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ABSTRACT

The thin airfoil theory for calculation of section flight properties is reviewed. Lift and

moment coefficient and center of pressure calculations are made for cambered and flapped

wing sections. Effects of camber and flaps are discussed. The thin wing theory results are

compared to experimental airfoil data.
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INTRODUCTION

Aircraft fly by overcoming gravity with a lifting force. This force can be provided

by a wing. A wing’s cross sectional geometry influences the flow of air. This combined

geometry of the wing and the reaction of the air causes any general solution of wing section

properties to become too complicated to use or impossible to find.

A more simple approach to finding flight properties of wing sections is to assume

an inviscid and incompressible flow. A vortex superimposed in a airstream simulates the

process of lift generation by a wing section. A vortex distribution placed along the wing will

simulate the actual properties of the wing and allow a simple method of calculating wing

properties. The thin airfoil theory calculates a distribution of vortices that is compatible

with a thin representation of an airfoil. This distribution can be used to find the lift,

moment and pressure properties of an airfoil.

The objective is to review the thin airfoil theory and to apply the theory to three

wing sections. The wing sections will consist of one curved cambered NACA 2412 airfoil,

one straight line flapped airfoil and one cambered line segment airfoil. The coefficients of

lift and moment and the center of pressure locations will be found.

THEORY

The thin airfoil theory simulates the aerodynamic properties of an airfoil section with

vortex sheets. The vortex sheet consists of a continuous vortex distribution along the chord

of the wing. The induced velocity at a distance r caused by a vortex of strength γ is

dv =
γds

2πr

Integrating over the wing chord yields the total downward velocity due to the vortex sheet.

v =
∫

chord

γds

2πr

Because fluid cannot flow through the wings surface, the downward velocity at the wing’s
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surface must be zero. Thus a thin wing section at an small angle of attack can be approx-

imated by
v(x)
U

= α − dz

dx

where U is the flight velocity and dz
dx is the slope of the wing section with respect to the

chord line. Substituting for the downward velocity, where r = x0 − x, yields,

1
2πU

∫
chord

γ(x)
x0 − x

dx = α − dz

dx

Additionally, the Kutta condition forces a fluid to flow off a surface tangentailly causing the

vortex strength to be zero at the trailing edge. For ease of later calculation, the coordinate

system is transformed to a polar system centered at the mid chord by x = c
2 (1 − cos(θ)).

Thus,
1

2πU

∫ π

0

γ(θ) sin(θ)
cos(θ) − cos(θ0)

dθ = α − dz

dx

A general solution of the above equation is unknown and would be in any case too complex

to handle. However, an approximation can be found by assuming a distribution of γ,

γ(θ) = 2U
[
A0

1 + cos(θ)
sin(θ)

+
∞∑

n=1

An sin(nθ)
]

Where values of A0 through An are given by (McCormick, 1995)

A0 = α − 1
π

∫ π

0

dz

dx
dθ

An =
2
π

∫ π

0

dz

dx
cos(nθ)dθ

Applying the Jutta Joukowski expression for lift and moment versus vortex strength yields,

Cl = 2πA0 + πA1

CmLE
= −π

2
(A0 + A1 −

A2

2
)

The moment at any arbitrary point off the leading edge can be found by adding the

contribution due to the lifting force and the distance from the leading edge. At the quarter
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chord location, the resulting moment does not depend on the angle of attack and is given

by (McCormick, 1995),

Cm0.25c
= −π

4
(A1 − A2)

Similarily, the center of pressure is given by

xcp =
c

4
(1 +

π

Cl
(A1 − A2))

RESULTS AND DISCUSSION

Calculations were performed and are given in Appendix A, B and C. Three profiles

were analized as thin wings. These included one cambered wing consisting of constantly

changing curvature along a mean chord line. One flapped and one cambered wing both

consisting of straight line segments.

The NACA 2412 cross section is given in Appendix A. The forward section dz
dz as

calculated from the mean camber line is 0.125 cos(θ) − 0.025. The aft section has a dz
dz of

0.0555 cos(θ)− 0.0111. The mean camber line equations are switched at θ = 1.369radians.

Thus, A0 = α − 0.0045165. A1 = 0.0814604 and A2 = 0.0138724. The coefficient of lift is

Cl = 2πα+0.2275 and the moment coefficient at the quarter chord is Cm0.25c
= −0.05308.

The wing section has zero lift at an angle of attack of −2.07 degrees.

The flapped airfoil is given in Appendix B. The forward non-flapped section’s dz
dx

is 0.086135 and the aft flapped section has a dz
dx of −0.3655. The wing switches from

unflapped to flapped segments at θ equals 2.2377 radians. Thus, A0 = α + 0.04381. A1 =

0.22591 and A2 equals −0.013974. The effective coefficient of lift is Cleff
= 2πα + 0.9850

and the effective moment coefficient at the quarter chord is Cm0.25ceff
= −0.28718. The

effective center of pressure is at xcp = c
4

(
1 + 1.14903

2παeff +0.9850

)
When converted to true

chord lengths and true angles of attack, Cl = 0.9849 · 2π + 1.5018, Cmac = −0.27858 and

xcp = 0.9849 c
4

(
1 + 1.14903

2πα+0.9850

)
The cambered airfoil is given in Appendix C. The forward section’s dz

dx = 0.8 and the

aft section has a dz
dx of −0.8. The wing switches profile lines at θ = 90degrees. A0 is simply
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α. A1 = 0.10186 and A2 equals 0. At 10 degrees angle of attack, the coefficient of lift is

Cl = 1.4166 and the moment coefficient at the quarter chord is Cm0.25c
= −0.08.

In each case, the coefficient of lift depends on a the angle of attack plus an increment

due to the curvature of the wing. For the flapped wing, the increment was 1.58 while

the unflapped NACA and cambered wing had an increment of approximately 0.3. This is

consistent with flap increasing the lift at a constant true angle of attack.

Abbott and Doenhoff give experimental data for the NACA 2412. The experimental

coefficient of lift at zero angle of attack is approximately 0.25 which is close to 0.228 as

given by the thin wing theory. The increase of the coefficient of lift versus angle of attack

shown experimentally is approximately 0.12 per degree. The thin wing gives dCl

dα = 2π or

0.11 per degree. Both experimental and theoretical values of the zero lift angle of attack

are approximately −2 degrees. The similarity of the experimental and theoretical values is

remarkable considering the assumptions and simple mathematics of the thin wing theory.

CONCLUSION

The thin airfoil theory is a method of calculating wing section properties. The thin

wing theory only requires an expression of the mean chord line and thus can handle flapped

and continuous wings. The mathematics are simple and involve only at most integration

and differentiation. The results seem to be accurate when compared to experimental

data when restricted to moderate angles of attack. The thin wing theory seems to be an

adequate method for quick, simple and accurate flight properties of a wing section.
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APPENDIX A
Calculations: NACA 2412
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NACA 2412:

The NACA 2412’s mean camber line is described piecewise with a switch in equations
at x=0.4c.

Front :
z

c
= 0.125(0.8

x

c
− x

c

2
)

Aft :
z

c
= 0.0555(0.2 + 0.8

x

c
− x

c

2
)

The derivatives of z with respect to x are,

dz

dz f
=

−0.25(x − 0.4c)c
c2

= −0.25
x

c
+ 0.1

dz

dz a
=

−0.111(x − 0.4c)c
c2

= −0.111
x

c
+ 0.0444

The slopes are transformed into polar coordinates by substituting x = c
2 (1 − cos(θ))

into the above derivatives. Thus,

dz

dz f
= −0.25 · 0.5(1 − cos(θ)) + 0.1 = 0.125 cos(θ) − 0.025

dz

dz a
= −0.111 · 0.5(1 − cos(θ)) + 0.0444 = 0.0555 cos(θ) − 0.0111

Also, the switching point is transformed. x = 0.4c = 0.5c(1 − cos(θ)). Thus the angle for
switching equations is 1.369 radians.

From theory, A0 = α− 1
π

∫ π

0
dz
dxdθ and An = 2

π

∫ π

0
dz
dx cos(nθ)dθ. The integration takes

into account the location and distance of the front and aft equation for the section. Thus,

A0 = α − 1
π

∫ 1.369

0

(0.125 cos(θ) − 0.025)dθ − 1
π

∫ π

1.369

(0.0555 cos(θ) − 0.0111)dθ

= α − 0.0280872 − (−0.0235707) = α − 0.0045165

A1 =
2
π

∫ 1.369

0

(0.125 cos(θ)− 0.025) cos(θ)dθ +
2
π

∫ π

1.369

(0.0555 cos(θ)− 0.0111) cos(θ)dθ

= 0.0466913 + 0.0347691 = 0.0814604

A2 =
2
π

∫ 1.369

0

(0.125 cos(θ)−0.025) cos(2θ)dθ +
2
π

∫ π

1.369

(0.0555 cos(θ)−0.0111) cos(2θ)dθ
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= 0.0249503 − 0.0110779 = 0.0138724

From theory, the lift coefficient is Cl = 2πA0 +πA1 and the moment coefficient about
the quarter chord is Cm0.25c = −π

4 (A1 − A2). Thus, the lift and moment coefficients are

Cl = 2π(α − 0.0045165) + 0.0814604π = 2πα + 0.2275

Cm0.25c = −π

4
(0.0814604 − 0.0138724) = −0.05308

The section has zero lift when Cl equals zero. Solved for alpha, the zero lift angle is

α = −0.2297
2π

= −0.0362radian = −2.07degrees

Thus, the angle of attack for zero lift is -2.07 degrees.
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APPENDIX B
Calculations: Flapped airfoil
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Flapped airfoil:

The thin airfoil shown above has a 20 percent flap deflected 25 degrees. The effective
chord length is found from the law of cosines, c2 = A2 +B2−2ABcos(c) = 0.82 +0.22−2 ·
0.8 · 0.2cos(180− 25) which yields an effective chord length of 0.9849 of the original chord.
From the law of sines, the angle between the front section and the chord line is found.

sin(β)
0.2

=
sin(155)
0.9849

Thus, β = 4.923degrees and δ = 20.077degrees. The flap width projected along the
effective chord line is 0.2c sin(20.077) = 0.1878c or 0.190726ceff when in terms of the
effective chord length. So, the effective chord length of the unflapped section of the wing
is 0.80927ceff .

The slope of the lines forming the wing and flap are

dz

dx f
= tan(4.923) = 0.0861346

dz

dxa
= − tan(20.077) = −0.3655

The switch from the forward to the aft equation is at x = 0.8092736 = 0.5(1 − cos(θ))
which is at 2.2377 radians in the polar coordinate system.

From theory, the A coefficients are,

A0 = α − 1
π

∫ 2.2377

0

0.0861346dθ − 1
π

∫ π

2.2377

−0.3655dθ

= α − 0.0613521 + 0.1051609 = α + 0.04381

A1 =
2
π

∫ 2.2377

0

0.0861346 cos(θ)dθ +
2
π

∫ π

2.2377

−0.3655 cos(θ)dθ

= 0.0430861 + .1828297 = 0.22591

A2 =
2
π

∫ 2.2377

0

0.0861346 cos(2θ)dθ +
2
π

∫ π

2.2377

−0.3655 cos(2θ)dθ

= −0.0266512 − 0.1130904 = −0.13974
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The effective lift and moment coefficients are

Cleff
= 2π(α + 0.04381) + 0.22591π = 2πα + 0.9850

Cm0.25ceff
= −π

4
(0.2259158 − (−0.1397416)) = −0.28718

The location of the center of pressure with respect to the effective chord length is

xcp =
c

4
(1 +

π

Cl
(A1 − A2)) =

c

4

(
1 +

1.14903
2παeff + 0.9850

)
The lift and moment coefficients and the center of pressure can be converted to the true
chord length and angle of attack.

α = αeff − 4.923◦

c =
ceff

0.9849
Substituting the true values for the effective values and then simplifying yields,

Cl = Cleff
(
ceff

c
) = 0.9849 · (2π(α + 4.923◦) + 0.9850) = 0.9849 · 2π + 1.5018

Cmac = Cm0.25ceff
· (ceff

c
)2 = −0.27858(0.9849)2 = −0.27858

xcp = xcpeff
· (ceff

c
) = 0.9849

c

4

(
1 +

1.14903
2πα + 0.9850

)
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APPENDIX C
Calculations: Thin Cambered Airfoil
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Thin Cambered Airfoil:

The slope of the front piece of the airfoil is found from the thickness and half chord
length. dz

dx = 0.04
0.5 = 0.8 The aft piece has the negative magnitude of the front slope. So,

dz
dx = −0.04

0.5 = −0.8 Transforming the coordinates yields 90 degrees (π
2 radians) as the

location to switch slope equations. Thus,

A0 = α − 1
π

∫ 0.5π

0

0.08dθ − 1
π

∫ π

0.5π

−0.08dθ

= α − 0.04 − (0.04) = α

A1 =
2
π

∫ 0.5π

0

0.08 cos(θ)dθ +
2
π

∫ π

0.5π

−0.08 cos(θ)dθ

= 0.0509296 + 0.0509296 = 0.1018592

A2 =
2
π

∫ 0.5π

0

0.08 cos(2θ)dθ +
2
π

∫ π

0.5π

−0.08 cos(2θ)dθ

= 0 + 0 = 0

The coefficient of lift is

Cl = 2πα + 0.1018592π = 2πα + 0.320

The quarter chord moment coefficient is

Cm0.25c
= −π

4
(0.1018592 − 0) = −0.08

At 10 degrees (0.1745 radians) angle of attack as shown, the lift and moment coefficients
are,

Cl = 2π · 0.1745 + .320 = 1.4166

Cm0.25c
= −0.08


