
k=1

f̂k (t)wk (x) ,

where f̂k (t) =
∫
Ω
f (x,t)wk (x) dx and the series converges in L2 (Ω) for a.e.

t ∈ [0, T ]. Since also (wh, wk)0 = 0 if h �= k and ‖wk‖0 = 1, we have
∫

Ω

f2 (x,t) dx =
∞∑
k=1

f̂2
k (t) . (9.8)

Construct now the sequence of finite-dimensional subspaces

Vm = span {w1, w2, . . . , wm} .
Clearly

Vm ⊂ Vm+1 and ∪Vm = V.

For m ≥ 1 fixed, let

fm (x, t) =
m∑
k=1

f̂k (t)wk (x) , gm (x) =
m∑
k=1

ĝkwk (x) .

3 We can choose as wk the Dirichlet eigenfunctions of the Laplace operator, nor-
malized with respect to the norm in L2 (Ω) (see Theorem 8.3).
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and

um (x, t) =
m∑
k=1

cmk (t)wk (x) .

We can find the unknown coefficients cmk = cmk (t) by solving the following
approximating problem, obtained by projecting the differential equation onto
the subspace Vm: determine um ∈ H1

0,ST
(QT ), such that:

im) For every h = 1, . . . ,m,
∫

Ω

∂tum (x, t)wh (x) dx+α
∫

Ω

∇um (x, t)·∇wh(x) dx =
∫

Ω

fm (x,t)wh (x) dx

for a.e. t ∈ (0, T )

iim) um (x,t) = gm (x) in Ω, in the sense of (9.4).

Note that since the integro/differential equation in im) is true for each
element of the basis wh, h = 1, . . . ,m, then it is true for every v ∈ Vm. We
call um a Galerkin approximation of the solution u.

The following lemma holds.

Lemma 9.1. For all m, there exists a unique solution um ∈ H1
0,ST

(QT ) of
the approximating problem im), iim). Moreover um ∈ C ([0, T ] ;V ) and

∫

Ω

|∇um (x,t)−∇gm (x)|2 dx→ 0 as t→ 0. (9.9)

Proof. Since w1, . . . , wm are mutually orthonormal in L2 (Ω), we have

∫

Ω

∂tum (x, t)wh (x) dx =
m∑
h=1

∫

Ω

ċmk (t)wk (x)wh (x) dx = ċmh (t) .

Also, w1, . . . , wm is an orthogonal system in Vm, hence, for each h = 1, . . . ,m :

∫

Ω

∇um (x,t) ·∇wh (x) dx =
m∑
k=1

∫

Ω

cmk (t)∇wk (x) ·∇wh (x) dx = λhcmh (t) .

Thus im) is equivalent to the following system of m uncoupled linear ordinary
differential equations, with constant coefficients
{
ċmh (t) + αλhcmh (t) = f̂h (t) q.o. in (0, T )
cmh (0) = ĝh

h = 1, . . . ,m. (9.10)

In particular, it follows that the coefficients cmh do not depend on m:

cmh (t) = ch (t) .
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From the o.d.e. theory, each equation has a unique solution ch ∈ C ([0, T ])
with ċh ∈ L2 (0, T ), given by the explicit formula4

ch (t) = ĝh +
∫ t

0

e−αλh(t−s)f̂h (s) ds. (9.12)

We deduce that um ∈ C ([0, T ] ;V ) and that ∂tum ∈ L2 (QT ).
Moreover, since we have

ch (t) → ĝh as t→ 0 for every k = 1, . . . ,m,

we can write
∫

Ω

|∇um (x,t)−∇gm (x)|2 dx =
m∑
h=1

|ch (t)− ĝh|2 λh → 0

as t→ 0. �

Remark 9.2. Notice that the fundamental calculus formula holds for ch and
c2h:

ch (t) = ĝh +
∫ t

0

ċh (s) ds for t ∈ [0, T ] . (9.13)

and

c2h (t) = ĝ2
h +
∫ t

0

d

ds
c2h (s) ds for t ∈ [0, T ] . (9.14)

In fact, ch, c2h ∈ C ([0, T ]) and both ċh, ddsc
2
h (s) = 2chċhbelongs to L2 (0, T ).

Remark 9.3. We have chosen a basis {wk} orthonormal in L2 (Ω) and or-
thogonal in V because with respect to this basis, the Laplace operator becomes
a diagonal operator, as it is reflected by the uncoupling in the approximate
problem (9.10). The reader has realized that what we have performed is noth-
ing but a variant of the method of separation of variables.

However, the method also works using any countable basis {wk} for both
spaces, with no orthogonality property. This is particularly important in the

4 Let h fixed. If f̂h is continuous in [0, T ] the formula comes from elementary theory.
In the general case, by the density of C∞

0 (Ω) in L2 (0, T ), we can find a sequence
{fjh} ⊂ C∞

0 (Ω), such that fjh → fh in L2 (0, T ), as j → ∞. Then, formula
(9.12) holds for fjh :

ch (t) = ĝhe
−λht +

∫ t

0

e−λh(t−s)f̂h (r) dr. (9.11)

It is easy to check that {cjh} is a Cauchy sequence in C ([0, T ]). Thus it converges
to ch in this space. Passing to the limit in (9.11) we deduce that (9.12) holds for
ch. By direct differentiation, ch is a solution of (9.10), with the desired properties.
Uniqueness follows since the homogeneous problem ẇ + λhw = 0, w (0) = 0 has
only the null solution.
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numerical implementation of the method, where, in general, the elements of
the basis in Vm are not mutually orthogonal. If

um (x, t) =
m∑
k=1

bmk (t)wk (x) ,

then
∫

Ω

∂tum (x, t)wh (x) dx =
∫

Ω

m∑
h=1

ḃmk (t)wk (x)wh (x) dx

=
m∑
h=1

Phk ċmk (t)

where Phk = (wh, wk)0. Moreover
∫

Ω

∇um (x,t) · ∇wh (x) dx =
m∑
k=1

∫

Ω

cmk (t)∇wk (x) · ∇wh (x) dx

=
m∑
h=1

Whkcmk (t)

where Whk = (∇wk,∇wh)0.
Letting

F̂m (t) = (f̂1 (t) , . . . , f̂m (t))ᵀ

and
Bm (t) = (bm1 (t) , . . . , bmm (t))ᵀ , ĝm = (ĝ1, . . . , ĝm)ᵀ

the approximating problem (9.10) becomes

Ḃm (t) = −αP−1WBm (t) + F̂m (t) , a.e. t ∈ [0, T ] (9.15)

where5

P = (Phk) , W = (Whk)

with initial condition
Bm (0) = ĝm.

Also for problem (9.15) we could exhibit an explicit formula that allows to
reach the same conclusion in Lemma 9.1. We skip the details.

9.2.3 Energy estimates

We want to show that the norms

‖∂tum‖L2(QT ) , ‖um‖C([0,T ];V ) ,

5 Since w1, . . . , wm is a basis in L2 (Ω) , the matrix P is non singular.
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hence also ‖um‖H1
0,ST

(QT ) , can be estimated by the appropriate norms of the
data, and that the estimates are independent of m.

Thus, let um (x,t) =
∑m
k=1 ck (t)wk (x) be the m−Galerkin approxima-

tion.

Lemma 9.2. For every t ∈ [0, T ], the following estimates holds:

max
[0,T ]

∫

Ω

|∇um (x, t)|2 dx ≤ ‖g‖21 +
1
α

∫ t

0

∫

Ω

f2 dxds (9.16)

and ∫ t

0

∫

Ω

(∂tum)2dxds ≤ α ‖g‖21 +
∫ t

0

∫

Ω

f2 dxds. (9.17)

Proof. Observe that
∫

Ω

|∇um (x, t)|2 dx =
m∑
k=1

λkc
2
k (t) (9.18)

and ∫

Ω

|∂tum (x, t)|2 dx =
m∑
k=1

ċ2k (t) . (9.19)

Multiply the differential equation

ċh (t) + αλhch (t) = f̂h (t) (9.20)

by ċh (t). We get

ċ2h (t) + αλhch (t) ċh (t) = f̂h (t) ċh (t) (9.21)

for a.e. t ∈ [0, T ]. From the elementary inequality

|ab| ≤ a2

2ε
+
εb2

2
∀a, b ∈ R, ε > 0, (9.22)

for ε = 1, we deduce

ċ2h (t) +
αλh
2

d

dt
c2h (t) ≤ 1

2
f̂2
h (t) +

1
2
ċ2h (t)

for a.e. t ∈ [0, T ]. Thus, from (9.21) we obtain

ċ2h (t) + αλh
d

dt
c2h (t) ≤ f̂2

h (t) .

We now integrate over (0, t) and use (9.14) to find:
∫ t

0

ċ2h (s) ds+ αλhc
2
h (t) ≤ αλhĝ

2
h +
∫ t

0

f̂2
h (s) ds. (9.23)
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Summing for h = 1, . . . ,m we find
∫ t

0

m∑
k=1

ċ2h (s) ds+ α
m∑
k=1

λkc
2
k (t) ≤ α

m∑
k=1

λkĝ
2
k +
∫ t

0

m∑
k=1

f̂2
h (s) ds

≤ α
∞∑
k=1

λkĝ
2
k +
∫ t

0

∞∑
k=1

f̂2
h (s) ds

which is equivalent to
∫ t

0

∫

Ω

(∂tum)2dxds+ α

∫

Ω

|∇um (x, t)|2 dx ≤ α ‖g‖21 +
∫ t

0

∫

Ω

f2dxds

by (9.7), (9.8), (9.18) and (9.19).
The inequalities (9.16) and (9.17) follow easily. �

9.2.4 Existence and stability

Existence and stability estimates. Lemma 9.2 and (9.18), (9.19) show
that the series ∞∑

k=1

λkc
2
k (t)

is uniformly convergent in [0, T ] (or in C ([0, T ])) while the series

∞∑
k=1

ċ2k (t)

converges in L1 (0, T ). Hence we have

um (x, t)→ u (x, t) =
∞∑
k=1

ck (t)ws (x)

in C ([0, T ] ;V ) and

max
t∈[0,T ]

∫

Ω

|∇u (x, t)|2 dx = max
t∈[0,T ]

∞∑
k=1

λkc
2
k (t)

≤
∞∑
k=1

λkĝ
2
k +

1
α

∫ T

0

∞∑
k=1

f̂2
h (s) ds

= ‖g‖21 +
1
α

∫ T

0

∫

Ω

f2dxds

which is (9.5). Analogously,

∂tum (x, t)→ v (x, t) =
∞∑
k=1

ċk (t)ws (x)
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in L2 (QT ) and
∫ T

0

∫

Ω

v2 (x, s) dxds =
∫ T

0

∞∑
k=1

ċ2k (s) ds (9.24)

≤ α
∞∑
k=1

λkĝ
2
k +
∫ T

0

∞∑
k=1

f̂2
h (s) ds

= α ‖g‖21 +
∫ T

0

∫

Ω

f2dxds.

We want to show that v = ∂tu in the sense of distributions in QT . Take a
function ϕ ∈ C∞

0 (QT ). Then we have, since ∂tum → v in L2 (QT ):
∫ T

0

∫

Ω

vϕ dxds = lim
m→∞

∫ T

0

∫

Ω

∂tumϕ dxds

= − lim
m→∞

∫ T

0

∫

Ω

umϕt dxds

= −
∫ T

0

∫

Ω

uϕt dxds

whence v = ∂tu in the sense of distributions and (9.6) follows from (9.24).

To show that u is a weak solution, integrate equation im) over (0, t) :
∫ t

0

∫

Ω

∂tumwh dx + α

∫ t

0

∫

Ω

∇um · ∇wh dx =
∫ t

0

∫

Ω

fmwhdx.

Letting m → +∞, by the convergence properties of {um} and {∂tum} , we
get

∫ t

0

∫

Ω

∂tuwh dx + α

∫ t

0

∫

Ω

∇u · ∇wh dx =
∫ t

0

∫

Ω

fwhdx (9.25)

which is now valid for all h ≥ 1. But {wk}k≥1 is a basis in V and therefore
(9.25) holds for every v ∈ V . Differentiating back with respect to t, we obtain

∫

Ω

∂tuv dx + α

∫

Ω

∇u · ∇v dx =
∫

Ω

fvdx

for all v ∈ V and a.e. in (0, T ) . Therefore u is a weak solution of problem
(9.2).

For the initial condition, we have:

u (x, 0) =
∞∑
k=1

ck (0)ws (x) =
∞∑
k=1

ĝk (0)ws (x) = g (x) a.e. in (0, T )

and (9.4) holds since u ∈ C (0, T ;V ).
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Uniqueness. Let

z (x, t) =
∞∑
k=1

dk (t)wk (x)

another weak solutions of the same problem. Then, U = u − z is a weak
solution of ∫

Ω

∂tU v dx + α

∫

Ω

∇U · ∇vdx = 0

for all v ∈ V and a.e. t ∈ [0, T ], with initial data U (x, 0) = 0.
Let Uk (t) = ck (t)− dk (t). Then, Uk solves

U̇k (t) + αλkUk (t) = 0

with Uk (0) = 0. It follows that Uk = 0 for all k ≥ 1 and therefore u = z a.e.
in QT .

Theorem 9.1 is now completely proved.

9.2.5 Neumann and mixed boundary conditions

The Faedo-Galerkin method works with the other common boundary con-
ditions, with small adjustments. For instance, consider the following initial-
Neumann value problem

⎧⎪⎨
⎪⎩

ut − αΔu = f (x,t) inQT
∂νu = 0 on ST
u (x,0) = g (x) in Ω

(9.26)

where f ∈ L2 (QT ) , g ∈ V = H1 (Ω). Recall that inner product and norm in
V are given by

(ϕ,ψ)1,2 = (ϕ,ψ)0 + (∇ϕ,∇ψ)0 =
∫

Ω

ϕψdx+
∫

Ω

∇ϕ · ∇ψdx

‖ϕ‖1,2 =
(
‖ϕ‖

1,2
+ ‖∇ϕ‖0

)1/2

=
(∫

Ω

ϕ2dx+
∫

Ω

|∇ϕ|2 dx
)1/2

.

For the weak formulation, as in the case of the Dirichlet conditions, we
multiply the diffusion equation by a test function6 v ∈ V and integrate it over
Ω. After an integration by parts, we find
∫

Ω

ut (x, t) v (x) dx + α

∫

Ω

∇u (x, t) · ∇v (x) dx−α
∫

∂Ω

∂νu (σ, t) v(σ)dσ

=
∫

Ω

f (x,t) v (x) dx.

Taking into account the homogeneous Neumann condition, we are lead to the
following definition.
6 Here there is no reason to require that v = 0 on ST .
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Definition 9.2. A weak solution to problem (9.26) is a function u ∈ H1 (QT )
such that:

i) For every v ∈ V ,
∫

Ω

ut (x, t) v (x) dx + α

∫

Ω

∇u (x, t) · ∇v (x) dx =
∫

Ω

f (x, t) v (x) dx

for a.e. t ∈ (0, T ) .

ii) u (x,t) = g (x) in Ω, in the sense of (9.4).

Remark 9.4. Again, we leave it to the reader to check that if a weak solution
u is smooth, i.e. u ∈ C2,1

(
QT
)
, then u is actually a classical solution.

The following theorem holds.

Theorem 9.2. There exists a unique weak solution u of (9.26). Moreover, for
every t ∈ [0, T ], the following stability estimates hold

∫

Ω

(
u2 (x,t) + |∇u (x, t)|2

)
dx ≤ e2αt ‖g‖21,2 +

1
α

∫ t

0

∫

Ω

e2α(t−s)f2dxds

(9.27)∫ t

0

∫

Ω

u2
tdxds ≤ αe2αt ‖g‖21,2 +

∫ t

0

∫

Ω

e2α(t−s)f2dxds. (9.28)

Proof. We follow the proof of Theorem 9.1, emphasizing the differences that
arise from the Dirichlet conditions.

Since for a.e. t ∈ (0, T ) we have that the function x → u (x, t) belongs to
V , to discretize in space, we select a sequence of smooth functions {wk}∞k=1

constituting7

an orthogonal basis in V = H1 (Ω)

and
an orthonormal basis in L2 (Ω) .

In particular, we can write

g =
∞∑
k=1

ĝkwk

where ĝk =
∫
Ω
gwk dx and the series converges in V .

Note that, since (wh, wk)1,2 = 0 if h �= k, letting μk = ‖wk‖21,2, we have

‖g‖21,2 =
∞∑
k=1

μkĝ
2
k. (9.29)

7 We can choose as wk the Neumann eigenfunctions of the Laplace operator, nor-
malized with respect to the norm in L2 (Ω) (see Theorem 8.3). These functions
are also orthogonal in H1 (Ω).
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Moreover

f (x, t) =
∞∑
k=1

f̂k (t)wk(x).

Moreover

f (x, t) =
∞∑
k=1

f̂k (t)wk(x),

where f̂k (t) =
∫
Ω
f (x,t)wk (x) dx and the series converges in L2 (Ω) for a.e.

t ∈ [0, T ]. Since also (wh, wk)0 = 0 if h �= k and ‖wk‖0 = 1, we have
∫

Ω

f2 (x,t) dx =
∞∑
k=1

f̂2
k (t) . (9.30)

The Galerkin approximations

um (x,t) =
m∑
k=1

cmk (t)wk (x)

are solutions of the problem
⎧⎨
⎩

∫

Ω

∂tumwhdx + α

∫

Ω

∇um · ∇whdx =
∫

Ω

fmwhdx, a.e t ∈ [0, T ]

um (0) = gm

for every h = 1, . . . ,m.
The main difference comes from the fact that for the Cauchy-Dirichlet

problem the bilinear form in the x−space H1
0 (Ω) given by

B (ϕ,ψ) = α

∫

Ω

∇ϕ (x) · ∇ψ (x) dx

is H1
0 (Ω)−coercive. This is crucial for deriving the energy inequalities for um.

Here, due to the lack of a Poincaré inequality, the bilinear form B is not
V−coercive.

However, B is weakly coercive, i.e. that there exist γ > 0, λ ≥ 0 such
that

B̃ (ϕ,ϕ) = a (ϕ,ϕ) + λ ‖ϕ‖20 ≥ γ ‖ϕ‖21,2 ∀ϕ ∈ V (9.31)

that is
B̃ (ϕ,ψ) = B (ϕ,ψ) + λα (ϕ,ψ)0

is V−coercive. In fact, the simple choice (not unique, of course) λ = α gives

B (ϕ,ϕ) + α ‖ϕ‖20 = α ‖ϕ‖21,2 ∀ϕ ∈ V.
But then, going back to our approximating problem, performing the simple
change of variable

zm (x,t) = e−αtum (x,t)
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we see that

∂tzm (x, t) = e−αt∂tum (x, t)− αe−αtum (x, t) = e−αt∂tum (x, t)− αzm (x, t)

so that, zm solves
⎧⎨
⎩

∫

Ω

∂tzmwsdx+α
∫

Ω

(zmws+∇zm · ∇ws) dx=
∫

Ω

e−αtfm wsdx, a.e in [0, T ]

zm (0) = gm.

The o.d.e. system for the coefficients of zm (t), dmh (t) = e−αtcmh (t), takes
the (coupled) form

{
ḋmh (t) + αμhdmh (t) = f̂h (t) q.o. in (0, T )
dmh (0) = ĝ.h.

(9.32)

With small adjustments, the technique used in the proof of Theorem 9.1 yields
for zm the stability estimate
∫ t

0

∫

Ω

z2
mdxds+ α

∫

Ω

{
z2
m (x,t) + |∇zm (x,t)|2

}
dx

≤ ‖g‖21,2 +
∫ t

0

∫

Ω

e−2αsf2
m dxds.

for all t ∈ [0, T ]. The estimates for um = eαtzm reads
∫ t

0

∫

Ω

u2
mdxds+ α

∫

Ω

{
u2
m (x,t) + |∇um (x,t)|2

}
dx

≤ e2αt ‖g‖21,2 +
∫ t

0

∫

Ω

e2α(t−s)f2
m dxds.

Now the proof proceeds as in Theorem 9.1; we skip the details. �

Mixed boundary conditions. Let ΓD be a smooth subset of ∂Ω and ΓN =
∂Ω\ΓD. Set DT = ΓD × (0, T ) and NT = ΓN × (0, T ). Consider the problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ut − αΔu = f inQT
u (x,0) = g (x) in Ω

u = 0 on DT

∂νu = 0 on NT .

(9.33)

A correct functional setting for u is H1
0,DT

(QT ) where

H1
0,DT

(QT ) =
{
u : u, ut, |∇u| ∈ L2 (QT ) , u = 0 on DT

}
.

Note that for a.e. t ∈ (0, T ), the function x → u (x, t) belongs to V =
H1

0,ΓD
(Ω) . Recall that in V the Poincaré inequality holds

‖v‖0 ≤ CP ‖v‖1
so that we choose the inner product (u, v)1 = (∇u,∇v)0 with norm ‖·‖1. This
is the space of test functions.
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Note that the bilinear form

B (w, v) = α (∇w,∇v)0
is continuous and V−coercive.

As a consequence, the Poincaré inequality

∫ T

0

∫

Ω

u2dxdt ≤ C2
P

∫ T

0

∫

Ω

|∇u|2 dxdt

holds in H1
0,DT

(QT ) so that H1
0,DT

(QT ) is a Hilbert space with inner product
and norm given by

(u, v)H1
0,DT

(QT ) =
∫ T

0

∫

Ω

∇u · ∇v dxdt,

‖u‖H1
0,DT

(QT ) =

(∫ T

0

∫

Ω

|∇u|2 dxdt
)1/2

.

Here is a weak formulation, that takes into account the homogeneous
boundary conditions

Definition 9.3. A weak solution to problem (9.33) is a function u ∈ H1
0,DT

(QT ) such that:

i) For every v ∈ V ,
∫

Ω

ut (x, t) v (x) dx + α

∫

Ω

∇u (x, t) · ∇v (x) dx =
∫

Ω

f (x, t) v (x) dx

for a.e. t ∈ (0, T ).

ii) u (x,t) = g (x) in Ω, in the sense of (9.4).

If we assume that f ∈ L2 (QT ) and g ∈ V , there exists exactly one weak
solution. Indeed, a theorem perfectly analogous to Theorem 9.1 holds with the
same proof, except for small adjustments. We leave the details to the reader.

9.3 General Equations

9.3.1 Weak formulation of initial-boundary value problems

We now consider divergence form operators with drift and reaction

Lu = −divA∇u+ b · ∇u+ cu.

The matrix A = (ai,j(x)), in general different from a multiple of the identity
matrix, encodes the anisotropy of the medium with respect to diffusion. For
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instance, a matrix of the type
⎛
⎝
α 0 0
0 ε 0
0 0 ε

⎞
⎠

with α � ε > 0, denotes higher propensity of the medium towards diffusion
along the x1−axis, than along the other directions. As in the stationary case,
for the control of the stability of numerical algorithms, it is important to
compare the effects of the drift, reaction and diffusion terms. We make the
following hypotheses:

(a) the coefficients aij , bij , c are bounded with

|aij | ≤ K, |b| ≤ γ, |c| ≤ γ0, a.e. in Ω

and the matrix A is symmetric: aij = aij , i, j = 1, . . . , n;

(b) L is uniformly elliptic:

α |ξ|2 ≤ A (x) ξ · ξ ≤ K |ξ|2 for all ξ ∈ Rn, ξ �= 0, a.e. in Ω.

We consider initial value problems of the form:
⎧⎪⎨
⎪⎩

ut + Lu = f inQT
Bu = 0 on ST
u (x,0) = g (x) in Ω

(9.34)

where Bu stands for one of the usual homogeneous boundary conditions. For
instance, Bu = ∂νu+ hu for the Robin condition.

The weak formulation of problem (9.34) follows the pattern of the previous
sections. Let us briefly review the main ingredients.

Functional setting

Test functions,data and solution. We choose the test functions in a Hilbert
space V, H1

0 (Ω) ⊆ V ⊆ H1(Ω), determined by the type of boundary condition
we are dealing with.

We assume f ∈ L2 (QT ) and g ∈ V .
The familiar choices are V = H1

0 (Ω) for the homogeneous Dirichlet condi-
tion, V = H1(Ω) for the Neumann or Robin condition, V = H1

0,ΓD
(Ω) in the

case of mixed Neumann-Dirichlet or Robin-Dirichlet conditions8.

8 There is no problem in dealing with non homogeneous Robin or Neumann condi-
tions Bu = ∂νu+ hu = q, with q ∈ L2 (∂Ω). To treat non homogeneous Dirichlet
conditions we should develop the theory with a more general right hand side f
(see for instance Evans [2]).
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Correspondingly, guided by the examples in the previous sections, we look
for u ∈ C ([0, T ] ;V ) such that ut ∈ L2 (QT ). Observe that

‖u‖C([0,T ];V ) = max
t∈[0,T ]

‖u (·, t)‖V .

The bilinear form on V

We define

B (ϕ,ψ) =
∫

Ω

{A∇ϕ · ∇ψ + (b · ∇ϕ)ψ + cϕψ} dx

and, in the case of Robin condition,

B (ϕ,ψ) =
∫

Ω

{A∇ϕ · ∇ψ + (b · ∇ϕ)ψ + cϕψ} dx +
∫

∂Ω

hϕψ dσ

where we require h ∈ L∞ (ST ), h ≥ 0 a.e. on ST .
Recall the trace inequality:

‖ϕ‖L2(∂Ω) ≤ Ctr ‖ϕ‖V .
Under the stated hypotheses, it is not difficult to show that

|B (ϕ,ψ)| ≤M ‖ϕ‖V ‖ψ‖V (9.35)

so that B is continuous in V . The constant M depends on K, γ, γ0 that is,
on the size of the coefficients aij , bj , c (and on ‖h‖L∞(∂Ω) in the case of Robin
condition).

Also, B is weakly coercive. In fact, we have, for every9 ε > 0
∫

Ω

(b · ∇ϕ)ϕ dx ≥ −γ ‖∇ϕ‖
0
‖ϕ‖0

≥ −γ
2

[
ε ‖∇ϕ‖20 +

1
ε
‖ϕ‖20

]

and ∫

Ω

cϕ2dx ≥ −γ0 ‖ϕ‖20
whence, as h ≥ 0 a.e. on ∂Ω,

B (ϕ,ϕ) ≥
[
α− γ0ε

2

]
‖∇ϕ‖2

0
−
[ γ
2ε

+ γ0

]
‖ϕ‖20 . (9.36)

We distinguish three cases.

9 Using once more the elementary inequality

2ab ≤ εa2 +
1

ε
b2

which holds ∀a, b ∈ R, ∀ε > 0.
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If γ = 0 and γ0 = 0 the bilinear form is V−coercive when V = H1
0 (Ω). If

H1
0 (Ω) ⊆ V ⊆ H1(Ω),

B̃ (ϕ,ψ) = B (ϕ,ψ) + λ0 (ϕ,ψ)0 (9.37)

is V−coercive for any λ0 > 0.
If γ = 0 and γ0 > 0, (9.37) is V−coercive for any λ0 > γ0.

If γ > 0, choose in (9.36)

ε =
α

γ
and λ0 = 2

[ γ
2ε

+ γ0

]
= 2
[
γ2

2α
+ γ0

]
.

Then
B̃ (ϕ,ψ) ≥ α

2
‖∇ϕ‖20 +

λ0

2
‖ϕ‖20 ≥ α0 ‖u‖21,2 (9.38)

where α0 = min {α/2, λ0/2} , so that B is weakly coercive.

The weak formulation

To obtain a weak formulation, we multiply the differential equation ut+Lu =
0 by a test function and we integrate it over Ω. After an integration by
parts of the divergence term, taking into account the homogeneous boundary
conditions, we are lead to the following definition of weak solution of the
initial-boundary value problem (9.34).

Definition 9.4. A weak solution of problem (9.34) is a function u ∈
C ([0, T ];V ) such that ut ∈ L2 (QT ) and:

i) For every v ∈ V ,
∫

Ω

ut (x, t) v (x) dx +B (u, v) =
∫

Ω

f (x, t) v (x) dx

for a.e. t ∈ (0, T ).

ii) u (x,t) = g (x) in Ω, in the sense of (9.4).

The following theorem holds.

Theorem 9.3. There exists a unique weak solution u of (9.34). Moreover the
following stability estimate holds

∫ T

0

∫

Ω

u2
t dxds+ max

t∈[0,T ]
‖u (·, t)‖2V ≤ C

{
‖g‖2V +

∫ T

0

∫

Ω

f2dxdt

}
(9.39)

where C depends only on Ω, n, α,K, γ0, γ, T .

The method of Faedo-Galerkin may be used also in this case, as in the
previous sections. However, its implementation requires some deep results of
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Functional Analysis, out of the aims of this brief introduction. Therefore, we
show the construction of the Galerkin approximations and the proof of the
energy estimates, only sketching the existence part of the proof.

We choose an orthonormal basis {wk} in H, orthogonal in V , and let

Vm = span {w1, w2, . . . , wm} .

• Galerkin approximations. Keeping the same notations of Remark 9.3, we set

um (x, t) =
m∑
k=1

cmk (t)wk (x)

and look at the approximating problem
∫

Ω

∂tum (x, t)wh (x) dx +B (um, wh) =
∫

Ω

fm (x, t)wh (x) dx (9.40)

for every h = 1, . . . ,m, with initial condition

um (x,0) = gm (x) in Ω. (9.41)

Problem (9.40), (9.41) leads to the following linear system of ordinary differ-
ential equations for the coefficients cmk

{
Ċm (t) = −WCm (t) + F̂m (t) , a.e. t ∈ [0, T ] ,
Cm (0) = ĝm

(9.42)

where Cm (t) = (cm1 (t) , . . . , cmm (t))� , F̂m (t) = ((f̂1 (t) , . . . , f̂m (t))� and
the entries of the matrix W are

Whk = B (wk, wh) .

Since F̂m ∈ L2 (0, T ;Rm), for every m ≥ 1 there exists a unique solution
Cm ∈ H1 (0, T ;Rm) of problem (9.42).

Consequently, there exists a unique solution um ∈ H1 (QT ) of problem
(9.40), (9.41). Moreover, um ∈ C ([0, T ] ;V ) and ∂tum (·,t) ∈ V for a.e. t ∈
[0, T ].

• Energy estimates. We have the following lemma.

Lemma 9.3. Let um be the solution of problem (9.40), (9.41). Then, for every
t ∈ [0, T ]:
∫ t

0

∫

Ω

(∂tum)2dxds+ ‖um (·, t)‖2V ≤ C

{
‖gm‖2V +

∫ t

0

∫

Ω

f2
mdxds

}
(9.43)

where C depends only on Ω, n, α,K, γ0, γ, T .
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Proof. First, since B is in general only weakly coercive, we make the change
of variable

zm (t) = e−λ0tum (t)

and set dmk (t) = e−λ0tcmk (t). Then (9.40) becomes
∫

Ω

∂tzm (x, t)wh (x) dx + B̃ (zm, wh) =
∫

Ω

fm (x, t)wh (x) dx (9.44)

with the coercive bilinear form B̃ in (9.37). Since the system of o.d.e. is cou-
pled, we cannot deduce the energy estimates for zm by analogous estimates on
the single coefficients dmk (t) as we did in the previous section. We have to use
directly zm. Hence, multiply equation (9.44) by ḋmh and sum for h = 1, . . . ,m.

We find:∫

Ω

(∂tzm (x, t))2 dx + B̃ (zm, ∂tzm) =
∫

Ω

fm (x, t) ∂tzm (x) dx. (9.45)

We have, referring for instance to the Robin problem:

B̃ (zm, ∂tzm) =
∫

Ω

{A∇zm · ∇∂tzm + (b · ∇zm) ∂tzm + (c+ λ0)zm∂tzm} dx

+
∫

∂Ω

hzm∂tzm dσ.

Since the matrix A is symmetric and all the coefficients, aij , bj , c, h are inde-
pendent of time, we can write:

B̃ (zm, ∂tzm) =
1
2
d

dt

∫

Ω

{
A∇zm · ∇zm + (c+ λ0)z2

m

}
dx +

1
2
d

dt

∫

∂Ω

hz2
m dσ

+
∫

Ω

(b · ∇zm) ∂tzm.

Now ∣∣∣∣
∫

Ω

(b · ∇zm) ∂tzm

∣∣∣∣ ≤ γ ‖zm (·, t)‖V ‖∂tzm (·, t)‖0 (9.46)

≤ 4γ2 ‖zm (·, t)‖2V +
1
4
‖∂tzm (·, t)‖20 .

As before: ∣∣∣∣
∫

Ω

fm∂tzmdx
∣∣∣∣ ≤

1
2

∫

Ω

(fm)2 dx+
1
2

∫

Ω

(∂tzm)2 dx. (9.47)

Integrating (9.45) over (0, t) , taking into account (9.38), (9.35), (9.46) and
(9.47), we obtain:

∫ t

0

∫

Ω

(∂tzm)2 dxds+ 2α0 ‖zm (·, t)‖2V (9.48)

≤ 2M ‖gm‖2V + 2
∫ t

0

∫

Ω

(fm)2 dxds+ 4γ2

∫ t

0

‖zm (·, s)‖2V ds.
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We have now to bound the last integral in terms of fm and gm. To do it, this
time multiply equation (9.44) by dmh and sum for h = 1, . . . ,m.

We find, after some adjustments:

d

dt

∫

Ω

z2
m (x, t) dx + B̃ (zm, zm) =

∫

Ω

fm (x, t) zm (x) dx. (9.49)

Now, B̃ (zm, zm) ≥ α0 ‖zm (·, t)‖2V for all t ∈ [0, T ] and, by the usual elemen-
tary inequality:

∣∣∣∣
∫

Ω

fmzmdx
∣∣∣∣ ≤

2
α0

∫

Ω

(fm)2 dx +
α0

2

∫

Ω

(zm)2 dx

≤ 2
α0

∫

Ω

(fm)2 dx +
α0

2
‖zm (·, t)‖2V .

Then ,integrating (9.49) over (0, t) we get

‖zm (·, t)‖20 +
α0

2

∫ t

0

‖zm (·, s)‖2V ds ≤ ‖gm‖20 +
2
α0

∫ t

0

∫

Ω

(fm)2 dxds

and in particular:
∫ t

0

‖zm (·, s)‖2V ds ≤
2
α0
‖gm‖20 +

∫ t

0

∫

Ω

(fm)2 dxds.

Substituting into (9.48) we find
∫ t

0

∫

Ω

(∂tzm)2 dxds+ 2α0 ‖zm (·, t)‖2V

≤
(

2M +
4γ2

α0

)
‖gm‖2V + (2 + 4γ2)

∫ t

0

∫

Ω

(fm)2 dxds.

Going back to zm we finally arrive to (9.43).

• Existence and uniqueness. From (9.43) we deduce that {um} is bounded in
both L2 (0, T ;V ) and C ([0, T ] , V ) while {∂tum} is bounded in L2 (QT ). As
in subsection 9.2.4, we can extract from {um} a subsequence converging in a
suitable sense to a weak solution u, for m → ∞. It turns out that u is the
unique weak solution and satisfies the estimate (9.39). �

Example 9.1. Fig. 9.2 shows the graph of the solution of the Cauchy-
Dirichlet problem

⎧⎪⎨
⎪⎩

ut − uxx + 2ux = 0.2tx 0 < x < 5, t > 0
u (x,0) = max (2− 2x, 0) 0 < x < 5
u (0, t) = 2− t/6, u (5, t) = 0 t > 0.

(9.50)

Note the tendency of the drift term 2ux, to “transport to the right” initial
data and the effect of the source term 0.2tx to increase the solution near
x = 5, more and more with time.
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Fig. 9.2. The solution of problem (9.50) in Example 9.1

9.4 Numerical methods

9.4.1 A Faedo-Galerkin/finite element method for the heat
equation

Let us consider the variational formulation of the Cauchy-Dirichlet problem
for the heat equation in multiple space dimensions. Precisely, we aim to find
u ∈ L2(0, T ;H1

0 (Ω)) ∩ C0([0, T ];L2(Ω)) such that,
{

(u′(t), v) +B [u(t), v] = (f(t), v), ∀v ∈ H1
0 (Ω)

u(0) = u0

(9.51)

where f(t) ∈ L2(Ω× (0, T ]), u0 ∈ L2(Ω), B [u, v] is a continuous and coercive
bilinear form and lower case bold symbols denote functions from (0, T ) to a
function space V .

Given a family of discrete spaces Vk ⊂ H1
0 (Ω), the Faedo-Galerkin method

consists on selecting a suitable uk(t) ∈ Vk to approximate u(t), solution of
(9.51). A possible choice for the spatial approximation is to use finite elements,
namely Vk = Xr

k,0. Then, for any t ∈ (0, T ] we aim to find uk(t) ∈ Xr
k,0 such

that {
(u′
k(t), vk) +B [uk(t), vk] = (f(t), vk), ∀vk ∈ Xr

k,0

uk(t = 0) = uk,0
(9.52)

where uk,0 is the projection of u0 ∈ L2(Ω) on the finite element space. Problem
(9.52) is said to be semi-discrete, because we have just performed the space
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discretization. To proceed further, it is convenient to reformulate the semi-
discrete problem in matrix form. Given {ψi}N

r
k

i=1 a Lagrangian basis of Xr
k,0,

we aim to determine the cj(t) such that

uk(t) =
Nr

k∑
j=1

cj(t)ψj .

Problem (9.52) is not yet discrete, indeed its degrees of freedom are Nr
k time

dependent functions cj(t). Denoting with c′j(t) their time derivatives, the semi-
discrete problem can be easily rewritten as follows,
{∑k

j=1 c
′
j(t)(ψj , ψi) +

∑Nr
k

j=1 cj(t)B
[
ψj , ψi

]
= (f(t), ψi), i = 1, . . . , Nr

k

cj(0) = cj,0

where the values cj,0 correspond to uk,0 and given the following notations for
matrices and vectors

Mkr,ij = (ψj , ψi), Akr,ij = B
[
ψj , ψi

]
, Fkr,i(t) = (f(t), ψi)

we see that (9.52) is equivalent to solve a linear system of ordinary differential
equations in the unknowns c(t) = {cj(t)}N

r
k

j=1,

Mkrc′(t) + Akrc(t) = Fkr(t), c(t = 0) = c0.

In case of a constant coefficient heat equation, matrices Mkr ∈ RNr
k×Nr

k and
Akr ∈ RNr

k×Nr
k , respectively called mass and stiffness matrices, are constant.

For the time discretization, we restrict to one step schemes for ordinary
differential equations and in particular on the θ−method. Given a sequence
of uniform time steps tn, namely tn = n · τ where τ > 0, and given an initial
state c0, we aim to discretize the continuous evolution of c(t) by means of a
sequence of vectors cn such that

1
τ
Mkr

(
cn−cn−1

)
+θAkrcn+(1− θ)Akrcn−1 = θFkr(tn)+(1−θ)Fkr(tn−1),

(9.53)
where θ is a free parameter to be suitably chosen in [0, 1]. Using the change
of variable cθn = θcn + (1 − θ)cn−1, for any θ �= 0 equation (9.53) can be
reformulated as follows,

Cτ
krc

θ
n =

1
θτ

Mkrcn−1 + θFkr(tn) + (1− θ)Fkr(tn−1),

where Cτ
kr =

1
θτ

Mkr + Akr.

The properties of the scheme, stability in particular, are affected by the
choice of θ. Setting θ = 0 leads to the forward Euler scheme, while θ = 1
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corresponds to backward Euler. Both schemes have already been studied in
Chapter 3. Although the scheme obtained using θ = 0 is usually said to
be explicit, we observe that in the case of finite elements it is not possible to
explicitly determine the coefficients cn once cn−1 is given, because matrix Mkr

is not diagonal. On the one hand, it is anyway computationally convenient
to perform one step of forward Euler method rather than backward Euler,
because the mass matrix, Mkr, is better conditioned than the stiffness one,
Akr. On the other hand, the stability constraints may reverse this balance.
Taking for simplicity Fkr(t) = 0, we recall from Chapter 3 that (9.53) is stable
if for any c0 it satisfies

lim
n→∞ ‖cn‖∞ = 0. (9.54)

The previous requirement can be enforced by looking at the spectrum of Cτ
kr.

In the framework of the finite element method it can be proved that the
following stability conditions hold true10.

Theorem 9.4. The scheme (9.53) with θ ∈ [ 12 , 1) is unconditionally stable,
namely condition (9.54) is satisfied for any possible value of h, τ . When θ ∈
[0, 1

2 ), θ−method is stable under the condition τ ≤ Crh
2

(1−2θ) , where Cr is a
positive constant possibly dependent on r, but not on k or h.

Theorem 9.4 highlights that the choice θ = 1
2 might be particularly inter-

esting. Indeed, in this case (9.53) is simultaneously unconditionally stable and
second order accurate. The resulting scheme is often called Crank-Nicholson
method.

9.5 Exercises

9.1. The potassium concentration c(x, y, z, t) in a cell of spherical shape Ω
and radius R, with boundary Γ , satisfies the evolution problem

⎧⎨
⎩
ct − div(μ∇c)− σc = 0 in Ω × (0, T )
μ∇c · n + χc = χcext on Γ × (0, T )
c(x, y, z, 0) = c0(x, y, z) on Ω

(9.55)

where cext is the given external concentration which is constant, σ and χ
positive scalars and μ is a strictly positive function. Write the weak formu-
lation and analyze the well-posedness, providing suitable assumptions on the
coefficients and on the data.

10 We refer to [42], Chapter 6 for a detailed proof.
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9.2. Consider the following parabolic problem
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
−Δu+ xy

∂u

∂x
+ x2y2 ∂u

∂y
= f in Ω × (0, T )

u = 0 on ΓD × (0, T )

∂u

∂n
= 0 on ΓN × (0, T )

u(x, 0) = u0(x) on Ω

where Ω = B1 in R2, whose boundary is ∂Ω = ΓD ∪ ΓN with ΓD ∩ ΓN = ∅.
Write the variational formulation. Deduce the existence and the uniqueness
of the solution, under sufficient conditions on the data.

9.3. We introduce the domain

Ω =
{
x ∈ R2 : x2

1 + 4x2
2 < 4

}
,

ΓD = ∂Ω ∩ {x1 ≥ 0} , ΓN = ∂Ω ∩ {x1 < 0} .
Consider the problem

⎧⎪⎪⎨
⎪⎪⎩

ut − div [Aα∇u] + b · ∇u− αu = x2 in Ω × (0, T )
u(x, t) = 0 on ΓD × (0, T )
−Aα∇u · n = cosx1 on ΓN × (0, T )
u(x, 0) = H(x1) on Ω

(9.56)

where

Aα =
[

1 0
0 α ex

2
1+x

2
2

]
, b =

[
sin(x1 + x2)
x2

1 + x2
2

]

and H is the Heavyside function. For which values of the parameter α ∈
R the problem is parabolic? Give a weak formulation of the problem and
deduce existence and uniqueness of the solution, computing the values of the
continuity and coercivity constants.

9.4. Consider the problem
⎧⎪⎨
⎪⎩

ut − (a (x)ux)x + b (x)ux + c(x)u = f (x, t) 0 < x < 1, 0 < t < T

u (x,0) = g (x) , 0 ≤ x ≤ 1
u (0, t) = 0, u (1, t) = k (t) . 0 ≤ t ≤ T .

1) Modifying u suitably, reduce the problem to homogeneous Dirichlet con-
ditions.

2) Write a weak formulation for the new problem.

3) Prove the well-posedness of the problem, indicating the hypotheses on
the coefficients a, b, c and the data f, g. Write a stability estimate for the
original u.
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Fig. 9.3. Solution of the Cauchy-Dirichlet problem at time t = 0.1 approximated
by the θ−method with θ = 0 (left) and θ = 1

4
(right). We notice that the two plots

do not share the same scale

9.5. Consider the Neumann problem (9.26) with non-homogeneous boundary
condition ∂νu = h, with h ∈ L2 (∂Ω):

a) Give a weak formulation of the problem and derive the main estimates
for the Galerkin approximations.

b) Deduce existence and uniqueness of the solution.

9.5.1 Verification of Euler methods stability properties

We address the Cauchy-Dirichlet problem (9.51) on Ω = (−1, 1) × (−1, 1)
defined by B [u, v] = (∇u,∇v) and u0 = exp(−10(x2 + y2)), which is dis-
cretized by means of (9.53) using linear finite elements, namely r = 1. Given
h = 0.05 and τ = 0.01, we compare the numerical approximations obtained
with θ = 0, 1

4 ,
1
2 , 1.

Since the selected values for h and τ do not satisfy the condition τ ≤
Crh

2

(1−2θ) for θ = 0, 1
4 , we expect instabilities to appear in those cases. Fig. 9.3

confirms this behavior, with decreasing magnitude of the oscillations passing
from θ = 0 to θ = 1

4 , in agreement with Theorem 9.4, which shows that the
stability condition becomes less restrictive when θ increases. Finally, above
the threshold θ = 1

2 , unconditional stability is verified. However, a sufficiently
refined grid in space and time is still mandatory to obtain an accurate solution.

9.5.2 Numerical simulation of mass transfer

Let us consider the problem defined in Exercise 9.1, describing the transfer
of chemicals, such as potassium, through the cell membrane. For simplicity,
we restrict to two space dimensions and we model the cell with a unit circle.
According to equation ct − div(μ∇c) − σc = 0, the concentration evolves
by diffusion and reaction. We notice that a positive value of the reaction
coefficient corresponds to mass production. A simple model to describe the
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Fig. 9.4. Solution of the Cauchy-Dirichlet problem at time t = 0.1 approximated
by the θ−method with θ = 1

2
(left) and θ = 1 (right)

Fig. 9.5. Numerical solution of the chemical transfer problem at time t = 1 for
1 = c0 > cext = 0 (left) and for 1 = c0 < cext = 2 (right)

behaviour of the cell membrane is −μ∇c · n = χ(c− cext), which can be seen
as a constitutive law for the mass flux through the membrane where cext is
the outer concentration and χ is the membrane permeability.

The concentration inside the cell increases or decreases according to the
sign and magnitude of the concentration jump c−cext. When it is positive, an
outgoing flux is prescribed, and vice versa, when cext > c, chemicals penetrate
into the cell. This is confirmed by the results reported in Fig. 9.5, relative to
μ = 1, σ = 0. Indeed, given c0 = 1 and cext = 0, on the left panel we see that
at time t = 1 the concentration inside the cell reaches nearly cext, approaching
this value from above. On the right panel, we observe that starting from c0 = 1
with cext = 2 the concentration in the cell rises to cext from below.
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Solutions
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Solutions of selected exercises

10.1 Section 2.8

2.1. The problem is analyzed in Section 2.3.3. Its solution is given by (2.34):

ρ (x, t) =

⎧⎪⎪⎨
⎪⎪⎩

ρm for x ≤ −vmt
ρm
2

(
1− x

vmt

)
for − vmt < x < vmt

0 for x ≥ vmt

.

Hence, the car density at the light (which is in x = 0) is ρ(0, t) = ρm/2 and
is constant.

Furthermore, according to the model of traffic dynamics, the velocity of a
car depends on the car density, according to the law

v(ρ) = vm

(
1− ρ

ρm

)
.

While reaching the light, the car which at time t0 is in the position x0 = −vmt0
moves in the area −vmt0 < x < vmt0; denoting by x = x(t) the position of the
car with respect to time, using the solution ρ for the car density, we deduce:

v(ρ(x)) = ẋ = vm

(
1
2
− x

2vmt

)
.

The motion of the car is therefore described by the initial value problem:

{
ẋ =

vm
2

+
x

2t
x(t0) = −vmt0.

Salsa S., Vegni F.M.G., Zaretti A., Zunino P.: A Primer on PDEs. Models, Methods, Simulations.
Unitext – La Matematica per il 3+2 65.
DOI 10.1007/978-88-470-2862-3 10, © Springer-Verlag Italia 2013
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The equation is linear1 and for t > 0 the general solution is x(t) =√
t
(
C + vm

√
t
)
; from the initial condition we deduce

x(t) = vm(t− 2
√
t0t).

Hence, we find x(t) = 0 for t = 4t0. The car takes the time 4t0 to reach the
light.

2.2. In the model introduced in Section 2.3 we assume that the velocity
v of cars attains the maximum value when the concentration ρ is null and
linearly decreases to zero, corresponding to the maximum density. The flux of
cars (velocity times density) depends on the concentration according to the
constitutive law

q(ρ) = ρv(ρ) = vmρ

(
1− ρ

ρm

)
. (10.1)

We find the characteristics based at (x0, 0). They are straight lines of
equation (2.30); since

q′(ρ) = vm

(
1− 2ρ

ρm

)

we have

x = x0 + vm

(
1− 2ρ(x0, 0)

ρm

)
t.

We consider the initial value problem: for x0 < 0 the characteristics display
according to the value of the parameter a:

x = x0 + vm (1− 2a) t.

Besides, for x0 > 0 the characteristics are vertical straight lines x = x0.
Different situations may arise. If the characteristics that depart from the

points of negative abscissa have positive slope, then characteristics carrying
different data intersect at a finite time and we will have to determine the
equation of the shock curve along which the discontinuity of the initial value
problem propagates in the first quadrant of the plane (x, t). Conversely, if the
characteristics that originate at the points of abscissa negative have negative
slope, in the origin will be based a rarefaction area. Then, three cases have to
be discussed according to the values of the parameter a in the given range.
For vm(1 − 2a) > 0, namely 0 ≤ a < 1/2, we witness the propagation of a
discontinuity in the first quadrant; for (1− 2a) < 0, i.e. 1/2 < a ≤ 1, there is
a rarefaction wave; for a = 1/2, the characteristics are all parallel, and traffic
moves at same speed along the road described by the model.

1 The general solution for the linear first order equation ẏ = α(t)y(t) + β(t) is

y(t) = e
∫

α dt

(
C +

∫
βe−

∫
α dtdt

)
.
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In the case 0 ≤ a < 1/2 we determine the equation of the line s = s(t)
along which the discontinuity propagates using the Rankine-Hugoniot condi-
tion (2.38). Denote by q+ and q−, respectively, the flow to the right and to
the left of the shock curve, separating areas of the plane (x, t) reached by the
characteristics that start at t = 0 from positive x−axis points, and carrying
the data ρ+ = ρm/ 2 to those that start at points of negative abscissa and
transport the data ρ− = aρm. We have

q+ =
vmρm

4
and q− = avmρm (1− a) ;

the condition (2.38) becomes:

ṡ =
q+ − q−
ρ+ − ρ− =

vmρm/4− vmaρm (1− a)
ρm/2− aρm

= vm

(
1
2
− a
)

which can be easily integrated. Hence, for 0 ≤ a < 1/2, a line of discon-
tinuity of the solution is propagated from from the origin with equation
s(t) = vm (1/2− a) t.

We consider the case 1/2 < a ≤ 1; the characteristics of the rarefaction
area

vm(1− 2a)t < x < 0

are fanlike distributed from the origin

x = ht with vm(1− 2a) < h < 0

and along each of them the density is constant. At time t the car density
occupying the position between vm(1 − 2a)t and 0 linearly decreases from
aρm to ρm/2.

The car density in the rarefaction area can be formally obtained from the
characteristics equation x = vm (1− 2ρ/ρm), with x0 = 0, expliciting ρ:

ρ(x, t) =
(vmt− x)ρm

2vmt
.

2.3. The Burgers equation, introduced in Section 2.6, is a special case of
scalar conservation law ut + q(u)x = 0, where the flux q of the concentration
u is represented by the function q(u) = u2/2. In general, the characteristics
based at the point (x0, 0) have equation x = x0 + q′(g(x0))t; for the Burgers
equation we find

x = x0 + g(x0)t.

We analyze the three cases assigned.

a) Considering the data g(x), the characteristics are vertical lines x = x0 if
x0 < 0 or if x0 > 1, and are the straight lines of equation x = x0 + t if
0 < x < 1.
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The area S = {0 < x < t} is not reached by characteristics. In this sector
we define u as a rarefaction wave that connects with continuity the values
from 0 to 1. Proceeding formally as in Section 2.3 for the traffic dynamics, we
deduce the equation of the rarefaction wave based on the point (x0, t0) using
the formula

u(x, t) = r

(
x− x0

t− t0

)
,

where r is the inverse function of q′. For the Burgers equation, since q′(u) = u,
the rarefaction wave with vertex in the origin is u = x/t.

Let us determine the shock curve s = s(t) which is generated from the
encounter of the vertical characteristics which carry the initial condition u− =
0, with the characteristics x = x0 + t (for 0 < x0 < 1) carrying the data
u+ = 1; respectively, on one side and the other part of the shock curve, we
have q− = q(u−) = 0 and q+ = q(u+) = 1/2. The shock curve satisfies the
Rankine-Hugoniot condition (2.38), therefore

ṡ =
q+ − q−
u+ − u− =

1
2

and the initial condition for the shock curve is s(0) = 1. Denoting x the space
variable, the shock curve has equation x(t) = t/2 + 1 (Fig. 10.1).

What we have found so far is valid until time t = 2 (when the characteristic
x = t, the shock curve and the characteristic x = 2 which is carrying the
initial condition u = 0 cross). From this moment on, the shock curve is due
to the discontinuity between the characteristics carrying the data u− = 0 and
the characteristics carrying the rarefaction solution u, namely u+(s, t) = s/t
(and, consequently, q+ = q(u+) = s2/2t2). Using again the condition (2.38),
the differential equation for the shock curve becomes

ṡ =
s

2t

with the initial condition s(2) = 2. Separation of the variables gives the solu-
tion s =

√
2t.
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Fig. 10.1. The characteristics for the Burgers equation, assigned in the Exercise
2.3 and respectively referred to the the initial condition given in the three cases
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In summary, the pattern of the characteristics and of the shock curve is
shown in Fig. 10.1; it corresponds to the solution

u(x, t) =

⎧⎪⎪⎨
⎪⎪⎩

0 if x ≤ 0
x/t if 0 ≤ x ≤ t, with t ≤ 2 or 0 ≤ x ≤ √2t
1 if t ≤ x < t/2 + 1 with t < 2
0 if x > t/2 + 1, with t ≤ 2 or x >

√
2t, with t ≥ 2.

b) For the assigned initial condition g(x0), the characteristics have equation
⎧⎨
⎩
x = x0 + t if x0 < 0
x = x0 + 2t if 0 < x0 < 1
x = x0 if x0 > 1

and are represented in Fig. 10.1.
In the area S = {t < x < 2t} there are no characteristics; proceeding as

in the traffic model we can define the solution u as a rarefaction wave that
connects with continuity (for fixed values of t), the values between u = 1 and
u = 2, respectively, transported by the characteristics x = t and x = 2t. As
for the case a), the rarefaction wave based at the point (x0, t0) is given by the
formula

u(x, t) = r

(
x− x0

t− t0

)
,

where r is the inverse function of q′. For the Burgers equation, the rarefaction
wave with vertex in the origin is u = x/t. Along the straight lines x = ht,
with 1 < h < 2, u is constant.

The collision of characteristics creates a discontinuity x = x(t) that prop-
agates following the Rankine-Hugoniot condition (2.38). At least for small
times t, the shock curve is due to discontinuity created by the impact be-
tween the value u+ = 2 (transported along the characteristics x = x0 + 2t)
and the value u− = 0 (transported along the vertical characteristics). Tak-
ing into account that q = u2/2, those data are respectively associated to the
fluxes q+ = q(u+) = 2 and q− = q(u−) = 0. Therefore, the shock curve is
given by the solution of the problem

{
ẋ = 1
x(0) = 1 i.e. x = t+ 1.

For times t > 1, namely from the point (2, 1), the shock curve is diverted
because the vertical characteristics x = x0, with x0 > 2, run up against the
rarefaction wave u = x/t. In this situation, the Rankine-Hugoniot condition
(2.38) has to be solved using u+ = x/t and q+ = x2/2t2; hence, the shock
curve is determined by the Cauchy problem

{
ẋ = x/2t
x(1) = 2.
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The differential equation is separable and the solution of the Cauchy problem
is x = 2

√
t.

For times t > 4, namely from the point (4, 4), the shock curve crosses the
characteristics x = x0 + t, with x0 < 0, carrying the data u = 1. Therefore it
is deviated according to (2.38); in this case we have u+ = 1 and q+ = q(u+) =
1/2. The shock curve x = x(t) is found solving the problem

{
ẋ = 1/2
x(4) = 4 i.e. x =

t

2
+ 2.

The shock curve is made up of three parts connected at the points (2, 1) and
(4, 4) and is represented in Fig. 10.1. The solution is

u(x, t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if x < t < 4 or x < t/2 + 2 with t > 4
x/t if t ≤ x ≤ 2t, with x ≤ 2

√
t

2 if 2t ≤ x < t+ 1
0 if t+ 1 < x < 2 or t < x2/4 with 2 ≤ x < 4

or t < 2x− 4 with x ≥ 4.

The solution is visualized in three dimension in Fig. 10.2.

c) With the given data we deduce that the characteristics have equation
⎧⎨
⎩
x = x0 + t if x0 ≤ 0
x = x0 + (1− x0)t if 0 < x0 < 1
x = x0 if x0 ≥ 1.

All the characteristics based on the segment 0 < x0 < 1 cross the point (1, 1);
therefore, for 0 < t < 1 they don’t collide. This fact means that in this time
interval there is no discontinuity of the solution. A discontinuity originates

Fig. 10.2. The solution of the Exercise 2.3b, numerically calculated with upwind
scheme
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in the point (1, 1) because of the collision between the vertical characteristics
(carrying the data u− = 0) and the characteristics x = x0 + t (carrying the
data u+ = 1). Denoting with q− = 0 and q+ = 1/2 the flux from side to side
of the discontinuity, according to the condition (2.38), the shock curve solves
the problem {

ẋ = 1/2
x(1) = 1

namely, it is x(t) = (t+ 1)/2 (Fig. 10.1).
In the area S = {0 ≤ x < 1, 0 ≤ t < x} the solution is implicitly defined

by the equation u = g(x − q′(u)t). In this case, given that g(x) = 1 − x, we
deduce

u(x, t) =
1− x
1− t .

The solution of the problem is

u(x, t) =

⎧⎨
⎩

1 if x < t < 1 or x < (t+ 1)/2 with t > 1
(1− x)/(1− t) if 0 < t < x < 1
0 if t < 2x− 1 with x > 1.

2.4. The flux function associated to this case is q(u) = u4/4 (q′ = u3). Since
we have a conservation low, the characteristics are straight lines of equation
x = x0 + q′(g(x0))t. Taking into account the initial data, we deduce

⎧⎨
⎩
x = x0 if x0 < 0
x = x0 + t if 0 < x0 < 1
x = x0 if x0 > 1.

The characteristics are represented in Fig. 10.3. The characteristics based
at points x0 ≤ 0 or x0 ≥ 1 are vertical and carry the data u = 0; the
characteristics carrying the data u = 1 are based on the segment 0 < x0 < 1.
The point (0, 0) is the vertex of a fanlike of rarefaction solution, that we
explicitly compute: from that point we invert the relation x = q′(u)t, that
implicitly defines the solution. Since q′ = u3, we deduce that the rarefaction
solution is u = 3

√
x/t.

The collision between characteristics carrying different data causes a dis-
continuity s = s(t), which propagates according to the Rankine-Hugoniot
condition (2.38); here, the point where the shock curve is based is (1, 0),
therefore, for small times, s = s(t) solves the following initial value problem

{
ṡ = 1/4
s(0) = 1 deducing s =

t

4
+ 1.

The considerations made so far are valid until the shock curve meets the
characteristic x = t, in the point (4/3, 4/3). For times t > 4/3, the discon-
tinuity is generated by the collision between the vertical characteristics that
originate at the point of abscissa x0 > 1 and carry the data u− = 0 and
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Fig. 10.3. The characteristics of Exercise 2.4. For 0 < t < 4/3 the shock curve has
equation x = t/4 + 1, while for t > 4/3 it has equation x = 4

√
43t/33. The solution

in the rarefaction area based in the origin is u = 3
√
x/t

the rarefaction solution u+ = 3
√
s/t. Using the Rankine-Hugoniot condition

(2.38) with the corresponding values for the flux functions q+ = 4−1 (s/t)4/3

and q− = 0, we find that the shock curves propagates according to the Cauchy
value problem ⎧⎨

⎩
ṡ =

1
4
s

t

s(4/3) = 4/3.

The equation can be integrated by separation of the variables and we deduce
the solution s = 4

√
43t/33. The progression of the shock curve and the set of

characteristics are represented in Fig. 10.3. Summarizing, the solution of the
problem is

u(x, t) =

⎧⎪⎪⎨
⎪⎪⎩

1 if 0 < t < x < 1 + t/4
0 if x ≤ 0 or 1 < x < t/4 + 1 with t < 4/3

or x > 4
√

43t/33 with t > 4/3
3
√
x/t if 0 ≤ x ≤ t with t < 4/3 or x < 4

√
43t/33 with t ≥ 4/3.

2.5. For the Burgers equation q′ = u: the characteristics are then x = x0 +
g(x0)t. On account of the assigned initial condition, the characteristics are
the straight lines of equation x = x0 + sinx0 t if 0 < x0 < π, elsewhere they
are vertical straight lines.

Because of the convexity of the flux function q, the characteristics based
at the points (x0, 0) where the initial condition is increasing (namely, in this
exercise, for 0 < x0 < π/2) spread wide and originate a rarefaction wave. On
the other hand, the characteristics based at the points (x0, 0) where the initial
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Fig. 10.4. The set of the characteristics associated to a conservation law with convex
flux function and initial condition g(x) = sinx as 0 < x < π and zero elsewhere.
The envelope of the family of the characteristics is clearly visible

condition is decreasing (in this exercise for π/2 < x0 < π) evolve closer and
closer and originate a compression wave, therefore a shock curve arises. The
starting point of the shock curve coincide with the point with the minimum
time on the envelope of the characteristics starting form the points of the
interval [π/2, π]. In order to determine the equation of the envelope of the
characteristics, we consider the system

{
x = x0 + sinx0 t
0 = 1 + cosx0 t

where the second equation is obtained from the first, after differentiation with
respect to x0. Then, the parametric equations of the envelope can be written
as {

x = x0 − tanx0

t = −1/ cosx0.

We deduce that the first (positive) time where the shock curve originates is
t = 1; it corresponds to the point x = π (Fig. 10.4).

The solution is shown in Fig. 2.25. It has been numerically calculated
either using an upwind scheme either with a more accurate method, which is
necessary to capture its strong discontinuities.

2.6. Hint: Multiply by u the equation. Use a > 0 and the inequality

2fu ≤ f2 + u2

to obtain

d

dt

∫ R

0

u2(x, t)dx ≤
∫ R

0

f2(x, t)dx+
∫ R

0

u2(x, t)dx.
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Prove that if E(t) satisfies

E′(t) ≤ G(t) + E(t), E(0) = 0

then E(t) ≤ et
∫ t
0
G(s)ds.

2.10. Answer: the solution is

u(x, t) =
1

1 + erfc(−x/
√

4εt)

erfc((x−t)/
√

4εt)
exp
(
x−t/2

2ε

)

where

erfc(s) =
∫ +∞

s

exp(−z2)dz

is the complementary error function.

10.2 Section 3.7

3.1. We use the one-dimensional model described in Section 3.1.3, with
Cauchy-Dirichlet conditions on the parabolic boundary:

⎧⎨
⎩
ut −Duxx = 0 (0, 1)× (0,+∞)
u(x, 0) = g(x) 0 ≤ x ≤ 1
u(0, t) = u0, u(1, t) = u1 t > 0.

In this case, we solve the problem:
⎧⎨
⎩
ut −Duxx = 0 (0, 1)× (0,+∞)
u(x, 0) = x 0 ≤ x ≤ 1
u(0, t) = 1, u(1, t) = 0 t > 0.

We try to conjecture what could happen. Since the initial data is increasing
in x, heat initially flows along the bar from right to left. On the other hand,
since u0 > u1, from the left (the hotter) end point heat will begin to flow
to the right, which causes the increase of the temperature inside. These two
opposite fluxes will tend to stabilize as time increases to eventually reach a
steady state.

First, we determine the steady state, uSt; since uStxx = 0 and it satisfies the
Dirichlet conditions uSt(0) = 1, uSt(1) = 0, we deduce uSt = 1− x.

Now we introduce the transient v = u−uSt. The conjecture is that it tends
to zero as t → +∞, if so the rate of convergence could also be determined.
The function v solves the Dirichlet homogeneous boundary problem

⎧⎨
⎩
vt −Dvxx = 0 (0, 1)× (0,+∞)
v(x, 0) = 2x− 1 0 < x < 1
v(0, t) = 0, v(1, t) = 0 t > 0.

(10.2)
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Let us attempt to find a solution which is not identically zero satisfying the
boundary conditions but with the following property: v is a product in which
the dependence of v on x, t is separated, that is:

v(x, t) = y(x)w(t).

A substitution into the first of (10.2) gives w′(t) y(x) − Dw(t) y′′(x) = 0.
Rearranging terms, we deduce:

w′(t)
Dw(t)

=
y′′(x)
y(x)

(10.3)

this equality must hold for every x ∈ (0, 1) and every t > 0, hence both sides
are equal to a common constant λ.

In particular we deduce that y solves the eigenvalue problem y′′ − λy = 0
with y(0) = y(1) = 0. If λ ≥ 0, the only solution which is compatible with
the zero-boundary conditions is y = 0. This fact is immediate to be verified,
indeed if λ = 0 the solutions are straight lines. If λ > 0 we have exponential
solutions like

y(x) = Ae
√
λ t +Be−

√
λ t

and the boundary conditions y(0) = y(1) = 0 lead to
{
A+B = 0
Ae

√
λ +Be−

√
λ = 0

giving A = B = 0 since the coefficient matrix is non singular. The case
λ = −μ2 < 0 gives solutions like

y(x) = A sinμ t+B cosμ t.

The boundary conditions y(0) = y(1) = 0 require
{
B = 0
A sinμ+B cosμ = 0

and we choose

A free, B = 0, μ = kπ, with k = 1, 2, 3, · · · .
Therefore, the differential problem for y has non-trivial solutions like

yk(x) = sin kπx (eigenfunctions) only for λ = −k2π2 (eigenvalues). Corre-
spondingly to such eigenvalues, w solves the linear equation with constant
coefficients w′ +Dk2π2w = 0, whose general solution is

wk = bke
−Dπ2k2t.

Thus, we have a family of non trivial solutions for the transient like

vk(x, y) = bke
−Dπ2k2t sin kπx
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Fig. 10.5. The transient v(x, t) in (10.4) represented with MatLab using the first
40 terms of the Fourier expansion

but none of them satisfies the initial condition. Exploiting the linear nature
of the problem, we use the superposition principle and consider

v(x, t) =
∞∑
k=1

vk(x, t) =
∞∑
k=1

bke
−Dπ2k2t sin kπx.

For the initial condition v(x, 0) = 2x− 1 we have:

v(x, 0) =
∞∑
k=1

bk sin kπx = 2x− 1.

The coefficients bk coincide with the coefficient of the sine Fourier series2 of
2x− 1 in (−1, 1); from (A.5):

bk = 2
∫ 1

0

(2x− 1) sin kπx dx.

Given the symmetry of the integrand function with respect to the medium
point of the interval of integration, we find that

bk =

⎧⎨
⎩

0 if k is odd

4
∫ 1/2

0

(2x− 1) sin kπx dx if k is even

=

{
0 if k is odd

− 4
kπ

if k is even.

2 Appendix A.
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Denoting k = 2n, we have then

v(x, t) = − 2
π

∞∑
n=1

1
n
e−4Dπ2n2t sin 2nπx. (10.4)

Let us analyze the behavior of the transient v as t → +∞ (Fig. 10.5): each
term of the series is exponential and the leading one corresponds to n = 1,
therefore

v(x, t) ∼ − 2
π
e−4Dπ2t sin 2πx −→ 0,

and we deduce that, for increasing t, the solution of the problem

u(x, t) = uSt + v = 1− x− 2
π

∞∑
n=1

1
n
e−4Dπ2n2t sin 2nπx

tends to the stationary solution uSt.

3.2. We analyze a Cauchy-Neuman problem with homogeneous boundary
conditions, hence the separation of variables can be immediately used; we
search for a solution like

u(x, t) = y(x)w(t).

We are yield to the equation (10.3), studied in the Exercise 3.1. In this case
the thermal response D is 1 and different boundary conditions are assigned.
In particular, y solves y′′ − λy = 0 with y′(0) = y′(L) = 0. As usual, we
distinguish 3 cases.

First case, we consider λ = μ2 > 0. The general solution is

y(x) = Aeμx +Be−μx

and we deduce that y′(x) = μ (Aeμx −Be−μx). The boundary conditions give
{
A−B = 0
eμLA− e−μLB = 0.

The system has the unique zero solution since the coefficient matrix is non-
singular.

Second case, we consider λ = 0. We obtain y(x) = Ax+B. The boundary
conditions are fulfilled with A = 0 and every B. Therefore, λ = 0 is an eigen-
value of the problem, and the constants are the corresponding eigenfunctions.

Final case, we consider λ = −μ2. The general solution is

y(x) = A cosμx+B sinμx

and we deduce that y′(x) = μ (−A sinμx+B cosμx). Since y′(0) = y′(L) = 0,
we obtain

A free, B = 0, μL = kπ, with k = 1, 2, 3, · · · .
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Summing up the situations that generate non-zero solutions, the eigenval-
ues of the problem are λk = −k2π2L−2, corresponding to the eigenfunctions
yk = cos kπxL−1, with k ∈ N.

The equation for the unknown w becomes

w′(t) +
k2π2

L2
w(t) = 0

whose solution is
wk = ake

− k2π2

L2 t.

We have found the family of solutions

uk(x, t) = y(x)w(t) = ake
− k2π2

L2 t cos
kπ

L
x

with k ∈ N, satisfying the homogeneous conditions at the boundaries. The
initial condition u(x, 0) = x as 0 < x < L has to be fulfilled as well. We use
the superposition principle and introduce

u(x, t) =
∞∑
k=0

ake
− k2π2

L2 t cos
kπ

L
x

therefore, the initial condition becomes

u(x, 0) =
∞∑
k=0

ak cos
kπ

L
x = x.

Hence, the coefficients ak coincide with the coefficients of the cosine Fourier
series of the function g(x) = x in the interval [−L,L]:

g(x) =
a0

2
+

∞∑
k=1

ak cos
kπx

L
.

From the formulas (A.3) and (A.4), as g(x) = x, we deduce

a0 =
2
L

∫ L

0

x dx = L

ak =
2
L

∫ L

0

x cos
kπx

L
dx

=
2L
k2π2

[
(−1)k − 1

]
.

We deduce that the solution is

u(x, t) =
L

2
+

2L
π2

∞∑
k=1

(−1)k − 1
k2

e−
k2π2

L2 t cos
kπ

L
x

=
L

2
− 4L
π2

∞∑
m=0

1
(2m+ 1)2

e−
(2m+1)2π2

L2 t cos
(2m+ 1)π

L
x.
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Finally, we note that as t → +∞ the solution u converges to the value
L/2, that is the mean value of the data. In fact, the boundary conditions
of Neumann type correspond to a problem where no interaction with the
environment occurs3. The equation governs the evolution of the concentration
of a substance subject to diffusion, whose total mass, if no exchanges with the
outside are possible, is preserved and it tends to distributed uniformly on the
segment [0, L], reaching the stationary configuration.

3.3. We deal with a non homogeneous Cauchy-Neumann problem, with ho-
mogeneous boundary conditions. As the equation shows a exogenous heat
source proportional to x and t, we expect the solution grows with respect to
these variables.

Formally, we write the candidate solution as

u (x, t) =
∞∑
k=0

ck (t) vk (x)

where vk are the eigenfunctions of the eigenvalue problem associated to the
homogeneous equation:{

v′′(x)− λv(x) = 0 0 < x < π
v′(0) = v′(π) = 0

solved in the Exercise 3.2, where L = π. The eigenvalues are λk = −k2 and
the corresponding eigenfunctions are vk(x) = cos kx, with k ∈ N.

We have then

u (x, t) =
∞∑
k=0

ck (t) cos kx;

and the following conditions have to be fulfilled⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ut(x, t)− uxx(x, t) =

=
∞∑
k=0

(
c′k(t) + k2ck(t)

)
cos kx = t x 0 < x < π, t > 0

u(x, 0) =
∞∑
k=0

ck(0) cos kx = 1 0 ≤ x ≤ π.

(10.5)

We write the function g(x) = x in cosine Fourier series in the interval
(−π, π)

x =
a0

2
+

∞∑
n=1

an cosnx

where the coefficients a0 and ak are defined in (A.3) and (A.4) in Appendix
A. We have

x =
π

2
+

∞∑
n=1

−4
π(2n+ 1)2

cos(2n+ 1)x.

3 Adiabatic extremes, considering the heat conduction in the bar.
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Comparing the first of (10.5) with the equation above, we deduce that the
coefficients ck(t) must satisfy the following ordinary differential equations

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c′0(t) = πt/2

c′2n(t) + 4n2c2n(t) = 0 n > 0

c′2n+1(t) + (2n+ 1)2c2n+1(t) =
−4t

π(2n+ 1)2
n ≥ 0.

These equations are respectively associated with the initial values that we get
comparing the second of (10.5) with the cosine Fourier series of the constant
1: ⎧⎪⎪⎨

⎪⎪⎩

c0(0) = 1

c2n(0) = 0 n > 0

c2n+1(0) = 0 n ≥ 0.

We have a set of differential equations with constant coefficients whose
solutions can be written using the superposition principle by adding a par-
ticular solution to the general solution of the homogeneous equation. Thus,
their solutions are, respectively:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

c0(t) =
πt2

4
+ 1

c2n(0) = 0 n > 0

c2n+1(t) =
−4

π(2n+ 1)4

[
t+

e−(2n+1)2t − 1
(2n+ 1)2

]
n ≥ 0.

Therefore, the solution of the problem is

u (x, t) = 1 +
t2π

4
+

∞∑
n=0

−4
π(2n+ 1)4

[
t+

e−(2n+1)2t − 1
(2n+ 1)2

]
cos(2n+ 1)x (10.6)

and it is represented in Fig. 10.6.

3.4. The concentration c satisfies the equation

ct = Dcxx 0 < x < L, t > 0.

If we denote by i the versor of the x−axis, according to the Fick’s law, the
flux entering in x = 0 is given by

∫

A

q (c (0, t)) ·i dxdy =
∫

A

−Dcx (0, t) dxdy = −DAcx (0, t) = C0R0

while the outgoing flux in x = L is
∫

A

q (c (L, t)) ·i dxdy =
∫

A

−Dcx (L, t) dxdy = −DAcx (L, t) = c (L, t)R0.
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Fig. 10.6. The function (10.6), represented in the interval 0 ≤ t ≤ 2 using MatLab
and the first 15 non zero terms of the Fourier series

Therefore, we deduce the following Neumann-Robin conditions

cx (0, t) = −B and cx (L, t) + Ec (L, t) = 0

where we denoted

B =
C0R0

DA
and E =

R0

DA
;

the problem is also associated to the initial condition

c (x, 0) = c0 (x) .

We determine, first, the stationary solution cSt, which satisfies the condi-
tions

cStxx = 0 0 < x < L, t > 0

cStx (0, t) = −B, cStx (L, t) + EcSt (L, t) = 0 t > 0.

We find

cSt (x) = B (L− x) +
B

E
.

Now, we analyze the transient u (x, t) = c (x, t) − cSt (x). Then u solves the
following problem

ut = Duxx 0 < x < L, t > 0
ux (0, t) = 0, ux (L, t) + Eu (L, t) = 0 t > 0
u (x, 0) = c0 (x)− cSt (x) 0 < x < L.
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In this way, we are brought back to homogeneous boundary conditions, es-
sential to use the method of separation of variables; we set u(x, t) = y(x)w(t)
and deduce

w′(t)
Dw′(t)

=
y′′(x)
y(x)

= λ.

In particular, w satisfies the equation w′(t) = λDw(t) whose solution is

V (t) = eλDt

while y is a solution of the following eigenvalue problem:

y′′ (x)− λy(x) = 0

associated to the conditions

y′ (0, t) = 0, y′ (L, t) + Ey (L, t) = 0.

If λ > 0, the general solution is y (x) = c1e
−√

λx + c1e
√
λx. The boundary

conditions give
{−c1 + c2 = 0
c1(E −

√
λ)e−

√
λL + c2(E +

√
λ)e

√
λL = 0.

(10.7)

Now, we have that

det
(−1 1

(E −√λ)e−
√
λL (E +

√
λ)e

√
λL

)

= −(E +
√
λ)e

√
λL − (E −

√
λ)e−

√
λL

= (E +
√
λ)e−

√
λL

(√
λ− E√
λ+ E

− e2
√
λL

)

is negative, since e2
√
λL > 1 and (

√
λ−E)/(

√
λ+E) < 1. The system (10.7)

has the only solution c1 = c2 = 0.
W can make the same deduction even in the case λ = 0.
If λ < 0, we find the conditions
{
U ′ (0) =

√−λc2 = 0
U ′ (L, t) + EU (L, t) = c1

[
cos
(√−λL)−√−λ sin

(√−λL)] = 0.

So, λ satisfies the equation

cot
(√−λL

)
=
√−λ.

Examining the graphs of functions f1 (x) = cotLx and f2 (x) = x (Fig.
10.7) we note that there are infinite points km, with 0 < km < mπ/L and
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Fig. 10.7. Intersections of y = x and y = cotx

m > 0, where the two functions f1 and f2 intersect. Then, λm = k2
m and the

corresponding eigenfunction is cos(kmx). Therefore, the solution is

u (x, t) =
∞∑
m=1

ume
−Dk2

mt cos(kmx)

where um is the coefficient of the Fourier series4 of u (x, 0) expanded with
respect to the eigenfunction cos(kmx), namely

um =
1
αm

∫ L

0

u (x, 0) cos (kmx) dx αm =
∫ L

0

cos2 (kmx) dx .

Regarding the concentration c, we finally deduce the formula

c (x, t) =
B

E
+B (L− x) +

∞∑
m=1

ume
−Dk2

mt cos(kmx).

Since km > 0 for every m, as t goes to +∞ every term of the series converges
to zero exponentially and therefore c settles to the steady solution cSt

c (x, t) → C0 +
C0R0

DA
(L− x) .

3.5. We proceed as in Section 3.3.2 and substitute into the equation ut−uxx =
0. Denoting

ξ =
x√
t
.

4 It can be proved that
∫ L

0
cos(knx) cos (kmx) dx = 0 if m �= n. Furthermore, the

functions ϕm (x) = cos (kmx) /
√
αm are a base of the space L2 (0, L) of square-

integrable functions (Chapter 7).
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we obtain:
∂ξ

∂x
=

1√
t

∂ξ

∂t
= − x

2t
√
t

∂2ξ

∂x2
= 0.

From u(x, t) = U(x/
√
t), we have

ut(x, t) = U ′(ξ)
∂ξ

∂t
= −U ′(ξ)

x

2t
√
t

ux(x, t) = U ′(ξ)
∂ξ

∂t
= U ′(ξ)

1√
t

uxx(x, t) =
1√
t
U ′′(ξ)

∂ξ

∂x
= U ′′(ξ)

1
t
.

The equation ut − uxx = 0 becomes −U ′(ξ) x
2t
√
t
− 1

tU
′′(ξ) = 0 and it can be

rewritten as
U ′(ξ)ξ + 2U ′′(ξ) = 0.

It is a linear first order equation with respect to U ′, whose general solution is

U ′(ξ) = ce−ξ
2/4.

Integration with respect to ξ gives

U(ξ) = c1 + c2

∫
e−ξ

2/4 dξ = c1 + c2

∫ ξ/2

0

e−x
2
dz.

If we use the error function (whose graph is in Fig. 10.8), we finally obtain

u(x, t) = U

(
x√
t

)
= c1 + c2erf

(
x√
t

)
.

In order to fulfill the boundary conditions

u (0, t) = C, lim
x→+∞u (x, t) = 0 t > 0

we set c1 = C and c2 = −2C/
√
π, and hence

u(x, t) = C

(
1− erf

(
x

2
√

t

))
. (10.8)

3.6. We have to solve the following diffusion problem:
⎧⎨
⎩
ut −Δu = 0 x ∈BR, t > 0
u (x, 0) = U
u (σ, t) = 0

x ∈BR
σ ∈ ∂BR, t > 0.
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Fig. 10.8. On the left, the error function erf(x) = 2√
π

∫ x

0
e−z2 dz. On the right,

the function (10.8), obtained with MatLab; it represents the diffusion on the half
straight line x > 0 of a source C = 1 concentrated in the origin and constant with
time

Since the problem is radial, it seems convenient to search for a radial solu-
tion, namely u(x, t) = u (r, t) , with r = |x|. We write the laplacian in polar
coordinates5, and remark that

Δu = urr +
2
r
ur =

1
r
(ru)rr.

The problem becomes, then
⎧⎨
⎩
ut − r−1 (ru)rr = 0 0 < r < R, t > 0
u (r, 0) = U 0 ≤ r < R
u (R, t) = 0 t > 0.

Introducing v = ru, the new unknown v satisfies the following one-dimensional
problem ⎧⎨

⎩
vt − vrr = 0 0 < r < R, t > 0
v (r, 0) = ru(r, 0) = rU 0 ≤ r < R
v (0, t) = v(R, t) = 0 t > 0.

The one-dimensional problem with homogeneous Dirichlet boundary condi-
tions has been solved in the Exercise 3.1 with the technique of the separation
of variables6, and has eigenvalues−k2π2/R2 and corresponding eigenfunctions
sin kπr/R, with k = 1, 2, · · · . Therefore, we deduce

v(r, t) =
∞∑
k=1

bke
− k2π2

R2 t sin
kπr

R

5 Appendx D.
6 See equation (10.2).
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where the bk’s are the coefficients of the sine Fourier series of the initial data
g(r) = rU on the interval (−R,R), namely

bk =
2U
R

∫ R

0

r sin
kπr

R
dr =

2RU
kπ

(−1)k+1.

Back in the original variables, we are yield to

u(x, t) =
1
|x|v(x, t) =

2RU
π|x|

∞∑
k=1

(−1)k+1

k
e−

k2π2

R2 t sin
kπ|x|
R

.

We deduce that u(0, t) → 0 as t→ +∞.

3.8. Hint. Choose h, k such that v (x, t) = u (x, t) ehx+kt is a solution of
vt = Dvxx.

3.9. Hint. Extend g to x < 0 by odd reflection: g (−x) = −g (x). Solve the
corresponding global Cauchy problem and write the result as an integral on
(0,+∞).

3.10. Hint. Assume first that c (x,t) ≤ a < 0. Then reduce to this case by
setting u = vekt with a suitable k > 0.

3.11. Hint. The solution is radial so that u = u (r, t) , r = |x|. Observe that

Δu = urr +
2
r
ur =

1
r

(ru)rr . Let v = ru, reduce to homogeneous Dirichlet
condition and use separation of variables.

3.14. Answer. The solution is

u (r, t) =
2
r

∞∑
n=1

(−1)n

λn
sin(λnr)

{
q

1− λ2
n

(
e−t − e−λ2

nt
)
− Ue−λ2

nt

}

where λn = nπ.

10.3 Section 4.7

4.1. We use the superposition principle and split the problem into four sim-
pler problems. Each problem has different boundary conditions: it has ho-
mogeneous boundary conditions on three sides of the rectangle out of four,
while on the other side is assigned the Dirichlet condition corresponding to
the given function. For instance, we find u1 solving

⎧⎨
⎩
Δu1 = 0 in R
u1(0, y) = g1(y), u1(L, y) = 0 0 < y < H
u1(x, 0) = 0, u1(x,H) = 0 0 < x < L.

We use the method of separation of the variables and consider u1(x, y) =
X(x)Y (y); assuming that X and Y are nonzero, from the Laplace equation
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we deduce
X ′′(x)
X(x)

= −Y
′′(y)
Y (y)

= λ

where λ is constant. Hence Y satisfies the eigenvalue problem
{
Y ′′(y) + λY (y) = 0, 0 < y < H
Y (0) = Y (H) = 0.

If λ = 0 we have the zero solution. For λ = −μ2 < 0, we have

Y (y) = c1 sinhμy + c2 coshμy

and the boundary conditions require that c1 = c2 = 0. On the other hand, we
find a nonzero solution in the case λ = μ2 > 0, obtaining

Y (y) = c1 sinμy + c2 cosμy.

Indeed, the boundary conditions yield to c2 = 0 and μH = kπ, where k ∈
N \ {0}; consequently

Yk(y) = sin
kπy

H

are the eigenfunctions and

λk =
k2π2

H2

are the eigenvalues of the problem. Correspondingly, we consider the equation

X ′′(x)− λkX(x) = 0

with the condition X(L) = 0. It is convenient to introduce a shift in the x
direction and we write its solution as

Xk(x) = c1 sinh
kπ(x− L)

H
+ c2 cosh

kπ(x− L)
H

.

Hence, on account of the boundary zero condition, we deduce c2 = 0 and

Xk(x) = c1 sinh
kπ(x− L)

H
.

Therefore, by linearity, a candidate solution, satisfying the zero condition on
the three sides of the rectangle is

u1(x, y) =
∞∑
k=1

ck sinh
kπ(x− L)

H
sin

kπy

H
.

We choose ck in order to fulfill the non zero boundary condition, i.e.

u1(0, y) = −
∞∑
k=1

ck sinh
kπL

H
sin

kπy

H
= g1(y).
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Hence, denoting with ak the coefficients of the Fourier sine series associated
to g1 on the interval (−H,H), namely

ak =
2
H

∫ H

0

g1(y) sin
kπy

H
dy

we have that
ck =

ak

− sinh kπL
H

.

Finally, we deduce that

u1(x, y) = −
∞∑
k=1

ak

sinh kπL
H

sinh
kπ(x− L)

H
sin

kπy

H
.

With analogous steps, the solution of the problems with nonzero data on the
other sides of the rectangle can be found.

4.2. A function u is harmonic in Ω if it has continuous second derivatives and
also Δu = 0 in Ω. Furthermore, it has the mean value property and from the
Theorem 4.5, u is C∞(Ω). Then, we just have to prove that if u is harmonic,
then

w =
∂u

∂xi
is harmonic as well. In fact, since the Schwarz’s theorem holds, we have

Δw = Δ
∂u

∂xi
=
∂Δu

∂xi
= 0.

4.3. Given the symmetry of the domain, it is convenient to use the polar
coordinates in the plane. We assume that f = f (r, θ) can be expanded in sine
Fourier series with respect to θ, in [0, 2π]:

f (r, θ) =
∞∑
m=1

fm (r) sinmθ.

We write the candidate solution in the form

u (r, θ) =
∞∑
m=1

um (r) sinmθ

where the coefficients um (r) have to be determined. Substituting into the
Laplace equation (4.16), written in polar coordinates7, we deduce:

∞∑
m=1

{
u′′m sinmθ (r) +

1
r
u′ (r) sinmθ − m2

r2
um (r)

∂2 sinmθ
∂θ2

}

=
∞∑
m=1

fm (r) sinmθ.

7 Appendix D.
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Then, the coefficients um solve the set of ordinary differential equations

u′′m (r) +
1
r
u′ (r)− m2

r2
um (r) = fm (r) m ≥ 1 (10.9)

(called Euler equations) with the conditions

um (R) = 0 and um bounded in [0, 1] .

4.4. We use the linearity to split the problem into the following two:
{
Δw (x, y) = y in B1

w = 0 on ∂B1

{
Δz (x, y) = 0 in B1

z = 1 on ∂B1

and u = w+z. It is evident that we have z = 1 in B1. In order to solve the first
problem, we use the solution of the Exercise 4.3. Note that writing y = r sin θ
the right hand side function is expanded in Fourier series with respect to θ,
in [0, 2π]. In particular, we search for a solution like:

w(r, θ) =
∞∑
m=1

wm(r) sinmθ

satisfying the equations in (10.9). We deduce the following set of ordinary
differential equations with variable coefficients:

{
w′′

1 + w′
1/r − w1/r

2 = r
w′′
m + w′

m/r −m2wm/r
2 = 0 for m > 1 (10.10)

associated to the conditions

wm(1) = 0 and wm bounded in (0, 1)

for every m ≥ 1.
Using the substitution8 t = log r in the first of (10.10), we are yield to the

constant coefficients equation v′′ − v = e3t, whose general solution is

v(t) = c1e
t + c2e

−t +
1
8
e3t.

Going back to the variable r we obtain

w1(r) = c1r + c2
1
r

+
1
8
r3.

We choose c2 = 0 to obtain a bounded function and setting w1(1) = 0 we
deduce c1 = −1/8. The same procedure can be used to show that the equations
for wm, with m > 1, have the zero solution. Hence, we have

w(r, θ) =
r

8
(r2 − 1) sin θ.

8 It is a standard substitution for Euler equations.
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The solution of the initial problem, in cartesian coordinates, is therefore

u(x, y) =
y

8
(x2 + y2 − 1) + 1.

4.5. We generalize the technique used in Exercise 4.3 applied to the ring
B1,R. We exploit the symmetry of the domain and search for a solution in
polar coordinates like

u(r, θ) = α0(r) +
∞∑
n=1

[αn(r) cosnθ + βn(r) sinnθ]. (10.11)

In order to substitute into the laplacian in polar coordinates

Δu = urr +
1
r
ur +

1
r2
uθθ, (10.12)

we calculate

ur(r, θ) = α′
0(r) +

∞∑
n=1

[α′
n(r) cosnθ + β′

n(r) sinnθ],

urr(r, θ) = α′′
0(r) +

∞∑
n=1

[α′′
n(r) cosnθ + β′′

n(r) sinnθ],

uθθ(r, θ) = −
∞∑
n=1

n2[αn(r) cosnθ + βn(r) sinnθ].

The equation (10.12) then becomes

α′′
0(r) +

α′
0(r)
r

+
∞∑
n=1

[(
α′′
n(r) +

α′
n(r)
r

− n2

r2
αn(r)

)
cosnθ

+
(
β′′
n(r) +

β′
n(r)
r

− n2

r2
βn(r)

)
sinnθ

]
= 0.

Let us expand in Fourier series the smooth, periodic data g and h

g(θ) =
a0

2
+

∞∑
n=1

(an cosnθ + bn sinnθ),

h(θ) =
A0

2
+

∞∑
n=1

(An cosnθ +Bn sinnθ).

The boundary conditions imply that the values of the coefficients of the so-
lutions u(1, θ) and u(R, θ) coincide with the coefficients of the Fourier series
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associated to g and h, respectively. We are yield to study the family of bound-
ary value problems

⎧⎪⎨
⎪⎩
α′′

0(r) +
1
r
α′

0(r) = 0

α0(1) =
a0

2
, α0(R) =

A0

2

(10.13)

⎧⎨
⎩
α′′
n(r) +

1
r
α′
n(r)−

n2

r2
αn(r) = 0

αn(1) = an, αn(R) = An

(10.14)

⎧⎨
⎩
β′′
n(r) +

1
r
β′
n(r)−

n2

r2
βn(r) = 0

βn(1) = bn, βn(R) = Bn.

(10.15)

In (10.13) we have a first order equation with respect to α′
0, whose general

solution is α0(r) = c1 + c2 ln r; using the boundary conditions we deduce

α0(r) =
a0

2
+
A0 − a0

2 lnR
ln r.

In order to find the general solutions of the (Euler) equations in (10.14) and in
(10.15) we search for a particular solution like rk, where k has to be determined
(see Exercise 4.4). A substitution gives

[
k(k − 1) + k − n2

]
rk−2 = 0

and we deduce that k = ±n. Hence, the general solution of the problems
(10.14) and (10.15) is like c1rn + c2r

−n. Using the boundary conditions and
rearranging terms, we obtain

αn(r) = anKn(r)r−n +AnHn(r)
( r
R

)n

βn(r) = bnKn(r)r−n +BnHn(r)
( r
R

)n

where

Hn(r) =
1− r−2n

1−R−2n
and Kn(r) =

1−R−2nr2n

1−R−2n
.

Finally, a substitution into (10.11) gives the solution of the problem.
Since the functions g and h are regular and periodic, the series associated

to their Fourier expansions

∞∑
n=1

(|an|+ |bn|),
∞∑
n=1

(|An|+ |Bn|)
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are convergent; furthermore, we have that

Hn(r) ≤ 1
1−R−1

, Kn(r) ≤ 1
1−R−1

,
r

R
< 1, and

1
r
< 1.

Hence, the series obtained in (10.11) is absolutely uniformly-convergent, and
it can be differentiated under the series; then, (10.11) is the only solution of
the problem.

Regarding the case g = sin θ and h = 1, we point out that the functions
f and g are already expanded in Fourier series, with the nonzero coefficients
corresponding to b1 = 1 and A0 = 2, only. We deduce

a0(r) =
ln r
lnR

, β1(r) =
R2 − r2

(R2 − 1)r

while αn(r) ≡ 0 for n ≥ 1 and βm(r) ≡ 0 for m ≥ 2. Then, the solution is

u(r, θ) =
ln r
lnR

+
R2 − r2

(R2 − 1)r
sin θ.

4.6. Let v be the solution of the problem Δv = 0 in B1 such that v = U on
∂B1. This function exists, it is unique and can be explicitly written using the
Poisson’s formula (Section 4.3.3).

Consider the function v(x,−y), which is harmonic in B1 and on ∂B1 at-
tains the values of v, changed in sign.

Now, denote w (x, y) = v (x, y) + v (x,−y); for the maximum principle
w ≡ 0, indeed w solves the problem

{
Δw(x, y) = 0 in B1

w = 0 on ∂B1.

Hence, v(x, y) = −v(x,−y), i.e. v is odd with respect to y, and, in particular
v(x, 0) = 0; then, v solves the problem

{
Δv(x, y) = 0 in B+

1

v = u on ∂B+
1 .

Since u is a solution of the same problem, uniqueness gives us that v ≡ u ≡ U
in B+

1 . Furthermore, since both v and U are odd functions with respect to y,
we have that v ≡ U in B1 and then ΔU = 0 in B1.

4.7. a) For r ≤ R, let us denote

g (r) =
1

2πr

∫

∂Br(x)

u (σ) dσ.

Changing the variables and then differentiating, we can reproduce the first
steps of the proof of the Theorem 4.2; we obtain

g′ (r) =
r

2π

∫

B1(0)

Δu (x+ry) dy ≥ 0.
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Hence g is a non decreasing function, and since g(r) → u(x) as r → 0 the first
inequality is proved. The second formula can be deduced from the first one
with R = r mutiplying by r and integrating both sides from 0 to R; we have

R2

2
u(x) ≥ 1

2π

∫ R

0

dr

∫

∂r(x)

u(σ)dσ =
1
2π

∫

BR(x)

u(y)dy

which implies the thesis.

b) We prove the statement for subharmonic functions. Suppose that for some
x0 ∈ Ω we have

u(x0) = sup
x∈Ω

u(x).

Using the inequality proved in the point a) for a ball of radius r centered at
x0 small enough to be all inside Ω, we have

u(x0) ≤ 1
πr2

∫

Br(x0)

u(y)dy

implying ∫

Br(x0)

(u(y)− u(x0))dy ≥ 0.

The integrand is a continuous function (by assumption) and it is not positive;
hence,

u(y)− u(x0) ≡ 0,

namely u is constant inBr(x0). This procedure can be repeated substituting to
x0 any point of Br(x0). Now, since Ω is a domain, given any other point y ∈ Ω
we can determine a finite sequence of balls B(xj) ⊂⊂ Ω with j = 0, · · · ,m
such that xi ∈ B(xi−1) and xm = y. Using the same procedure, we show that
u is constant in every ball, and the thesis follows from the arbitrariness of the
point y.

c) The functions u and u2 are C∞(Ω). Using the formula:

Δ(uv) = vΔu+ uΔv + 2∇u · ∇v
with u = v we deduce

Δ(u2) = 2uΔu+ 2|∇u|2 = 2|∇u|2 ≥ 0

hence u2 is subharmonic.

d) Denote w = F (u). We have that

wx = F ′(u)ux, wxx = F ′′(u)u2
x + F ′(u)uxx

and the same rules hold for the y variable. We deduce that

Δu = F ′′(u)|∇u|2 + F ′(u)Δu.
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If F is an increasing and convex function then the composition function w is
subharmonic.

4.10. Hint. Write the mean formula in a ball BR (0) for u. Use the Schwarz
inequality and let R→ +∞.

4.12. Answer. We obtain

G (x,y) = − 1
2π

[log |x− y| − log(
|x|
R
|x∗−y|)],

where x∗ = R2x |x|−2
, x �= 0.

4.13. Hint. (a) Let Br (x) ⊂ Ω and let w be the harmonic function in
Ω\Br (x) such that w = 0 on ∂Ω and w = 1 on ∂Br (x). Show that, for every
r small enough,

G (x, ·) > w (·)
in Ω\Br (x).

(b) For fixed x ∈Ω, define w1 (y) = G (x,y) and w2 (y) = G (y,x). Apply
Green’s identity (4.32) in Ω\Br (x) to w1 and w2. Let r → 0.

10.4 Section 5.6

5.1. This is a two-dimensional diffusion problem with linear reaction term.
a) Denoting δ the Dirac distribution and ρ =

√
x2 + y2 the distance from the

origin, the population density P = P (x, y, t) solves the problem
⎧⎨
⎩
Pt −DΔP = aP (x, y) ∈ R2, t > 0
P (x, y, 0) = Mδ (x, y) ∈ R2

limρ→+∞ P (x, y, t) = 0 t > 0.

Using the substitution P (x, y, t) = eatu(x, y, t); we deduce:

Pt = aeatu+ eatut and ΔP = eatΔu.

Therefore, u solves the problem
⎧⎨
⎩
ut −DΔu = 0 (x, y) ∈ R2, t > 0
u(x, y, 0) = P (x, y, 0) = Mδ (x, y) ∈ R2

limρ→+∞ u(x, y, t) = 0 t > 0

whose (positive autosimilar) solution is the fundamental solution (see Section
3.3.5) with n = 2:

u(x, y, t) =
M

4πDt
e−(x2+y2)/4Dt.
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Going back to the original unknown, we deduce

P (x, y, t) =
M

4πDt
eat−(x2+y2)/4Dt.

b) The evolution of the total number of individuals can be found solving the
integral:

M(t) =
∫

R2
P (x, y, t) dx dy

=
M

4πDt
eat
∫

R2
e−(x2+y2)/4Dt dx dy

=
M

4πDt
eat
∫ 2π

0

dθ

∫ ∞

0

e−ρ
2/4Dt ρ dρ = Meat

hence the population increases exponentially.
c) Individuals who establish themselves in the rural area are equal to that of
the original core. We have that

M =
∫

R2\BR(t)

P (x, y, t) dx dy

=
M

4πDt
eat
∫

R2\BR(t)

e−(x2+y2)/4Dt dx dy

=
M

4πDt
eat
∫ 2π

0

dθ

∫ ∞

R(t)

e−ρ
2/4Dt ρ dρ = Meat−R

2(t)/4Dt

and we deduce
R(t) = 2t

√
aD.

The metropolitan front, therefore, moves with constant speed equal to 2
√
aD.

5.2. a) We use the change of variables

u = ωeat

therefore
ut = ωte

at + ωaeat and uxx = ωxxe
at.

Substituting into the equation we find that ω fulfills the problem
⎧⎨
⎩
ωt − ωxx = 0 0 < x < 1, t > 0
ω(x, 0) = g(x) 0 ≤ x ≤ 1
ωx(0, t) = ωx(1, t) = 0 t > 0.

Using the separation of the variables we have ω(x, t) = X(x)T (t) and

T ′

T
=
X ′′

X
= λ.
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The equation X ′′ − λX = 0 is associated to the homogeneous Neumann
problem and has nontrivial solution if and only if λ ≤ 0. The eigenvalues of
the problem are λk = −k2π2 with k ∈ N whose corresponding eigenfunctions
are

Xk = ak cos kπx.

The equation for the variable t is T ′ + k2π2T = 0 And we deduce that its
solution is T = e−k

2π2t. We obtain

ω =
∞∑
k=0

ake
−k2π2t cos kπx

where ak has to be determined using the initial condition. In particular

x2 − 1
3

=
∞∑
k=0

ak cos kπx

and ak are the (even) Fourier coefficients of the function x2− 1/3. We deduce

a0 = 0

ak = 2
∫ 1

0

(
x2 − 1

3

)
cos kπx dx =

4(−1)k

k2π2
.

The solution of the initial problem is

u(x, t) =
4
π2

∞∑
k=1

(−1)k

k2
e(a−k

2π2)t cos kπx.

b) As t→ +∞, we have

u ∼ − 4
π2

e(a−π
2)t cosπx,

and we deduce that ⎧⎪⎨
⎪⎩

if a < π2 u→ 0

if a = π2 u ∼ − 4
π2

cosπx

if a > π2 u→ +∞.

10.5 Section 6.9

6.1. The Cauchy-Dirichlet problem has homogeneous boundary conditions
so the separation of variables technique can be used. We search for solutions
of the form

U (x, t) = w (t) v (x) .
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Substituting into the equation we find

0 = Utt − c2Uxx = w′′ (t) v (x)− c2w (t) v′′ (x)

hence, we get to an equality among two functions of a different variable

1
c2
w′′ (t)
w (t)

=
v′′ (x)
v (x)

(10.16)

therefore both sides are equal to the same constant λ. We deduce two ordinary
differential equations

v′′ (x)− λv (x) = 0 and w′′ (t)− λc2w (t) = 0. (10.17)

The problem for v is associated to the boundary conditions

v (0) = v (1) = 0 (10.18)

and the general solution of the first of (10.17) depends on the sign of λ. Indeed,
if λ = 0, the general solution is v (x) = A + Bx and the conditions (10.18)
imply A = B = 0. If λ = μ2 > 0, the general solution is v (x) = Ae−μx+Beμx

and, again, the conditions (10.18) imply A = B = 0. On the other hand, we
deduce nontrivial solution if, finally, λ = −μ2 < 0; the general solution is
v (x) = A sinμx+B cosμx. The conditions (10.18) become

v (0) = B = 0
v (1) = A sinμL+B cosμL = 0

and we deduce

A free, B = 0, μL = mπ, m = 1, 2, ... .

Therefore nontrivial solutions are

vm (x) = Am sinμmx, μm =
mπ

L
.

Using the eigenvalues λ = −μ2
m = −m2π2/L2, the second of (10.17) has

the general solution

wm (t) = Cm cos(μmct) +Dm sin(μmct).

Therefore, we obtain solutions like

Um (x, t) = [am cos(μmct) + bm sin(μmct)] sinμmx

where am and bm are free. Each of these functions represents a possi-
ble movement of the string, known as mth−component of the vibration or
mth−harmonic, corresponding to the vibration of frequency mc/2L. The low-
est frequency, corresponding to m = 1 is called fundamental, while the other
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frequencies are integer multiples of the fundamental one: it is for this property
that the string is capable of producing tones of good musical quality (this is
not a vibrant membrane, see Section 6.6.3).

If the datum g is exactly

g (x) = am sinμmx

then the solution of the problem coincide with Um and the string vibrates in
its mth mode of oscillation. In the general case, the idea is to build a solution
by superposition of the infinite harmonic Um by the formula

u (x, t) =
∞∑
m=1

[am cos(μmct) + bm sin(μmct)] sinμmx. (10.19)

The initial conditions require

u (x, 0) =
∞∑
m=1

am sinμmx = g (x) (10.20)

ut (x, 0) =
∞∑
m=1

cμmbm sinμmx = 0 (10.21)

for 0 ≤ x ≤ L.
We deduce bm = 0 for every m ≥ 1. Assuming that g can be expanded in

sine Fourier series in the interval [0, L], we consider

ĝm =
2
L

∫ L

0

g (x) sin
(mπ
L
x
)
dx m ≥ 1

the Fourier coefficients associated to g. In the formula (10.19) we choose

am = ĝm, and bm = 0, (10.22)

hence (10.19) fulfill the conditions (10.20), (10.21) and it is the candidate to
solve the problem assigned.

Note that Um is a standing wave

ĝm cos(μmct) sinμmx

and u is a superposition of such sinusoidal vibrations with increasing fre-
quency.

If the coefficients am tend to zero fast enough as m→∞, for instance if

|ĝm| ≤ C

m4
, (10.23)

is not difficult to check that you can differentiate twice term by term, and
deduce that u is indeed the (classical) solution of the our problem.
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The formulas (10.19) and (10.22) indicate that the vibration of the string
consists of the superposition of those harmonics whose amplitude corresponds
to the Fourier coefficients associated to the initial data. The presence (or ab-
sence) of various harmonics gives to the sound emitted by a string a particular
“timbre”, In contrast to the “pure tone” produced by an electronic instrument,
corresponding to a single frequency.

6.2. We associate to the Tricomi equation the quadratic form (6.36) in Section
6.5.1

H(p, q) = p2 − tq2
and we deduce that the equation is hyperbolic in the half plane t > 0
(parabolic at t = 0), and elliptic in the half plane t < 0, analogously with
the types of conic section H(p, q) = 1.

For t < 0 the characteristics are not real. For t = 0 we have the family of
characteristics φ(x, t) = k solution of the ordinary differential equation

dx

dt
= 0.

We obtain φ(x, t) = x, therefore the characteristics and the set t = 0 intersect
at a single point, and the set t = 0 has no interior points and is not, indeed,
characteristic.

Considering the case t > 0, we have two families of characteristics φ(x, t) =
k and ψ(x, t) = k solutions of the ordinary differential equation

(
dx

dt

)2

− t = 0,

that is dx
dt = ±√t. We find immediately that the characteristics correspond

to level lines of the surfaces

ξ = φ(x, t) = 3x+ t3/2 and η = ψ(x, t) = 3x− t3/2

in the half plane t > 0.

6.3. The assigned equation is elliptic in the half plane y < 0, hyperbolic in
the half plane y > 0 and parabolic for y = 0.

The characteristics are real only if y ≤ 0; in the parabolic case the char-
acteristics are the constants y = k, and, among them, just the straight line
y = 0 belongs to the characteristic set.

In the half plane y > 0 we search for two functions φ(x, y) = k and
ψ(x, y) = k solving the characteristic equation (6.45), in this case it is

(
dy

dx

)2

− y = 0

namely y′ = ±√y. Using the separation of variables we obtain

2
√
y = ±x+ constant.
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Then, the characteristics correspond to the level lines of the surfaces
{
ξ = φ(x, y) = 2

√
y + x

η = ψ(x, y) = 2
√
y − x.

In order to write the equation in canonical form we change the variables
as written above and exploit the conditions:

ξx = 1 ξy = y−1/2 ηx = −1 ηy = y−1/2.

For the solution u(x, y) = U(ξ(x, y), η(x, y)), we deduce

ux = Uξξx + Uηηx = Uξ − Uη
uy = Uξξy + Uηηy =

Uξ + Uη√
y

uxx = Uξξξx + Uξηηx − Uηξξx − Uηηηx = Uξξ − 2Uξη + Uηη

uyy = −1
2
y−3/2(Uξ + Uη) +

1√
y
(Uξξξy + Uξηηy + Uηξξy + Uηηηy)

= −Uξ + Uη
2y3/2

+
1
y
(Uξξ + 2Uξη + Uηη).

A substitution into the equation uxx− yuyy − 1
2uy = 0 leads to the canonical

form:
−4Uηξ = 0

and we deduce
U(ξ, η) = f(ξ) + g(η)

where f and g are arbitrary functions. Back to the original variables, the
general solution of the equation is

u(x, y) = f(2
√
y + x) + g(2

√
y − x).

6.4. The equation assigned is parabolic. Then, there exists a family of char-
acteristics φ(x, t) = k satisfying the differential condition

t2
(
dx

dt

)2

+ 2t
dx

dt
+ 1 = 0

namely

t
dx

dt
− 1 = 0.

Integrating, we find x = log |t|+costant, i.e. te−x = k, k ∈ R. Hence, φ(x, t) =
te−x.

Now that the function φ has been found, in order to change the variables
to rewrite the equation in canonical form, we consider a smooth function ψ,
that we will choose later, in a way that ∇φ and ∇ψ are independent and that

t2ψ2
t + 2tψtψx + ψ2

x = A �= 0.
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For the sake of simplicity, we consider ψ = ψ(x), with positive first derivative.
We change the coordinates9 {

ξ = te−x

η = ψ(x)

and deduce that

ξx = −te−x ηx = ψ′ ξt = e−x ηt = 0.

Consider U(ξ, η) the function such that u(x, t) = U(te−x, ψ(x)); we obtain

ux = −te−xUξ + Uηψ
′

ut = e−xUξ
uxx = te−xUξ + t2e−2xUξξ − 2te−xψ′Uηξ + (ψ′)2Uηη + ψ′′Uη
ux,t = −e−xUξ − te−2xUξξ + e−xψ′Uηξ
utt = e−2xUξξ.

Substituting into the equation t2utt + 2tuxt + uxx − ux = 0 gives

(ψ′)2Uηη + (ψ′′ − ψ′)Uη = 0

the canonical form of the equation. We choose

ψ(x) = ex

hence the second coefficient vanishes and we have Uηη = 0; an integration
gives

U = f(ξ) + η g(ξ)

where f and g are arbitrary functions. Back to the original variables we obtain
the general solution of the equation

u(x, t) = f(te−x) + exg(te−x).

6.6. Answer: we find

u(x, t) =
2
π2

∞∑
k=1

(−1)k

k2
sin kπt sin kπx.

Using the Weierstrass criterion the series defining u is uniformly convergent
and therefore u is continuous.

The energy associated to the string is

E(t) =
1
2
(
∫ 1

0

(|ut(x, t)|2 + |ux(x, t)|2)dx.

9 The condition ψ′ > 0 ensures the local invertibility of the transformation.
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It is constant and the value can be determined using the initial conditions.

6.7. Answer. We find

u(x, t) = sinx
∫ t

0

g(t− τ) sin τdτ .

6.8. Answer. The solution is

u(r, t) =
∞∑
n=1

anJ0(λnr) cosλnt

where J0 is the Bessel function of order zero, λ1, λ2, · · · are the zeroes of J0

and the coefficients an are given by

an =
2
c2n

∫ 1

0

s g(s)J0(λns)ds

where

cn =
∞∑
n=1

(−1)k

k!(k + 1)!

(
λn
2

)2k+1

.

6.10. Answer. a) we have α = k/2 and therefore

vtt − k2

4
v = c2Δv.

b) For β = k/2c we have
wtt = c2Δx,x3w.

10.6 Section 7.7

7.1. We have
‖Ax‖2 = 〈Ax,Ax〉 = 〈A�Ax,x〉.

The dimension of the matrix A�A is (n, n); furthermore A is symmetric and
non negative. Now,

sup
‖x‖≤1

〈A�Ax,x〉 = sup
‖x‖=1

〈A�Ax,x〉 =ΛM

where ΛM is the maximum eigenvalue of A�A. Therefore ‖L‖ =
√
ΛM .

7.2. Schwarz’s inequality yields

|Lgf | =
∣∣∣∣
∫

Ω

fg

∣∣∣∣ ≤
(∫

Ω

|f |2
)1/2(∫

Ω

|g|2
)1/2

= ‖g‖0 ‖f‖0
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so that Lg ∈ L2 (Ω)∗ and ‖Lg‖ ≤ ‖g‖0. Actually ‖Lg‖ = ‖g‖0 since, choosing
f = g, we have

‖g‖20 = Lg(g) ≤ ‖Lg‖ ‖g‖0
whence also ‖Lg‖ ≥ ‖g‖0.
7.3. Schwarz’s inequality yields

|(x, y)| ≤ ‖x‖ ‖y‖ ,

whence L1 ∈ H∗ and ‖L1‖ ≤ ‖y‖. Actually ‖L1‖ = ‖y‖ since, choosing x = y,
we have

‖y‖2 = |L1y| ≤ ‖L1‖ ‖y‖ ,
or ‖L1‖ ≥ ‖y‖. Observe that this argument provides the following alternative
definition of the norm of an element y ∈ H:

‖y‖ = sup
‖x‖=1

(x, y) . (10.24)

7.4. Since u ∈ L2(0, 1), necessarily u ∈ L2(0, 1/2). The Schwarz’s inequality
gives
∣∣∣∣∣
∫ 1/2

0

u(t) dt

∣∣∣∣∣ ≤
∫ 1/2

0

|u(t)| dt ≤
√

2
2

(∫ 1

0

|u(t)|2dt
)1/2

=
√

2
2
‖u(t)‖L2(0,1)

and we deduce that the functional is well-defined. F is bounded, hence con-
tinuous. Then, since the Riesz theorem, there exists a unique function f ∈ H
such that

F (u) =
∫ 1

0

f(t)u(t)dt

and ‖F‖H′ = ‖f‖H . We have that

f =
{

1 if 0 < x < 1/2
0 if 1/2 < x < 1.

Finally, we have

‖F‖H′ = sup
‖u‖L2≤1

|F (u)| =
√

2
2
.

7.5. We show three sequences converging to δ in D′ (Rn).

a) Denote with χE (x) the characteristic function of the set E ⊂ R
n. This

function is identically 1 if x ∈E and is zero if x /∈E. We consider Br the ball
of radius r centered at the origin, we prove that

lim
r→0

1
|Br|χBr

= δ in D′ (Rn) .
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We have to show that for every ϕ in D (Rn),
∫

Rn

1
|Br|χBr

(x)ϕ (x) dx→ϕ (0) , as r → 0.

In fact, using the Integral Mean Value Theorem, we obtain
∫

Rn

1
|Br|χBr

(x)ϕ (x) dx =
1
|Br|

∫

Br

ϕ (x) dx =ϕ (xr)

where xr is a point in Br. Since ϕ is continuous, ϕ (xr)→ ϕ (0) as xr → 0.

b) Consider the function ηε

ηε =
1
εn
η

( |x|
ε

)

where

η(x) =

{
ce

1
|x|2−1 0 ≤ |x| < 1

0 |x| ≥ 1.

We prove that
lim
ε→0

ηε = δ in D′ (Rn) .

In fact, we take ϕ in D (Rn) and deduce
∫

Rn

ηε (x)ϕ (x) dx =
1
εn

∫

Bε

η
(x
ε

)
ϕ (x) dx

=
x=εy

∫

B1

η (y)ϕ (εy) dy.

Using the Lebesgue’s Dominated Convergence Theorem (Section 7.1.4) we
deduce

lim
ε→0

∫

B1

η (y)ϕ (εy) dy =ϕ (0) .

c) Consider ΓD (x, t) the fundamental solution of the heat equation; we have
already seen that for ϕ ∈ D (Rn), then

lim
t→0+

∫

Rn

ΓD (y − x, t)ϕ (x) dx =ϕ (y) .

In terms of distributions, this fact means that for y fixed,

ΓD (y − ·, t) → δy in D′ (Rn)

as t→ 0+.
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7.6. Take ϕ ∈ D (R). We deduce

〈u′, ϕ〉 = −〈u, ϕ′〉 = −
∫

R

|x|ϕ′ (x) dx =
∫ 0

−∞
xϕ′ (x) dx−

∫ ∞

0

xϕ′ (x) dx

= −
∫ 0

−∞
ϕ (x) dx+

∫ ∞

0

ϕ (x) dx =
∫

R

sign(x)ϕ (x) dx = 〈S,ϕ〉.

Furthermore,

〈 d
dt

sign t, ϕ〉 = −〈sign t, ϕ′〉

= −
∫

R

sign tϕ′(t) dt = −
∫ a

−a

sign tϕ′(t) dt with suppϕ ⊂ [−a, a]

=
∫ 0

−a
ϕ′(t) dt−

∫ a

0

ϕ′(t) dt = 2φ(0) = 〈2δ, ϕ〉.

7.7. We have that

〈 d
dx

arctan
1
x
, ϕ〉 = −〈arctan

1
x
, ϕ′〉 = −

∫

R

arctan
1
x
ϕ′(x) dx

= −
∫ a

−a
arctan

1
x
ϕ′(x) dx con suppϕ ⊂ [−a, a]

= −
∫ 0

−a
arctan

1
x
ϕ′(x) dx−

∫ a

0

arctan
1
x
ϕ′(x) dx

=
[
arctan

1
x
ϕ

]0−

−a
−
[
arctan

1
x
ϕ

]a
0+

+
∫ a

−a

ϕ(x)
1 + x2

dx

= πϕ(0)−
∫

R

ϕ(x)
1 + x2

dx = 〈πδ − 1
1 + x2

, ϕ〉.

7.8. Using the definition of derivative in the distributional sense, with ϕ ∈
D(R2) we find

〈Hxy, ϕ〉 = 〈H, ϕxy〉 =
∫

R2
H(x, y)ϕxy dx dy

=
∫

[−a,a]×[−a,a]
H(x, y)ϕxy dx dy with suppϕ ⊂ [−a, a]× [−a, a]

=
∫ a

0

∫ a

0

ϕxy dx dy =
∫ a

0

[ϕx]
a
0 dx

= −
∫ a

0

ϕx(x, 0) dx = − [ϕ(x, 0)]a0 = ϕ(0, 0) = 〈δ, ϕ〉.

7.9. First, we search for an orthonormal basis {u1, u2} of the subspace V ⊂
L2(0, 1), which has dimension 2. As a first vector u1 we take v1 itself. In order



430 10 Solutions of selected exercises

to find the second vector u2, we choose α, β ∈ R such that v = α + βx has
the following properties: {

v⊥v1
‖v‖ = 1

namely, in terms of inner product in L2

⎧⎪⎪⎨
⎪⎪⎩

∫ 1

0

(α+ xβ) dx = 0
∫ 1

0

(α+ xβ)2 dx = 1.

We find ⎧⎪⎨
⎪⎩
α+

β

2
= 0

α2 + αβ +
β2

3
= 1

we deduce two pairs of solutions (α, β) = ±(
√

3,−2
√

3). We consider u2 =√
3(1− 2x).

With an orthonormal basis of V , the projection of x2 on V is exactly

PV x
2 = (x2, u1)u1 + (x2, u2)u2.

We deduce that ⎧⎪⎪⎨
⎪⎪⎩

(x2, u1) =
∫ 1

0

x2 dx =
1
3

(x2, u2) =
√

3
∫ 1

0

x2(1− 2x) dx = − 1
2
√

3

and we immediately deduce that Pvx2 = −1/6 + x.
Changing point of view, if we search for the function in V with the mini-

mum distance form x2 we have to solve

inf
λ1,λ2

√∫ 1

0

(x2 − λ1 − λ2x)2dx.

This problem is equivalent to find the infimum of the corresponding square
value. We have to minimize the function

U = λ2
1 +

λ2
2

3
− 2

3
λ1 − λ2

2
+ λ1λ2 +

1
5

whose stationary points solve the system
⎧⎪⎨
⎪⎩

2λ1 + λ2 =
2
3

λ1 +
2
3
λ2 =

1
2

we deduce λ1 = −1/6 and λ2 = 1. The infimum coincide with function PV x2.



10.6 Section 7.7 431

We can change again our point of view. In order to find the projection of
x2 on the vector space of the straight lines we can exploit the second thesis
of Theorem 7.8, and proceed searching for the orthogonal complement of the
projection

x2 = PV x
2 + u where u⊥V

from which u = x2 − PV x2 = x2 − (a+ bx)⊥v for every v ∈ V . The orthogo-
nality condition in L2(0, 1) becomes

∫ 1

0

[x2 − (a+ bx)](λ1 + λ2x) dx = 0 ∀λ1, λ2 ∈ R.

Solving the integral we are yield to

λ1

[
1
3
− a− b

2

]
+ λ2

[
1
4
− a

2
− b

3

]
= 0 ∀λ1, λ2 ∈ R

and, one again, we find the solution a = −1/6 and b = 1.

7.10. Note that since t and t2 are odd and even respectively, they are or-
thogonal in L2(−1, 1). We have

‖t‖2L2(−1,1) =
∫ 1

−1

t2 dt =
2
3

‖t2‖2L2(−1,1) =
∫ 1

−1

t4 dt =
2
5
.

The functions

e1 =

√
3
2
t and e2 =

√
5
2
t2

are therefore an orthonormal basis of V . The projection of et can be found
using the Fourier series:

PV e
t = (et, e1)e1 + (et, e2)e2.

Integration by parts gives
∫
tet dt = et(t− 1)

∫
t2et dt = et(t2 − 2t+ 2)

and then

(et, e1) =

√
3
2
[
et(t− 1)

]1
−1

= e−1
√

6

(et, e2) =

√
5
2
[
et(t2 − 2t+ 2)

]1
−1

=

√
5
2
(e− 5e−1).



432 10 Solutions of selected exercises

Hence,

PV e
t = 3e−1t+

5
2
(e− 5e−1)t2.

7.11. We recall that the product of a distribution u ∈ D′(R) by a function
ψ ∈ C∞(R) is

〈uψ,ϕ〉 = 〈u, ψϕ〉 ∀ϕ ∈ D(R).

In this case the Leibniz rule for the derivative of the product can be used,
namely

〈(uψ)′, ϕ〉 = 〈u′ψ,ϕ, 〉+ 〈uψ′, ϕ〉.

We deduce that xH(x) is a primitive of H(x), indeed, (xH(x))′ = H(x) + xδ
and we know that xδ = 0; hence (x− a)H(x− a) is a primitive of H(x− a),
for every a ∈ R. Therefore, integrating once our equation we have

u′ = C −H(x− 1/2)−H(x+ 1/2),

and integrating twice we are yield to

u = Cx+B − (x− 1/2)H(x− 1/2)− (x+ 1/2)H(x+ 1/2).

The boundary conditions require C = B = 1. The solution is represented in
Fig. 10.9.

Fig. 10.9. Solution of the Exercise 7.11
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7.12. The function fulfill the boundary conditions. Calculations of its deriva-
tives (in distributional sense) gives

y′ = −cosh
√
k(1− |x|)

2 cosh
√
k

signx

y′′ =
sinh

√
k(1− |x|)

2 cosh
√
k

sign2x− cosh
√
k(1− |x|)

cosh
√
k

δ

= k
sinh

√
k(1− |x|)

2
√
k cosh

√
k

− δ = ky − δ

using the property vδ = v(0)δ with v ∈ C∞(R). Furthermore, if k tends to 0,
we find that

y −→ 1− |x|
2

as we expect with vanishing elastic force.

7.15. Answer. p (x) = a0L0 (x) + a1L1 (x) + ... + anLn (x), where Ln is the
n− th Legendre polynomial and an = (n+ 1/2) (f, Ln)L2(−1,1).

7.17. Answer. u (r, ϕ) =
∑∞
n=0 anr

nLn (cosϕ), where Ln is the n − th Leg-
endre polynomial and

an =
2n+ 1

2

∫ 1

−1

g
(
cos−1 x

)
Ln (x) dx.

At a certain point, the change of variable x = cosϕ is required.

7.18. Hint.

u (r,θ, t) =
∞∑

p,j=0

Jp (αpjr) {Apj cos pθ +Bpj sin pθ} cos(
√
αpjt)

where the coefficients Apj and Bpj are determined by the expansion of the
initial condition u (r, θ, 0) = g (r, θ).

10.7 Section 8.9

8.1. It is a mixed problem with non homogeneous Dirichlet boundary con-
dition. First, we consider an extension of the data at the point x = −1;
the simplest extension is the constant. Now, we consider the problem for the
function w = u− 1/2, we have

⎧⎨
⎩
−w′′ = −u′′ = 5x− 1 −1 < x < 2
w(−1) = 0
w′(2) = 2.

(10.25)
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The correct functional setting is

V = H1
0,−1(−1, 2)

i.e. the set of functions in H1(−1, 2) (which are continuous) vanishing in −1;
we exploit also the Poincaré inequality and take

‖v‖V = ‖v′‖L2(−1,2).

We multiply the first equation of the system by v ∈ V and integrate by parts,
we find ∫ 2

−1

w′v′ dx− [w′v]2−1 =
∫ 2

−1

(5x− 1)v dx

that is, taking into account the boundary conditions
∫ 2

−1

w′v′ dx =
∫ 2

−1

(5x− 1)v dx+ 2v(2). (10.26)

We introduce the functional F : V −→ R:

Fv =
∫ 2

−1

(5x− 1)v dx+ 2v(2)

where v ∈ V . From (10.26) we deduce the variational formulation

find w ∈ V such that 〈w, v〉 = Fv for every v ∈ V . (10.27)

Since the left hand side of (10.27) is an inner product, we can use the Riesz
theorem.

In order to prove the continuity of the functional F we use a “trace”
inequality for the (continuous) functions of H1

0,x1
(x1, x2), namely

|v(y)| ≤ (x2 − x1)1/2‖v′‖L2(x1,x2) ∀y ∈ [x1, x2]. (10.28)

In fact, for the fundamental theorem if integral calculus, we have

|v(y)| =
∣∣∣∣
∫ y

x1

v′(s) ds
∣∣∣∣ ≤
∫ y

x1

|v′(s)| ds ≤
∫ x2

x1

|v′(s)| ds

≤ (x2 − x1)1/2
(∫ x2

x1

|v′(s)|2 ds
)1/2

= (x2 − x1)1/2‖v′‖L2(x1,x2).

The continuity of F , therefore, arises from

|Fv| =
∣∣∣∣
∫ 2

−1

(5x− 1)v dx+ 2v(2)
∣∣∣∣ ≤
∫ 2

−1

|5x− 1||v| dx+ 2|v(2)|

≤ 9
∫ 2

−1

|v| dx+ 2
√

3‖v′‖L2(−1,2) ≤ 9
√

3‖v‖L2(−1,2) + 2
√

3‖v′‖L2(−1,2)

≤
√

3(9CP + 2)‖v‖V
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where CP is the Poincaré constant. We conclude that there exists a unique
solution w ∈ V of the problem (10.27) and that

‖w‖V ≤
√

3(9CP + 2).

From the stability estimate on w we deduce an analogous estimate for the
solution u = w + 1/2 of the problem (8.84).

8.2. This is a problem with drift term and Dirichlet-Robin boundary con-
ditions. Since the Dirichlet problem is homogeneous, using the Poincaré in-
equality we consider

V = H1
0,a(a, b) using ‖v‖V = ‖v′‖L2(a,b).

Multiplying the equation by v ∈ V and integrating we find
∫ b

a

μu′v′ dx− [μu′v]ba −
∫ b

a

βuv′ dx+ [βuv]ba +
∫ b

a

σuv dx =
∫ b

a

fv dx.

Taking into account the boundary conditions we are yield to consider the
bilinear form B and the functional L, which are

B(u, v) =
∫ b

a

μu′v′ dx−
∫ b

a

βuv′ dx+
∫ b

a

σuv dx

Lv =
∫ b

a

fv dx

and the problem can be stated in abstract form as follows

find u ∈ V such that B(u, v) = Lv for every v ∈ V .

We introduce sufficient conditions on the data in order to apply the Lax-
Milgram Theorem. Assuming f ∈ L2(a, b), the functional L is continuous in
V , thanks to Schwarz’s and Poincaré’s inequalities

|Lv| ≤ ‖f‖L2(a,b)‖v‖L2(a,b) ≤ CP ‖f‖L2(a,b)‖v‖V .
On the other hand, assuming μ, β, σ ∈ L∞(a, b), the bilinear form B is con-
tinuous, in fact we obtain

|B(u, v)| ≤ ‖μ‖L∞‖u‖V ‖v‖V + ‖β‖L∞‖u‖L2(a,b)‖v‖V
+ ‖σ‖L∞‖u‖L2(a,b)‖v‖L2(a,b)

≤ (‖μ‖L∞ + CP ‖β‖L∞ + C2
P ‖σ‖L∞

) ‖u‖V ‖v‖V .
Under suitable assumption the bilinear form B is coercive. Indeed an integra-
tion by parts gives

B(u, u) ≥ μ0‖u‖2V −
1
2

∫ b

a

β(x)(u2)′dx+
∫ b

a

σ(x)u2dx

= μ0‖u‖V +
∫ b

a

(
σ +

1
2
β′
)
u2dx− 1

2
[βu2]ba.
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Assuming that

β ∈ H1(a, b), β(b) ≤ 0 and
(
σ +

1
2
β′
)
≥ 0 a.e. in (a, b) (10.29)

then, we deduce that
B(u, u) ≥ μ0‖u‖2V .

Summing up, if f ∈ L2(a, b), μ ∈ L∞(a, b), μ ≥ μ0 > 0 and if (10.29) hold,
the the problem (8.85) has one unique solution in V , such that the following
estimate holds

‖u′‖L2(a,b) ≤ CP
μ0

‖f‖L2(a,b).

8.3. We introduce, as an extension of the Dirichlet data, g(x) = −x/8 and
consider the function w = u − g submitted to the following homogeneous
Dirichlet problem

{−w′′ + π2w = f − g 0 < x < 1
w(0) = 0, w(1) = 0. (10.30)

We use the space V = H1
0 (0, 1) with inner product

〈w, v〉V = (w′, v′)L2 + π2(w, v)L2

and introduce the norm

‖w‖V =
√
‖w′‖2L2 + π2‖w‖2L2

and consider the functional F : V −→ R so defined

Fv =
∫ 1

0

(f − g)v dx = (f − g, v)L2 .

The problem (10.30) can be rewritten in abstract form

find w ∈ V such that 〈w, v〉V = Fv for every v ∈ V .

The problem has a unique solution in V thanks to the projection theorem.
Since the problem for w has unique solution, the problem for u has unique
solution too, being u = w + g.

We calculate the derivatives in distributional sense of the solution assigned
in the exercise, using the Heavyside function

u = sinπx+
(

1
2
− x
)3

H
(
x− 1

2

)

u′ = π cosπx− 3
(

1
2
− x
)2

H
(
x− 1

2

)

u′′ = −π2 sinπx+ 6
(

1
2
− x
)
H
(
x− 1

2

)
;
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therefore u is a distributional solution of the equation. Differentiating twice
more, we get

u′′′ = −π3 cosπx− 6H
(
x− 1

2

)

u(iv) = π4 sinπx− 6δ
(
x− 1

2

)

where δ(x − 1/2) is the distribution 〈δ(x − 1/2), φ〉 = φ(1/2) for every φ ∈
D(R). The latter generalized function does not belong to H1(0, 1), and we
conclude that u ∈ H3(0, 1), but u /∈ H4(0, 1).

8.4. Denote with Γ the boundary of Ω. We have a Robin problem that we
embed in the Sobolev space

V = H1(Ω), with ‖v‖V =
(
‖u‖2L2(Ω) + ‖∇u‖2L2(Ω)

)1/2

and the following trace inequality holds

‖v‖L2(Γ ) ≤ CT ‖v‖V . (10.31)

We consider a function v ∈ V ; multiply by v the equation and integrate
by parts on Ω; on account of the Robin boundary condition we obtain

∫

Ω

∇u · ∇v dx + α

∫

Γ

uv dσ + σ

∫

Ω

uv dx =
∫

Ω

fv dx +
∫

Γ

gv dσ.

We introduce the bilinear form B and the functional F :

B(u, v) =
∫

Ω

∇u · ∇v dx + α

∫

Γ

uv dσ + σ

∫

Ω

uv dx

Fv =
∫

Ω

fv dx +
∫

Γ

gv dσ.

The problem (8.86) can be rewritten in the variational form:

find u ∈ V such that B(u, v) = Fv for every v ∈ V .

We apply the Lax-Milgram Theorem.
On account of the trace inequality (10.31) we prove the continuity of B

and F . In fact:

|B(u, v)| ≤ ‖∇u‖L2(Ω)‖∇v‖L2(Ω) + σ‖u‖L2(Ω)‖v‖L2(Ω) + α‖u‖L2(Γ )‖v‖L2(Γ )

≤ (1 + σ)‖u‖V ‖v‖V + αC2
T ‖u‖V ‖v‖V

≤ (1 + σ + αC2
T )‖u‖V ‖v‖V

Fv ≤ ‖f‖L2(Ω)‖v‖L2(Ω) + ‖g‖L2(Γ )‖v‖L2(Γ )

≤ (‖f‖L2(Ω) + CT ‖g‖L2(Γ )

) ‖v‖V .
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The coercivity of B is immediate:

B(u, u) = ‖∇u‖2L2(Ω) + σ‖u‖2L2(Ω) + α

∫

Γ

u2dσ

≥ min(1, σ)‖u‖2V .

The Lax-Milgram Theorem gives existence, uniqueness of the solution u and
the following estimate holds

‖u‖H1(Ω) ≤
‖f‖L2(Ω) + CT ‖g‖L2(Γ )

min(1, σ)
.

8.5. We consider the space V = H1
0,ΓD

(Ω) and v ∈ V ; taking into account
the Poincaré inequality, as norm in V we use ‖v‖V = ‖∇v‖L2 . We have that

‖b‖L∞(Ω) = 1.

Testing the equation with the function v and using the Green’s formula we
find

∫

Ω

∇u · ∇v dx−
∫

ΓN∪ΓD

∇u · n v dσ +
∫

Ω

b · ∇u v dx =
∫

Ω

fv dx ∀ v ∈ V.

On account of the boundary conditions, we consider

B(u, v) =
∫

Ω

∇u · ∇v +
∫

Ω

b · ∇u v

Fv =
∫

Ω

fv

and the problem can be rewritten in variational form

find u ∈ V such that B(u, v) = Fv for every v ∈ V .

We use the Lax-Milgram Theorem. The linearity of B and of the functional
F is obvious. The continuity of the functional and of the bilinear form are a
consequence of the Schwarz’s inequality:

|Fv| ≤ ‖f‖L2‖v‖L2 ≤ CP ‖f‖L2‖v‖V
|B(u, v)| ≤ ‖u‖V ‖v‖V + ‖b‖∞‖u‖V ‖v‖2L

≤ (1 + CP )‖u‖V ‖v‖V .
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In order to prove the coercivity of B, we exploit the Green’s formula

B(u, u) =
∫

Ω

|∇u|2dx +
∫

Ω

(b · ∇u)u dx

=
∫

Ω

|∇u|2dx +
∫

Ω

b · 1
2
∇u2dx

=
∫

Ω

|∇u|2dx− 1
2

∫

Ω

divbu2dx +
1
2

∫

ΓN∪ΓD

b · nu2dσ

=
∫

Ω

|∇u|2dx +
1
2

∫

ΓN

b · nu2dσ

=
∫

Ω

|∇u|2dx +
1
2

∫ π

0

sinx1 u
2(x1, 1) dx1 +

1
2

∫ 1

0

x2
2 u

2(π, x2) dx2

≥ ‖u‖2V .

Since the coercivity constant is 1, the solution fulfill the following stability
estimate

‖u‖V ≤ ‖F‖V ′ ≤ CP ‖f‖L2 .

8.6. We rewrite the problem adding and subtracting, respectively, the equa-
tions assigned. Introducing the new unknowns

w = u+ v

w2 = u− v

we find
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−αΔw − βw2 = f in Ω
−αΔw2 + βw = 0 in Ω
w = 2 on ΓD
w2 = 0 on ΓD
∇w · n = 0 on ΓN
∇w2 · n = 0 on ΓN .

We consider an extension of the Dirichlet datum; for the sake of simplicity we
consider the constant 2 and rewrite the problem for the unknown w1 = w−2:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−αΔw1 − βw2 = f in Ω
−αΔw2 + βw1 = −2β in Ω
w1 = 0 on ΓD
w2 = 0 on ΓD
∇w1 · n = 0 on ΓN
∇w2 · n = 0 on ΓN .

We consider V = H1
0,ΓD

(Ω) and two functions vi ∈ V , i = 1, 2; the first
two equations can be respectively tested with v1 and v2. On account of the
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Neumann boundary conditions we obtain
⎧⎪⎪⎨
⎪⎪⎩

α

∫

Ω

∇w1 · ∇v1 dx− β
∫

Ω

w2v1 dx =
∫

Ω

fv1 dx

α

∫

Ω

∇w2 · ∇v2 dx + β

∫

Ω

w1v2 dx = −2β
∫

Ω

v2 dx.

Denoting

w =
[
w1

w2

]
v =

[
v1
v2

]
f(v) =

[ ∫
Ω
fv1 dx

−2β
∫
Ω
v2 dx

]

we consider the bilinear form

a : V 2 × V 2 −→ R

(w,v) �→ a(w,v)

where

a(w,v) = α

∫

Ω

(∇w1 · ∇v1 +∇w2 · ∇v2) dx− β
∫

Ω

(w2v1 − w1v2) dx.

In the space V 2 we use the norm

‖v‖V 2 =
(
‖v1‖2H1(Ω) + ‖v2‖2H1(Ω)

)1/2

and we also denote

‖v‖L2 =
(
‖v1‖2L2(Ω) + ‖v2‖2L2(Ω)

)1/2

.

The problem can be rewritten in the following variational form

find w ∈ V 2 such that a(w,v) = f(v) for every v ∈ V 2.

The bilinear form a is continuous, indeed we have

|a(w,v)| ≤ α(‖∇w1‖L2‖∇v1‖L2 + ‖∇w2‖L2‖∇v2‖L2)

+ β(‖w2‖L2‖v1‖L2 + ‖w1‖L2‖v2‖L2)

≤ α(‖w1‖H1‖v1‖H1 + ‖w2‖H1‖v2‖H1)

+ β(‖w2‖H1‖v1‖H1 + ‖w1‖H1‖v2‖H1)

≤ 2(α+ β)‖w‖H1‖v‖H1

and we obtain the continuity constant M = 2(α + β). On the other hand,
denoting by |Ω| the measure of Ω, the continuity of the functional can be
proved as follows

|f(v)| ≤ ‖f‖L2‖v1‖+ 2|Ω|‖v2‖L2 ≤ (‖f‖L2 + 2|Ω|)‖v‖L2 .
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The coercivity of a is immediate

a(w,w) = α

∫

Ω

|(∇w1|2 + |∇w2|2) dx = α‖∇w‖2L2

with coercivity constant α. We use the Lax-Milgram Theorem to deduce ex-
istence and uniqueness of the solution w and, furthermore, the following a
priori estimate

‖w‖V 2 ≤ ‖f‖L2 + 2|Ω|
α

.

8.9. Hint. b) u1|Γ = u2|Γ and A1∇u1 ·ν = A2∇u2 ·ν, where ν points outward
with respect to Ω1.

8.11. Hint. a) Observe that, if u [z] is the solution of (8.88) the map z �−→
u [z]− u [0] is linear. Then write

J̃ (z) = 1
2

∫

Ω0

(u [z]− u [0] + u[0]− ud)2 dx + β
2

∫

Ω

z2dx

and adjust the bilinear form (8.71) accordingly.

b) Answer. The adjoint problem is (L = L∗)
{
−Δp+ a0p = (u− zd)χΩ0

in Ω
∂νp = 0 on ∂Ω.

Where χΩ0
is the characteristic function of Ω0. The Euler equation is: p+βz =

0 in L2 (Ω).

8.12. Hint. a) See Exercise 8.11.

b) Answer. The adjoint problem is
{
−Δp+ a0p = u− zd in Ω

∂νp = 0 on ∂Ω.

The Euler equation is: p+ βz = 0 in L2 (∂Ω).

10.8 Section 9.5

9.1. The model for an exchange of substances through the walls of a cell is
also numerically solved in the last section of the chapter.

A Robin problem is assigned. Since μ is a positive function, we write

μ(x) ≥ μ0 > 0 a.e. (x, t) in QT = Ω × [0, T ]

and this inequality ensures the uniform ellipticity of the divergence term.
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We consider V = H1(Ω) and v ∈ V , with the usual norm. We recall that
in H1(Ω) the following trace inequality holds

‖v‖L2(Γ ) ≤ CT ‖v‖V .

We denote c(t) = c(·, t) and consider c(x, t) as a function of the variable
t with values in V and write c′ instead of ct. Let us proceed formally and
multiply the first equation of the system (9.55) by v; integrating on Ω, we
find

〈c′, v〉∗ +
∫

Ω

μ∇c · ∇v dx−
∫

Γ

μ∇c · n v dσ −
∫

Ω

σcv dx = 0

namely

〈c′, v〉∗ +
∫

Ω

μ∇c · ∇v dx +
∫

Γ

χcv dσ −
∫

Ω

σcv dx =
∫

Γ

χcestv dσ.

Let us introduce the bilinear form B and the functional F

B(w, v; t) =
∫

Ω

μ∇w · ∇v dx +
∫

Γ

χwv dσ −
∫

Ω

σwv dx

Fv =
∫

Γ

χcestv dσ.

The problem can be written in weak form as follows. Find c ∈ L2(0, T ;V )
such that c′ ∈ L2(0, T ;V ′) and

1. for every v ∈ V and for a.e. t ∈ [0, T ]

〈c′(t), v〉∗ +B(c(t), v) = Fv;

2. c(0) = c0 in Ω.

In order to use the theory for the well-posedness of the problem we have
to show that B is continuous and weakly coercive and that F is continuous.
Using the trace and the Schwarz inequalities we find that the functional F is
continuous

|Fv| ≤ χcest|Γ |1/2‖v‖L2(Γ )

≤ 2R
√
πχcestCT ‖v‖V .

On the other hand, since μ ∈ L∞(Ω), the bilinear form B is V−continuous,
in fact

|B(c, v)| ≤ ‖μ‖L∞‖∇c‖L2‖∇v‖L2 + σ‖c‖L2‖v‖L2 + χC2
T ‖c‖V ‖v‖V

≤ (‖μ‖L∞ + σ + χC2
T

) ‖c‖V ‖v‖V .
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The weak coercivity of B can be proved in the following way

B(v, v) + λ‖v‖L2 =
∫

Ω

μ|∇c|2dx +
∫

Γ

v2 dσ +
∫

Ω

(λ− σ)v2dx

≥ min(μ0, λ− σ)‖v‖2V .

We can choose the constant λ in a way that, for instance, λ− σ = μ0/2. The
constant of weak coercivity is then μ0/2.

9.2. We have a mixed problem with homogeneous Dirichlet and Neumann
conditions. We use the Poincaré inequality and consider

V = H1
0,ΓD

(Ω) with ‖v‖V = ‖∇v‖L2 .

We analyze first the drift term β · ∇u where

β =
(

xy
x2y2

)

since the domain in the circle of radius 1 we have |xy| ≤ 1 andx2y2 ≤ 1.
We multiply the drift term by v and integrate on Ω, exploiting the Schwarz
inequality we deduce that:

|
∫

Ω

β · ∇u v dx| ≤
∫

Ω

(|ux|+ |uy|)|v| dx
≤ ‖ux‖L2‖v‖L2 + ‖uy‖L2‖v‖L2

≤ 2‖∇u‖L2‖v‖L2

≤ 2CP ‖u‖V ‖v‖V . (10.32)

On the other hand, using the elementary (Young) inequality we get

|ab| ≤ εa2 +
1
4ε
b2 (10.33)

and therefore we deduce

|
∫

Ω

β · ∇u v dx| ≤
∫

Ω

(|ux|+ |uy|)|v| dx

≤ ε(‖ux‖2L2 + ‖uy‖2L2) +
1
2ε
‖v‖L2 . (10.34)

Denote u(t) = u(·, t) and read u(x, t) as a function of t with values in V
and write u′ instead of ut. If we multiply the equation by v ∈ V and integrate,
using the Green formula, we obtain the weak problem

find u ∈ V such that ; 〈u′, v〉+ a(u, v) = Fv ∀v ∈ V
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where the bilinear form a and the functional F have been introduced

a(u, v) =
∫

Ω

∇u · ∇v dx +
∫

Ω

β · ∇uv dx

Fv =
∫

Ω

fv dx.

The continuity of F is immediate using the Schwarz inequality with continuity
constant C = CP ‖f‖L2 ; the continuity of a is a consequence of (10.32), where
the continuity constant isM = 1+2CP . In order to deduce the weak coercivity
of a we use (10.34):

a(u, u) + λ

∫

Ω

u2 dx ≥ (1− ε)‖u‖V +
(
λ− 1

2ε

)
‖u‖2L2

choosing ε = 1/2 and, as a consequence, λ > 1. Then, it is possible to use the
Faedo Galerkin theory to prove the well-posedness of the weak problem

find u ∈ L2(0, T ;V ) such that u′ ∈ L2(0, T ;V ′), u(0) = u0 in Ω
and for every v ∈ V a.e. t in [0, T ] 〈u′(t), v〉∗ + a(u(t), v) = Fv.

9.3. Primarily we verify that Aα, with α > 0, satisfies the uniform ellipticity
condition. In fact,

Aα(x1, x2)ξ · ξ ≥ ξ21 + αξ22 ≥ min(1, α)(ξ21 + ξ22) (10.35)

for every ξ ∈ R2. Therefore, the problem is parabolic for every α > 0.
We have a mixed problem with homogeneous Dirichlet conditions on the

boundary ΓD and, then, we are allowed to use the Poincaré inequality; we
consider

V = H1
0,ΓD

(Ω), with ‖v‖2V = ‖∇v‖2L2(Ω).

Using the notation u(t) = u(·, t), we read u(x, t) as a function of the
variable t with values in V and write u′ instead of ut. Let us proceed formally
multiplying the first equation of the problem (9.56) by v ∈ V and integrating

〈u′, v〉∗ +
∫

Ω

Aα∇u · ∇v dx−
∫

ΓN

Aα∇u · n v dσ +
∫

Ω

b · ∇u v dx

− α
∫

Ω

u v dx =
∫

Ω

x2v dx.

On account of the third raw of (9.56), we find

〈u′, v〉∗ +
∫

Ω

Aα∇u · ∇v dx +
∫

Ω

b · ∇u v dx− α
∫

Ω

u v dx

=
∫

Ω

x2v dx−
∫

ΓN

cosx1 v dσ.
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We introduce the bilinear form B and the functional F :

B(u, v) =
∫

Ω

Aα∇u · ∇v dx +
∫

Ω

b · ∇u v dx− α
∫

Ω

u v dx

Fv =
∫

Ω

x2v dx−
∫

ΓN

cosx1 v dσ

in order to use the Faedo Galerkin theory to prove the well-posedness of the
problem (9.56) restated in a weak form as

find u ∈ L2(0, T ;V ) such that u′ ∈ L2(0, T ;V ′), u(0) = u0 in Ω
and for every v ∈ V a.e. t in [0, T ] 〈u′(t), v〉∗ +B(u(t), v) = Fv.

Now, we prove the continuity of B and F and the weak coercivity of B.
We recall that for the functions in V a trace inequality

‖v‖ΓN ≤ CT ‖v‖V
holds; we exploit it to prove the continuity of F with the Schwarz inequality

|Fv| ≤
(∫

Ω

x2
2dx
)1/2

‖v‖L2(Ω) +
(∫

ΓN

cos2 x1dσ

)1/2

‖v‖ΓN

≤
(
|Ω|1/2 + |ΓN |1/2CT

)
‖v‖V = (

√
π +

√
3CT )‖v‖V

where |Ω| and |ΓN | denote the measure of the sets Ω and ΓN .
On account of the fact that in the domain Ω we have x2

1 + x2
2 ≤ 4, with

the Schwarz inequality we can prove the continuity of the bilinear form B

|B(u, v)| ≤
∫
|ux1vx1 + αex

2
1+x

2
2ux2vx2 |dx + α

∫

Ω

|uv| dx

+
∫

Ω

| sin(x1 + x2)ux1 + (x2
1 + x2

2)ux2 ||v|dx

≤ max{1, αe4}∫

Ω

|∇u · ∇v|dx + α‖u‖L2(Ω)‖v‖L2(Ω) + 5‖∇u‖L2(Ω)‖v‖L2(Ω)

≤ (max{1, αe4}+ αC2
P + 5CP

) ‖u‖V ‖v‖V .
In order to prove the weak coercivity of the bilinear form B, we use the

Young inequality (10.33) to give an estimate of the drift term
∣∣∣∣
∫

Ω

β · ∇u v dx
∣∣∣∣ ≤
∫

Ω

(| sin(x2
1 + x2

2)||ux1 ||v|+ (x2
1 + x2

2)|uy||v|)dx

≤
∫

Ω

(|ux1 ||v|+ 4|uy||v|)dx

≤ ε‖ux1‖2L2(Ω) +
1
4ε
‖v‖2L2(Ω) + ε‖ux2‖2L2(Ω) +

4
ε
‖v‖2L2(Ω)

≤ ε‖u‖2V +
17
4ε
‖v‖2L2(Ω). (10.36)



446 10 Solutions of selected exercises

Thanks to the uniform ellipticity of Aα proved in (10.35) and to (10.36), we
deduce that

B(u, u) + λ‖u‖L2(Ω ≥ (min(1, α)− ε) ‖u‖2V +
(
λ− 17

4ε
− α
)
‖u‖2L2(Ω).

We chose ε and, consequently, λ in order that the two coefficients appearing
in the right hand side are positive. Hence, the weak coercivity of the bilinear
form B is proved.



Part IV

Appendices



A

Fourier Series

A.1 Fourier coefficients

Let u be a 2T−periodic function in R and assume that u can be expanded in
a trigonometric series as follows:

u (x) = U +
∞∑
k=1

{ak cos kωx+ bk sin kωx} (A.1)

where ω = π/T .
First question: how u and the coefficients U , ak and bk are related to each

other? To answer, we use the following so called orthogonality relations, whose
proof is elementary
∫ T

−T
cos kωx cosmωx dx =

∫ T

−T
sin kωx sinmωx dx = 0 if k �= m

∫ T

−T
cos kωx sinmωx dx = 0 for all k,m ≥ 0.

Moreover ∫ T

−T
cos2 kωx dx =

∫ T

−T
sin2 kωx dx = T. (A.2)

Now, suppose that the series (A.1) converges uniformly in R. Multiplying
(A.1) by cosnωx and integrating term by term over (−T, T ), the orthogonality
relations and (A.2) yield, for n ≥ 1,

∫ T

−T
u (x) cosnωx dx = Tan

or

an =
1
T

∫ T

−T
u (x) cosnωx dx. (A.3)

Salsa S., Vegni F.M.G., Zaretti A., Zunino P.: A Primer on PDEs. Models, Methods, Simulations.
Unitext – La Matematica per il 3+2 65.
DOI 10.1007/978-88-470-2862-3 11, © Springer-Verlag Italia 2013
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For n = 0 we get ∫ T

−T
u (x) dx = 2UT

or, setting U = a0/2,

a0 =
1
T

∫ T

−T
u (x) dx (A.4)

which is coherent with (A.3) as n = 0.
Similarly, we find

bn =
1
T

∫ T

−T
u (x) sinnωx dx. (A.5)

Thus, if u has the uniformly convergent expansion (A.1), the coefficients an, bn
(with a0 = 2U) must be given by the formulas (A.3) and (A.5). In this case
we say that the trigonometric series

a0

2
+

∞∑
k=1

{ak cos kωx+ bk sin kωx} (A.6)

is the Fourier series of u and the coefficients (A.3), (A.4) and (A.5) are called
the Fourier coefficients of u.

• Odd and even functions. If u is an odd function, i.e. u (−x) = −u (x), we
have ak = 0 for every k ≥ 0, while

bk =
2
T

∫ T

0

u (x) sin kωx dx.

Thus, if u is odd, its Fourier series is a sine Fouries series

u (x) =
∞∑
k=1

bk sin kωx.

Similarly, if u is even, i.e. u (−x) = u (x), we have bk = 0 for every k ≥ 1,
while

ak =
2
T

∫ T

0

u (x) cos kωx dx.

Thus, if u is even, its Fourier series is a cosine Fouries series

u (x) =
a0

2
+

∞∑
k=1

ak cos kωx.

• Fourier coefficients of a derivative. Let u ∈ C1 (R) be 2T−periodic. Then
we may compute the Fourier coefficients a′k and b′k of u′. We have, integrating
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by parts, for k ≥ 1

a′k =
1
T

∫ T

−T
u′ (x) cos kωx dx

=
1
T

[u (x) cos kωx]T−T +
kω

T

∫ T

−T
u (x) sin kωx dx

=
kω

T

∫ T

−T
u (x) sin kωx dx

= kωbk

and

b′k =
1
T

∫ T

−T
u′ (x) sin kωx dx

=
1
T

[u (x) sin kωx]T−T −
kω

T

∫ T

−T
u (x) cos kωx dx

= −kω
T

∫ T

−T
u (x) cos kωx dx

= −kωak.
Thus, the Fourier coefficients a′k and b′k are related to ak and bk by the fol-
lowing formulas

a′k = kωbk, b′k = −kωak. (A.7)

• Complex form of a Fourier series. Using the Euler identities

e±ikωx = cos kωx± i sin kωx
the Fourier series (A.6) can be expressed in the complex form

∞∑
k=−∞

cke
ikωx,

where the complex Fourier coefficients ck are given by

ck =
1

2T

∫ T

−T
u (z) e−ikωzdz.

The relations among the real and the complex Fourier coefficients are

c0 =
1
2
a0

and
ck =

1
2

(ak − bk) , c−k = c̄k for k > 0.
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A.2 Expansion in Fourier series

In the above computations we started from a function u admitting a uniform
convergent expansion in Fourier series. Adopting a different point of view, let u
be a 2T−periodic function and assume we can compute its Fourier coefficients,
given by formulas (A.3) and (A.5). Thus, we can associate with u its Fourier
series and write

u ∼ a0

2
+

∞∑
k=1

{ak cos kωx+ bk sin kωx} .

The main questions are now the following:

1. Which conditions on u do assure “the convergence” of its Fourier series?
Of course there are several notions of convergence (e.g pointwise, uniform,
least squares).

2. If the Fourier series is convergent in some sense, does it always have sum u?

A complete answer to the above questions is not elementary. The conver-
gence of a Fourier series is a rather delicate matter. We indicate some basic
results: for the proofs, see e.g. Rudin [33] and [34], Royden [32], or Wheeden
and Zygmund [36].

• Least squares or L2 convergence. This is perhaps the most natural type of
convergence for Fourier series. Let

SN (x) =
a0

2
+

N∑
k=1

{ak cos kωx+ bk sin kωx}

be the N−partial sum of the Fourier series of u. We have:

Theorem A.1. Let u be a square integrable function1 on (−T, T ). Then

lim
N→+∞

∫ T

−T
[SN (x)− u (x)]2 dx = 0.

Moreover, the following Parseval relation holds

1
T

∫ T

−T
u2 =

a2
0

2
+

∞∑
k=1

(
a2
k + b2k

)
. (A.8)

Since the numerical series in the right hand side of (A.8) is convergent, we
deduce the following important consequence.

1 That is
∫ T

−T
u2 <∞.



A.2 Expansion in Fourier series 453

Corollary A.1 (Riemann-Lebesgue).

lim
k→+∞

ak = lim
k→+∞

bk = 0.

• Pointwise convergence. We say that u satisfies the Dirichlet conditions in
[−T, T ] if it is continuous in [−T, T ] except possibly at a finite number of
points of jump discontinuity and moreover if the interval [−T, T ] can be par-
titioned in a finite numbers of subintervals such that u is monotone in each
one of them.

The following theorem holds.

Theorem A.2. If u satisfies the Dirichlet conditions in [−T, T ] then the
Fourier series of u converges at each point of [−T, T ]. Moreover2:

a0

2
+

∞∑
k=1

{ak cos kωx+ bk sin kωx} =

⎧⎪⎪⎨
⎪⎪⎩

u (x+) + u (x−)
2

x ∈ (−T, T )

u (T−) + u (−T+)
2

x = ±T.

In particular, under the hypotheses of Theorem A.2, at every point x of con-
tinuity of u the Fourier series converges to u (x).

• Uniform convergence. A simple criterion of uniform convergence is provided
by the Weierstrass test (see Section 1.4). Since

|ak cos kωx+ bk sin kωx| ≤ |ak|+ |bk|
we deduce: If the numerical series

∞∑
k=1

|ak| and
∞∑
k=1

|bk|

are convergent, then the Fourier series of u is uniformly convergent in R, with
sum u.

This is the case, for instance, if u ∈ C1 (R) and is 2T periodic. In fact,
from (A.7) we have for every k ≥ 1,

ak = − 1
ωk

b′k and bk =
1
ωk

a′k.

Therefore
|ak| ≤ 1

ωk2
+ (b′k)

2

and
|bk| ≤ 1

ωk2
+ (a′k)

2.

2 We set f (x±) = limy→±x f (y).
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Now, the series
∑

1
k2 is convergent. On the other hand, also the series

∞∑
k=1

(a′k)
2 and

∞∑
k=1

(b′k)
2

are convergent, by Parseval’s relation (A.8) applied to u′ in place of u. The
conclusion is that if u ∈ C1 (R) and 2T periodic, its Fourier series is uniformly
convergent in R with sum u.

Another useful result is a refinement of Theorem A.2:

Theorem A.3. Assume u satisfies the Dirichlet conditions in [−T, T ]. Then

a) If u is continuous in [a, b] ⊂ (−T, T ), then its Fourier series converges
uniformly in [a, b] .

b) If u is continuous in [−T, T ] and u (−T ) = u (T ), then its Fourier series
converges uniformly in [−T, T ] (and therefore in R).



B

Notes on ordinary differential equations

B.1 Bidimensional autonomous systems

Consider the system {
ẋ = f (x, y)
ẏ = g(x, y) (B.1)

where f and g are C1 functions in the open set D ⊆ R2. This hypothesis guar-
antees both existence and uniqueness for the solution of the Cauchy problem
with any initial data

x (0) = x0, y (0) = y0, (x0, y0) ∈ D.
A solution of the system (B.1) is a function t �→ r (t) = (x (t) , y (t)) whose
graph is a subset of R3, given by the points of coordinates (t, x (t) , y (t))
and, in general, it represents a curve in the three-dimensional space. The
fact that the system (B.1) is autonomous allows to study the solutions using
their projections on the state plane (x, y) , called phase plane. Equivalently,
we may think of t as a parameter and (x (t) , y (t)) as parametric equations
of a curve in the plane, called orbit or trajectory of the system. The vector
ṙ (t) = (ẋ (t) , ẏ (t)) represents the velocity vector along the trajectory and it
is tangent to the trajectory itself (Fig. B.1).

The possibility of operating in dimension two rather than three is strictly
tied to the fact that the system is autonomous and it entails a significant
reduction of complexity. Actually, autonomous systems enjoy some properties
which are listed below and which allow us to read the behavior of the solutions
from the behavior of the corresponding orbits.

a) Time translation invariance. Let r (t) = (x (t) , y (t)) be a solution of
the system defined in (a, b) , then any τ−time shifted function s (t) =
r (t+ τ) = (x (t+ τ) , y (t+ τ)) is a solution of the same system, defined
in (a− τ , b− τ) .

b) Each point p0 = (x0, y0) of the domain D belongs to exactly one orbit ; as
a consequence, the orbits do not cross each other.

Salsa S., Vegni F.M.G., Zaretti A., Zunino P.: A Primer on PDEs. Models, Methods, Simulations.
Unitext – La Matematica per il 3+2 65.
DOI 10.1007/978-88-470-2862-3 12, © Springer-Verlag Italia 2013
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y

x

v (t)

r(t)

y

x

v (t)

r(t)

Fig. B.1. Position and velocity vector along the trajectory

Particularly important orbits are the steady states (also called equilibria,
critical points or singular points), corresponding to constant solutions, and
the cycles.

Definition B.1. A point (x∗, y∗) is a steady state for the system (B.1) if
f (x∗, y∗) = g (x∗, y∗) = 0.

The point (x∗, y∗) is the orbit corresponding to the constant solution
x (t) ≡ x∗, y (t) ≡ y∗ whose graph is a straight line parallel to the t−axis. In
other words, whenever we start from an equilibrium point, we remain there
forever.

Some solution may tend to an equilibrium point as t → ±∞; no solution
can reach an equilibrium in finite time otherwise we would have two different
orbits passing through the same point, in contradiction with property (b).
On the other hand if a solution (x (t) , y (t)) tends to the point (x∗, y∗) as
t → ±∞, then (x∗, y∗) must be an equilibrium point. Indeed, in this case,
(ẋ (t) , ẏ (t)) tends to (0, 0) and, passing to the limit in both equations of the
system, we obtain {

0 = f (x∗, y∗)
0 = g(x∗, y∗)

this means that (x∗, y∗) is a steady state.

Example B.1. The Lotka-Volterra model describes the evolution of a popu-
lation of preys x = x(t) and predators y = y(t)

{
ẋ = x(a− by)
ẏ = y(−c+ dx) a, b, c, d > 0. (B.2)

The equilibria are the origin and the point (c/d, a/b).

Example B.2. A variant of the Lotka-Volterra model introduces a competi-
tion among individuals of the same species, still assuming that the influence
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of the environment may be neglected
{
ẋ = x(a− by − ex)
ẏ = y(−c+ dx− fy) a, b, c, d, e, f > 0 (B.3)

the equilibrium points can be found solving the system
{
x(a− by − ex) = 0
y(−c+ dx− fy) = 0.

Besides the origin, they are

P1 =
(

0,− c
f

)
P2 =

(a
e
, 0
)
, P3 =

(
bc+ af

bd+ ef
,
ad− ce
bd+ ef

)
.

The following definitions are generalizations from the scalar case. We use
the symbol ϕ (t;q) to denote the solution of the system starting from the
point q.

Definition B.2. The steady state p∗ = (x∗, y∗) is:

a) stable (or neutrally stable) if, for every ε > 0, there exists δ = δε
such that, if |q− p∗| < δ, the solution ϕ (t;q) exists for every t ≥ 0 and
|ϕ (t;q)− p∗| < ε for every t ≥ 0. Intuitively: “an orbit starting close
enough to p∗ always remains close enough to it”.

b) asymptotically stable if it is stable and, moreover, there exists δ1 such
that if |q− p∗| < δ1, then ϕ (t;q) → p∗ as t → +∞. Intuitively: “any
solution starting close enough to p∗ not only remains always close enough
to it but also converges to p∗”.

c) unstable if it is not stable (that is, if condition (a) does not hold).

A complete analysis of a bidimensional autonomous system requires the
description of the global phase portrait (for linear systems we can also clas-
sify the trajectories; when nonlinearities occur the analysis may be sometimes
hard). In general the first step is to find the steady states, solving the system
f (x, y) = g (x, y) = 0. In the applications, the phase portrait in the neighbor-
hood of each equilibrium point is studied, in order to determine whether the
steady state is or not; on the other hand, a global point of view can also be
assumed. Some common global techniques are briefly described below.

• The differential equation of the trajectory. Writing the system in the form
⎧⎪⎨
⎪⎩

dx

dt
= f (x, y)

dy

dt
= g (x, y)

and formally dividing side by side1, we obtain

dy

dx
=
g(x, y)
f (x, y)

(B.4)

1 Rigorously, we should use the inverse function theorem.
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when f (x, y) �= 0. In this case, the trajectories can be locally represented by
functions of the form y = y (x) and the family of solutions of (B.4) coincides
(locally, at least) with the family of trajectories of the system. Thus, whenever
we are able to determine the general solution of (B.4), we easily deduce the
phase portrait.

• Vertical/horizontal-slope isoclines and velocity field. One of the first thing
to draw when studying the phase portrait are the curves of equation dy = 0

g(x, y) = 0 (horizontal-slope isocline)

and dx = 0
f(x, y) = 0 (vertical-slope isocline)

whose intersections are the steady states.
The name isocline is due to the fact that any trajectory (but for the

equilibria) which crosses the line g (x, y) = 0 has a horizontal tangent at the
intersection point, since the vertical displacement at the intersection point is
zero (dy = 0). Analogously, any trajectory crossing the curve f (x, y) = 0, at
a point which is not a steady state, has a vertical tangent in the intersection
point, since the horizontal displacement is zero at that point (dx = 0).

Once the two isoclines are determined, a study of the the signs of the
functions f and g leads to a partition of the phase plane in different regions,
where x and y are increasing or decreasing, determining at the same time the
orientation of the trajectories.

B.2 Linear systems

General solution

For linear systems with constant coefficients it is possible to write a formula
for the general solution. We consider the homogeneous system

{
ẋ = ax+ by
ẏ = cx+ dy

(B.5)

where a, b, c, d ∈ R. We rewrite it in the form

ṙ (t) = Ar (t) (B.6)

with

r (t) =
(
x
y

)
and A =

(
a b
c d

)
.

In order to determine the general solution of the system (B.6), we search for
a solution like

r (t) = veλt (B.7)
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where v ∈ R2 is an appropriate vector. By substitution in (B.6), since r′ (t) =
λveλt, we find λveλt = Aveλt and therefore Av = λv. Thus, the system
has solutions like (B.7), if λ and v are, respectively, an eigenvalue and an
eigenvector associated to the matrix A. The eigenvalues are the solutions of
the characteristic equation

λ2 − (trA)λ+ detA = 0. (B.8)

Denoted Δ = (trA)2 − 4 detA, we distinguish three cases according to the
sign of Δ.

• Case of real and distinct eigenvalues (Δ > 0). There exists two real and
distinct eigenvalues λ1 and λ2, with corresponding linearly independent eigen-
vectors h1 and h2. The system has then two linearly independent solutions
h1eλ1t and h2eλ2t. The general solution of the system is

r (t) = c1h1eλ1t + c2h2eλ2t, c1, c2 ∈ R. (B.9)

• Case of one multiple eigenvalue (Δ = 0). We have one single real eigen-
value λ = trA/2. We need to distinguish two situations, if λ is regular or
not.

If λ is regular, that is that its algebraic multiplicity is equal to the geo-
metric multiplicity, we have two linearly independent eigenvectors h1 and h2

associated to λ and the general solution of the system is

r (t) = c1h1eλt + c2h2eλt, c1, c2 ∈ R.

For bidimensional systems this situation occurs only if the matrix A is diag-
onal.

If the eigenvalue λ is not regular, the matrix A cannot be diagonalized.
We have an eigenvector h corresponding to the solution heλt; thus, we search
for another solution of the form r (t) = v1eλt+v2teλt. A substitution in (B.6)
gives

(A− λI)v1 = v2 (B.10)
Av2 = λv2.

As a consequence, v2 is an eigenvector and we choose v2 = h. Furthermore, we
deduce from (B.10), i.e. (A− λI)v1 = h, that v1 is a generalized eigenvector.
Another solution of the system is thus (h1 +ht)eλt and its general solution is

r (t) = c1heλt + c2
(
h1 + ht

)
eλt, c1, c2 ∈ R. (B.11)

• Case of complex and conjugate eigenvalues (Δ < 0): λ = α + iβ and
λ = α − iβ, with α, β ∈ R. Two corresponding eigenvectors are complex and
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conjugate as well. h = h1 + ih2, h = h1 − ih2 with h1 and h2 real vectors.
Using Euler’s formula, we find the two linearly independent solutions

ϕ (t) = he(α+iβ)t = heαt (cosβt+ i sinβt)

ϕ (t) = he(α−iβ)t = heαt (cosβt− i sinβt) .
It is convenient to replace these solutions with a pair of real solutions using
two appropriate linear combinations of them2

ψ1 (t) = eαt
(
h1 cosβt− h2 sinβt

)
and ψ2 (t) = eαt

(
h2 cosβt+ h1 sinβt

)
.

Therefore, the general solution of the system is

r (t) = eαt
[(
c1h1 + c2h2

)
cosβt+

(
c2h1 − c1h2

)
sinβt

]
c1, c2 ∈ R.

(B.12)

Stability of the zero solution

The homogeneous system has the zero solution x (t) ≡ 0 and often, in appli-
cations, it is important to determine whether other solutions converge to 0 as
t→ +∞. If this case, the zero solution is an asymptotically stable equilibrium
point. In the bidimensional case, the formulas for the general solution indicate
that 0 is asymptotically stable if and only if the eigenvalues, or their real part
in case of complex eigenvalues, are negative.

Actually, in order to conclude about the stability of the zero solution it is
not necessary to write the general solution. Since it is sufficient to check that
the solutions of (B.8) are negative or have negative real part, from λ1 + λ2 =
tr A and λ1λ2 = detA we deduce that 0 is asymptotically stable if and only
if

trA < 0 and detA > 0.

Classification of the steady states

We assume that the coefficient matrix A is non singular, that is detA =
ad − bc �= 0; this fact entails that the origin is the only steady state. We
discover that there are six possible types of behavior for the orbits near (0, 0)
so that, accordingly, we are led to a classification of the origin into six different
types of equilibria. We proceed with our analysis, by exploiting the formulas
for the solution that we have discovered in the previous section and, again,
we distinguish three cases according to the sign of Δ = (trA)2 − 4 detA.

• Case of real and distinct eigenvalues. The general solution is given by
(B.9). Let us examine (B.9) in the phase plane, splitting the analysis into two

2 Indeed, we have ψ1 (t) =
1

2

(
ϕ1 (t) + ϕ2 (t)

)
and ψ2 (t) =

1

2i

(
ϕ1 (t) −ϕ2 (t)

)
.
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Fig. B.2. A proper node (left) and a saddle (right)

sub cases, according to the fact that the eigenvalues have the same sign or
not.

We assume that the eigenvalues have the same sign; consider, for instance,
λ1 < λ2 < 0. The typical configuration in the case of negative eigenvalues is
illustrated in Fig. B.2, left. If the eigenvalues were both positive (λ1 > λ2 > 0)
the direction of the arrows is reversed to take into account the fact that what
happened as t → +∞ for the forward problem now happend as t → −∞. In
this case the origin is called proper node; it is asymptotically stable if the
eigenvalues are both negative, unstable if they are both positive. The straight
lines in the direction of h1 and h2 are called linear manifolds (both manifolds
are either stable or unstable, according to the sign of the eigenvalue).

Assume now that the eigenvalues have opposite sign; for instance, λ1 <
0 < λ2. The corresponding trajectories are represented in Fig. B.2. In this case
the origin is called saddle point. Clearly, a saddle point is always unstable.
The straight lines in the directions h1 and h2 are respectively called stable
and unstable manifolds.

• Case of one real eigenvalue λ, with multiplicity 2. We consider two sub-
cases, whether the eigenvalue is regular or not.

If the eigenvalue λ is regular the origin is a star node; a star is asymp-
totically stable if λ < 0, unstable if λ > 0. The phase portrait for the case
λ < 0 is represented in Fig. B.3.

If, on the other hand, the eigenvalue λ is not regular the solution of the
system is given by (B.11) and the origin is called improper node. The im-
proper node is asymptotically stable if λ < 0, unstable if λ > 0 and the
straight line in the direction h is, respectively, the stable or unstable mani-
fold. The phase portrait is in Fig. B.3 in the case λ < 0. If λ > 0 (unstable
node) the directions of the orbits are inverted.

• For complex and conjugate eigenvalues, the general solution is given
by (B.12). Let us analyze the trajectories, according to the sign of the real
part α of the eigenvalues, and in particular, we consider the case α = 0.
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Fig. B.3. Asymptotically stable star (left), stable improper node (right)

If the eigenvalues are pure imaginary numbers, the (B.12) becomes

r (t) =
(
c1h1 + c2h2

)
cosβt+

(
c2h1 − c1h2

)
sinβt c1, c2 ∈ R.

The solutions are therefore periodic of period 2π/β; the corresponding orbits
are simple closed curves: in this case they are ellipses centered at the origin.
Alternatively, observe that trA = 0 namely d = −a, and the differential
equation of the trajectories is exact. A potential function is E (x, y) = cx2 −
2axy − by2 so that the general solution is given by the level lines of the
surface z = E (x, y), meaning the family of ellipses of equation E (x, y) =
cx2− 2axy− by2 = k with k ∈ R. In this case the origin is a center, and it is
neutrally stable, not asymptotically stable. The phase portrait is in Fig. B.4.

Consider now, for instance, the case α < 0. In (B.12) the function eαt

rapidly vanishes as t → +∞, while the second factor in the same formula is
bounded and determines a rotation of the vector r (t). Hence, every orbits
spirals toward the origin as t → +∞. In this case the origin is called focus
(or vortex or spiral), asymptotically stable if α < 0, unstable if α > 0 (Fig.
B.4; for α > 0 the arrows are reversed).

Lastly, we note that in the singular case when detA = 0, with A �= 0, we
have a straight line of equilibrium points, and trajectories are half straight

• •

Fig. B.4. Center (left), asymptotically stable focus (right)
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lines or segments, diverging or converging to an equilibrium point, respectively
if the other eigenvalue λ (besides the eigenvalue 0) is positive or negative. In
this case the general solution is

r (t) = c1h1 + c2h2eλt, c1, c2 ∈ R.
We summarize the above results in the following table.

Δ > 0

⎧⎪⎨
⎪⎩

detA > 0 proper node
{

tr A < 0 asymptotically stable
tr A > 0 unstable

detA < 0 saddle (unstable)

Δ = 0

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

b = c = 0 star
{

tr A < 0 asymptotically stable
tr A > 0 unstable

b �= 0 o c �= 0 improper node
{

tr A < 0 asymptotically stable
tr A > 0 unstable

Δ < 0

⎧⎪⎨
⎪⎩

tr A = 0 center (neutrally stable)

tr A �= 0 fucus
{

tr A < 0 asymptotically stable
tr A > 0 unstable

B.3 Non-linear systems

The linearization method

The results for linear systems can be generalized to a certain extent, under
suitable hypotheses, to nonlinear systems. Let (x∗, y∗) be an equilibrium point
for the system {

ẋ = f (x, y)
ẏ = g(x, y). (B.13)

We assume that (x∗, y∗) is a non degenerate equilibrium, that is the Jacobian
matrix

J(x∗, y∗) =
(
fx(x∗, y∗) fy(x∗, y∗)
gx(x∗, y∗) gy(x∗, y∗)

)
,

is non singular ; i.e.
detJ(x∗, y∗) �= 0.

This fact implies that (x∗, y∗) is an isolated steady state, that is, there exists
a neighborhood of (x∗, y∗) contamining no other steady states.

In order to study the phase portrait in a neighborhood of (x∗, y∗) we apply
the linearization method; we divide it in three steps.

1. We substitute the system (B.13) with the best linear approximation in a
neighborhood of (x∗, y∗). To do this, we use the differentiability of f and
g, recalling that

f(x∗, y∗) = g(x∗, y∗) = 0
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and setting ρ =
√

(x− x∗)2 + (y − y∗)2 we have
{
ẋ = f (x, y) = fx(x∗, y∗) (x− x∗) + fy(x∗, y∗) (y − y∗) + o (ρ)
ẏ = g(x, y) = gx(x∗, y∗) (x− x∗) + gy(x∗, y∗) (y − y∗) + o (ρ) . (B.14)

If we assume to be close enough to (x∗, y∗), we may consider the approx-
imation error o (ρ) negligible; furthermore, let us translate (x∗, y∗) to the
origin, letting

u = x− x∗, v = y − y∗.
Since u̇ = ẋ and v̇ = ẏ we obtain

{
u̇ = fx(x∗, y∗)u+ fy(x∗, y∗)v
v̇ = gx(x∗, y∗)u+ gy(x∗, y∗)v.

(B.15)

We call linearized system in (x∗, y∗) the system (B.15).

2. We apply the linear theory. The fundamental condition that the origin is
the only critical point is guaranteed by J(x∗, y∗). Thus, for systems (B.15)
the origin may be classified according to the six categories introduced
previously.

3. We have to transfer the classification of the origin for the linarized system
(at the step 2), into some information on the phase portrait of the original
system near (x∗, y∗).

If we want to transfer the conclusions about the stability or instability,
then, the following important theorem holds.

Theorem B.1 (Stability via linearization). If the origin is asymptotically
stable (or unstable) for system (B.15), then (x∗, y∗) is locally asymptotically
stable (or unstable) for (B.13).

Note that the Theorem B.1 does not work when the origin is neutrally
stable for the linearized system (B.15). Indeed, in this case (x∗, y∗) can be
either stable, or unstable or asymptotically stable for the system (B.13). More
powerful methods have to be applied when the linearization method fails.

If we want more precise information about the phase portrait in a neigh-
borhood of an equilibrium point, and not just its stability, we need to extend
to nonlinear systems the classification of equilibria valid for linear systems.
We will describe an intuitive approach.

Let us change point of view and consider the nonlinear system (B.14) as a
perturbation of the linear system (B.15), with o (ρ) encoding the perturbation
error. Our basic question is: how would a saddle point, a node, a focus or a
centre transform under a perturbation of order o (ρ)?

In order to answer this question, we remark that two orbits’ configurations
are topologically equivalent if one is a continuous deformation of the other one
(see Fig. B.5). Then, the following results hold.
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Fig. B.5. From above to below: perturbation of a saddle, a node and a focus

(a) Saddle point perturbation. Suppose that (0, 0) is a saddle for (B.15). Then
the phase portrait for (B.13) in a neighborhood of (x∗, y∗) is topologically
equivalent to the phase portrait of the system (B.15) in a neighborhood of
(0, 0) and (x∗, y∗) is also called saddle point. Furthermore, after a translation
of (0, 0) into (x∗, y∗), the stable (resp. unstable) manifold is deformed into a
curve, tangent to the stable (resp. unstable) manifold, but it is not a straight
line any more.

(b) Perturbation of a proper or improper node. The same arguments of the
previous case hold. If for (B.15) (0, 0) is a proper or improper node, then
the phase portrait for (B.13) in a neighborhood of (x∗, y∗) is topologically
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equivalent to the phase portrait for (B.15) in a neighborhood of (0, 0) and
(x∗, y∗) is called proper or improper node as well. Furthermore, translating
(0, 0) into (x∗, y∗), the linear manifolds are deformed into curves which are
tangents to the corresponding linear manifold at (x∗, y∗).

(c) Perturbation of a focus. If for the system (B.15) (0, 0) is a focus, the phase
portrait of (B.13) in a neighborhood of (x∗, y∗) is topologically equivalent to
that of the system (B.15) in a neighborhood of (0, 0) and (x∗, y∗) is called
focus (or vortex or spiral) as well.

(d) Perturbation of a center. The perturbation of a centre is the more delicate.
First of all, in the nonlinear case, a point (x∗, y∗) is called centre if there exists
a sequence of closed orbits Γn around (x∗, y∗), whose diameter goes to zero as
n→ +∞. If (0, 0) is a centre for (B.15), then the point (x∗, y∗) can be either
a centre (as for the Lotka-Volterra model, page 456) or a focus for (B.13).

(e) Star node perturbation. The perturbation of a star node is also delicate.
In order to have a topologically equivalent orbit’s configuration, we have to
guarantee that given any direction w , there exists an orbit converging to the
equilibrium point tangentially to w. This is true if the perturbation error is
of “slightly lower order than o(ρ)”. Indeed, the following theorem holds:

Theorem B.2. Assume that there exists ε > 0 such that

f (x, y) = f(x∗, y∗) + fx(x∗, y∗) (x− x∗) + fy(x∗, y∗) (y − y∗) + o
(
ρ1+ε

)

g (x, y) = g(x∗, y∗) + gx(x∗, y∗) (x− x∗) + gy(x∗, y∗) (y − y∗) + o
(
ρ1+ε

)

then, if (0, 0) is a star node for (B.15), (x∗, y∗) is a star node for (B.13).
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Finite difference approximation of time
dependent problems

We address here the main steps to pursue the error analysis of finite difference
methods for time dependent problems. Some examples of such methods have
been addressed for the approximation of scalar conservation laws and for the
heat equation. For simplicity, we restrict to problems in one space dimension.

We aim to approximate the solution u of the following problem

⎧⎪⎨
⎪⎩

ut + Lu = 0 0 < x < 1, 0 < t < T

Bu = 0 x = 0, x = 1, 0 < t < T

u(x, 0) = u0(x) 0 ≤ x ≤ 1,
(C.1)

where Lu is a generic linear differential operator that stands for Lu = −∂xxu
as in the heat equation or Lu = a∂xu as for scalar conservation laws and where
each case must be complemented by suitable boundary conditions, summa-
rized by Bu = 0.

Let us consider an uniformly spaced computational mesh, such as the one
of Fig. 3.9, whose nodes are given by

xi = i h with 0 ≤ xi ≤ 1, x0 = 0, xN = 1, tn = n τ with 0 ≤ tn ≤ T.

Let uni be the numerical approximation of u(x, t) in the node (xi, tn), namely
uni � u(xi, tn), and let Un = {uni }i be the collection of degrees of freedom at
time tn. We observe that the precise range of variation of index i is affected by
the choice of boundary conditions in (C.1), which has not been made precise
yet. Anyway, there exists a suitable integer N such that Un ∈ RN .

In the finite difference context, the discretization of both the heat equation
(3.96) and scalar conservations laws by the upwind scheme, such as (2.74),
can be reformulated as the following general framework:

given U0 ∈ RN , find a sequence Un+1 = Cτ
hUn (C.2)
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where Cτ
h ∈ RN×N is the iteration matrix. In the forthcoming section, we aim

to compare (C.2) with (C.1) and draw the general lines for the error analysis.1

C.1 Discrete scheme and the equivalence principle

In order to compare discrete and exact solutions, we introduce the restriction
operator Ru(t) = {u(xi, t)}i ∈ RN that collects the restrictions of the exact
solution in the nodes of the finite difference scheme at any time 0 ≤ t ≤ T .
Then ‖Ru(tn)−Un‖ quantifies the global error, where ‖ · ‖ is a discrete norm
in RN .

We aim to provide here a simple example of the so called equivalence
principle, also known as Lax-Richtmyer Theorem, a general property which
ensures that the error analysis, that is the verification of convergence, can
be equivalently decomposed in two simpler steps, namely the study of con-
sistency and stability of the scheme, that will be properly defined in what
follows.

Definition C.1. The scheme (C.2) is consistent with (C.1) provided that

lim
τ,h→0

sup
t∈(0,T )

τ−1‖Ru(t+ τ)−Cτ
hRu(t)‖ = 0. (C.3)

The scheme turns out to be of order p and q in h and τ respectively, if p, q > 0
are th largest exponents such that

lim
τ,h→0

sup
t∈(0,T )

τ−1‖Ru(t+ τ)−Cτ
hRu(t)‖ = lim

τ,h→0
C
(
hp + τ q

)
(C.4)

where C is a positive constant independent on h and τ .

We notice that τ−1‖Ru(t + τ) − Cτ
hRu(t)‖ is the residual obtained when

replacing the exact solution u(xi, t) into the scheme (C.2). In other words, it is
equivalent to the local truncation error already addressed in the previous
chapters. Its supremum over the time interval, precisely τ−1‖Ru(t + τ) −
Cτ
hRu(t)‖ is called global truncation error. To sum up, the scheme turns

out to be consistent if the global truncation error vanishes along with the
discretization steps τ , h.

The stability of the scheme (C.2) depends on the iteration matrix Cτ
h. For

a generic matrix A ∈ RN×N we denote with ‖A‖ the matrix norm induced
by ‖ · ‖ in RN and we assert that (C.2) is stable if the following statement is
verified.

1 For a more detailed illustration of the equivalence principle, complemented with
several examples, including for instance the error analysis of leapfrog scheme for
the approximation of the wave equation, we refer the interested reader to Dautray
and Lions [39], Chapter XX, Volume 6.
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Definition C.2. The scheme (C.2) turns out to be stable if there exists a
positive constant K, independent on h and τ such that,

‖(Cτ
h)
n‖ ≤ K, ∀ n with τn ≤ T. (C.5)

Furthermore, the scheme is called unconditionally stable when (C.5) is
satisfied for any admissible value of h and τ . Conversely, when (C.5) holds true
for a restricted choice of h and τ , we have a conditionally stable scheme.
Theorem 3.6 suggests that the satisfaction of (C.5) is closely related to the
spectral properties of Cτ

h. For the particular case of forward and backward
Euler schemes, this is put into evidence by Corollaries 3.4, 3.5. In the case
of explicit methods for the approximation of conservation laws, such as the
upwind scheme, we remind that CFL condition is necessary to prove stability.
As a result of that, this family of schemes turns out to be only conditionally
stable.

We address finally a precise definition of convergence.

Definition C.3. Provided that the initial state of the discrete scheme con-
verges to the exact one,

lim
h→0

‖Ru0 −U0‖ = 0

for any τ , h→ 0 and n→∞ with nτ = t, the solution of (C.2) converges to
the one of (C.1) when

lim
τ,h→0

‖Ru(t)−Un‖ = 0, ∀t ∈ (0, T ). (C.6)

As highlighted by the following fundamental principle, consistency, stabil-
ity and convergence are the pillars for the analysis of any numerical method.

Theorem C.1. Let problem (C.1) be well posed and let us consider its ap-
proximation by means of (C.2), which is assumed to be consistent. Then, the
scheme (C.2) is convergent if and only if it is stable.

Proof. The direct implication, namely that stability implies convergence for
any consistent scheme, is the most relevant to the purpose of error analysis.
Then, let us assume that consistency and stability hold true for (C.2) and
prove convergence. We start by looking at the error at time tn+1,

Ru(tn+1)−Un+1 = Ru(tn+1)−Cτ
hUn

=
(
Ru(tn+1)−Cτ

hRu(t
n)
)

+ Cτ
h

(
Ru(tn)−Un

)
.

We notice that the first term on the right hand side is proportional to the
truncation error, while the second term is the error at time tn. By propagating
this expression recursively backward in time we obtain,

Ru(tn+1)−Un+1

=
n∑
k=0

(Cτ
h)
k
(
Ru(tn+1−k)−Cτ

hRu(t
n−k)

)
+ (Cτ

h)
n+1
(
Ru0 −U0

)
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which can be easily rearranged as follows,

‖Ru(tn+1)−Un+1‖

≤
n∑
k=0

‖(Cτ
h)
k‖ ‖Ru(tn+1−k)−Cτ

hRu(t
n−k)‖+ ‖(Cτ

h)
n+1‖ ‖Ru0 −U0‖.

Owing to the stability of (C.2) and assuming, without loss of generality, that
K ≥ 1 in (C.5) we have,

‖Ru(tn+1)−Un+1‖
≤ τ(n+ 1)K sup

t∈(0,T )

τ−1‖Ru(t+ τ)−Cτ
hRu(t)‖+K‖Ru0 −U0‖.

Observing that τ(n + 1) = tn+1 ≤ T and combining the consistency of the
scheme with the convergence of the discrete initial state, we conclude that
the previous inequality implies convergence. Furthermore, if (C.2) is consis-
tent with order O(hp + τ q) and if the same spatial accuracy holds for the
approximation of the initial state, precisely ‖Ru0 −U0‖ = O(hp), then the
error shares the same infinitesimal order with respect to h and τ than the
truncation error. In other words, there exists a positive constant C, indepen-
dent on h, τ such that

lim
τ,h→0

‖Ru(t)−Un‖ = lim
τ,h→0

C
(
hp + τ q

)
.

The reverse statement, namely that convergence implies stability is more
easily proved. First, we observe that convergence immediately leads to

lim
τ,h→0

‖Ru(t)− (Cτ
h)
nU0‖ = 0,

that is
lim
τ,h→0

(Cτ
h)
nU0 = Ru(t), ∀nτ = t ∈ (0, T )

or equivalently that ‖(Cτ
h)
nU0‖ ≤ K for any U0 ∈ RN . Then, the uniform

boundedness Theorem (also known as Banach-Steinhaus Theorem), ensures
that ‖(Cτ

h)
n‖ ≤ K for any n such that nτ = t ≤ T , that is indeed the stability

property. �
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Identities and Formulas

D.1 Gradient, Divergence, Curl, Laplacian

Let F be a smooth vector field and f a smooth real function, in R3.

Orthogonal cartesian coordinates

1. gradient

∇f =
∂f

∂x
i +

∂f

∂y
j +

∂f

∂z
k;

2. divergence (F =F1i + F1j + F3k)

div F =
∂

∂x
F1 +

∂

∂y
F2 +

∂

∂z
F3;

3. laplacian

Δf =
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
;

4. curl

curl F =

∣∣∣∣∣∣
i j k
∂x ∂y ∂z
F1 F2 F3

∣∣∣∣∣∣
.

Cylindrical coordinates

x = r cos θ, y = r sin θ, z = z (r > 0, 0 ≤ θ ≤ 2π)

er = cos θi+sin θj, eθ = − sin θi+ cos θj, ez = k.

1. gradient

∇f =
∂f

∂r
er +

1
r

∂f

∂θ
eθ +

∂f

∂z
ez;

2. divergence (F =Frer + Fθeθ + Fzk)

div F =
1
r

∂

∂r
(rFr) +

1
r

∂

∂θ
Fθ +

∂

∂z
Fz;
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3. laplacian

Δf =
1
r

∂

∂r

(
r
∂f

∂r

)
+

1
r2
∂2f

∂θ2
+
∂2f

∂z2
=
∂2f

∂r2
+

1
r

∂f

∂r
+

1
r2
∂2f

∂θ2
+
∂2f

∂z2
;

4. curl

curl F =
1
r

∣∣∣∣∣∣
er reθ ez
∂r ∂θ ∂z
Fr rFθ Fz

∣∣∣∣∣∣
.

Spherical coordinates

x = r cos θ sinψ, y = r sin θ sinψ, z = r cosψ
backslash (r > 0, 0 ≤ θ ≤ 2π, 0 ≤ ψ ≤ π)

er = cos θ sinψi+ sin θ sinψj+ cosψk

eθ = − sin θi+ cos θj
eψ = cos θ cosψi+ sin θ cosψj− sinψk.

1. gradient

∇f =
∂f

∂r
er +

1
r sinψ

∂f

∂θ
eθ +

1
r

∂f

∂ψ
eψ;

2. divergence (F =Frer + Fθeθ + Fψeψ)

div F =
∂

∂r
Fr +

2
r
Fr

︸ ︷︷ ︸
radial part

+
1
r

[
1

sinψ
∂

∂θ
Fθ +

∂

∂ψ
Fψ + cotψFψ

]

︸ ︷︷ ︸
spherical part

;

3. laplacian

Δf =
∂2f

∂r2
+

2
r

∂f

∂r︸ ︷︷ ︸
radial part

+
1
r2

{
1

(sinψ)2
∂2f

∂θ2
+
∂2f

∂ψ2 + cotψ
∂f

∂ψ

}

︸ ︷︷ ︸
spherical part (Laplace-Beltrami operator)

;

4. curl

rot F =
1

r2 sinψ

∣∣∣∣∣∣∣

er reψ r sinψeθ
∂r ∂ψ ∂θ

Fr rFψ r sinψFz

∣∣∣∣∣∣∣
.
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D.2 Formulas

Gauss’ formulas

In Rn, n ≥ 2, let:

• Ω be a bounded smooth domain and and ν the outward unit normal on
∂Ω;

• u,v be vector fields of class C1
(
Ω
)
;

• ϕ,ψ be real functions of class C1
(
Ω
)
;

• dσ be the area element on ∂Ω.

1.
∫
Ω

div u dx =
∫
∂Ω

u · ν dσ (Divergence Theorem);

2.
∫
Ω
∇ϕ dx =

∫
∂Ω

ϕν dσ;

3.
∫
Ω
Δϕ dx =

∫
∂Ω
∇ϕ · ν dσ =

∫
∂Ω

∂νϕ dσ;

4.
∫
Ω
ψ divF dx =

∫
∂Ω

ψF · ν dσ − ∫
Ω
∇ψ · F dx (Integration by parts);

5.
∫
Ω
ψΔϕ dx =

∫
∂Ω

ψ∂νϕ dσ − ∫
Ω
∇ϕ · ∇ψ dx (Green’s identity I);

6.
∫
Ω

(ψΔϕ− ϕΔψ) dx =
∫
∂Ω

(ψ∂νϕ −ϕ∂νψ) dσ (Green’s identity II);

7.
∫
Ω

curl u dx = − ∫
∂Ω

u× ν dσ;

8.
∫
Ω

u· curl v dx =
∫
Ω

v· curl u dx− ∫
∂Ω

(u× v) · ν dσ.

Identities

1. div curl u =0;
2. curl grad ϕ = 0;
3. div (ϕu) = ϕ div u+∇ϕ · u;
4. curl (ϕu) = ϕ curl u+∇ϕ× u;
5. curl (u× v) = (v·∇)u− (u·∇)v+ (div v)u− (div u)v;
6. div (u× v) = curlu · v−curlv · u;
7. ∇ (u · v) = u× curl v + v× curl u + (u·∇)v+(v·∇)u;

8. (u·∇)u = curlu× u+ 1
2∇|u|2 ;

9. curl curl u = ∇(div u)−Δu.
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1999, X+364 pp, ISBN 88-470-0060-2

E. Salinelli, F. Tomarelli
Modelli dinamici discreti
2002, XII+354 pp, ISBN 88-470-0187-0

S. Bosch
Algebra
2003, VIII+380 pp, ISBN 88-470-0221-4

S. Graffi, M. Degli Esposti
Fisica matematica discreta
2003, X+248 pp, ISBN 88-470-0212-5



S. Margarita, E. Salinelli
MultiMath – Matematica Multimediale per l’Università
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