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ABSTRACT

Formulas for obtaining the thrust of a rocket engine are given. A computer program is

used to find the combustion products. A computer program is adapted and used to solve

for a rocket’s velocity and distance for two stages when given basic rocket parameters.

Data is tabulated and plotted.
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INTRODUCTION

Rocket performance depends on geometry, fuel types and flight location. Assump-

tions of adiabatic combustion and frozen ideal gas products and the use of simple rocket

equations yield an easy method of calculating the performance of a rocket.

The objective is to determine the flight properties of a two stage rocket given fuel types

and basic nozzle geometry. A computer program will be used to calculate the product

species and temperatures. Isentropic flow assumptions will be used to find the properties

of the fluid. Thrust will then be calculated and differentially solved to yield the velocity

and altitude of a rocket.

THEORY

Rockets provide thrust by accelerating a fluid. From Newton’s law, m · dV
dt = ΣF .

From a force balance,

m
dV

dt
= Thrust−Drag − gravity

The thrust can be consided as the sum of a pressure and a flow contribution. (Thrust =

ṁ · Ve + (Pexit − Patmo) · Ae) For a rocket carring its own fuel, the current mass is the

initial mass, mo, minus the burned fuel, ṁ · t. (m = mo − ṁ · t) Solving the force balance

for dV/dt and neglecting the drag term yields,

dV

dt
=

ṁ · Ve

mo − ṁt
+

Ae

mo − ṁ · t
· (Pexit − Patm)− g

This is an second order ordinary differential equation.

The flow of a fluid in a rocket exhaust can be modeled by assuming isentripic flow,

ideal gas and constant specific heat. A overall product of combustion has properties of the

mean of the individual products. Thus, the mean mixture molecular weight is

M = Σ(xiMi) = Σ(
ni

nt
Mi)

where ni is the number of moles, nt is the total product moles and Mi is the individual
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product’s molecular weight. Similarly, the overall specific heat is

Cp(T ) = Σ(Cpi

ni

nt
)

From the molecular weight and specific heat, the specific gas constant and ratio of specific

heats can be calculated.

R =
R̄

M

γ =
Cp

Cp −R

Due to the complexities and small time, the product ratios will be assumed to remain

constant. Assuming frozen species amounts allows for ease of fluid properties throughout

the nozzle flow.

A relationship between parameters of an oblique shock wave is derived by Curle and

can be solved for the oblique shock angle,

P2 − P1

P1
=

2γ

γ + 1
M2

1 sin2θ − 2γ

γ + 1

Thus,

θ = arcsin

√(P2 − P1

P1
+

2γ

γ + 1

)( γ + 1
2γM2

1

)

METHOD OF CALCULATION

Product species and temperatures were found from a FORTRAN 77 program, AFTC2,

when given combustion pressure, reactants and the heat of combustion. Dissociation of

the products was assumed. The adiabatic temperature was used in all calculations. Fitted

curves for the properties of the products were used to calculate the Molecular weight and

specific heat at the chamber temperature. Gamma was calculated. Exit properties were

calculated using tables given in Appendix D. Thrust at sea level, design height and space

were calculated from the above theory. A Second order Runge-Kutta numerical solver

given in Appendix E was used to find the velocity and altitude versus time when given the
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net forces acting on the rocket. More than one stage is implemented by running the solver

routine again with different parameters but with the final velocity and altitude from the

end of the previous stage. The program outputs incremental velocities at each time step.

After the final stage, the program exits.

RESULTS AND DISCUSSION

Calculations were performed as discussed above and are given in Appendix A,B and

C. Stage one has a total mass of 5000 kg, a structure weight of 500 kg and a propellent

mass of 3500 kg for a mass loading of 0.7. Stage two has a total mass of 1000 kg (5000-

3500-500=1000), a propellent mass of 500 kg and a 500 kg payload for a mass loading of

0.5. An exit area of 0.05 m2 was chosen for stage two.

The first stage burned Oxygen and Hydrogen. At the stoichiometric mixture and

assuming dissociation, the adiabatic flame temperature was 4003 K (Appendix C). This

yields a gas constant of 0.5155 KJ
kgK and a gamma of 1.196. The back pressure was approx-

imated as 30.09 Kpa at the design height of 9.1 kilometers. The combustion chamber had

a pressure of 4.05 MPa. The products exiting the nozzle have a Mach number of 3.55, a

temperature of 1791.6 K and a velocity of 3731 m/s. The mass flow rate was 25.95 kg/s

with an exit plane area of 2135 cm2. At the design altitude, the thrust was 96.8 KN. At

ground level, the thrust was 81.7 KN with an oblique shock angle of 30.07 degrees. In

space, the thrust was 103.2 KN with a Prandl-Meyer turn angle of 132.6 degrees. A plot

of thrust versus altitude for the first stage is given in Appendix G.

The second stage burned Kerosene and Oxygen. A stoichiometric mixture with disso-

ciation yielded an adiabatic flame temperature of 3955 K. The exit Mach number is 3.58

which is 2941 m/s. The second stage has a mass flow rate of 7.75 kg/s.

At approximately 135 seconds into the flight, the first stage separates and the second

stage starts. Plots of altitude and velocity versus time are given in the Figures in Appendix

G. The first stage has a burn length of 3500kg / 25.95 kg/s = 134.9 seconds and achieves
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a velocity of 3282 m/s at 150000 m. (Appendix G) The second stage has a burn length of

500 kg / 7.75 kg/s = 64.5 s. This stage adds another 1538 m/s of velocity and 250000 m of

altitude. This shows how lighter upper stages are able to accelerate the rocket to similar

velocities and distances will significatly less fuel. This is due to the smaller thrust being

applied to a much smaller mass. To accelerate the upper stage, the lower stage must be

significatly larger and any increase in the mass of the fuel cuts into the payload capability.

CONCLUSION

Assumptions of adiabatic combustion and frozen ideal gas products and the use of

simple rocket equations were able to roughly calculate the performance of a rocket. A

multistage rocket is sensitive to the proportion of weight divided between the stages. The

analysis could easily add friction and changing gravitational effects due to the ODE being

numerically solved. This method to calculate the performance of a rocket is only approxi-

mate; however, it is suitable for a rough solution or for experiments to obtain insights into

rocket performance.
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APPENDIX A

Calculations: Hydrogen and Oxygen
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Combustion products:

From theory, the mean mixture molecular weight is MW = ΣniMWi

nt
. The molar

species amounts are given in the computer output in Appendix C. Thus,

MW =
(0.7672)(18) + (0.1164)(32) + (0.2328)(2)

(1.116)
= 16.129

kg

kmol

The specific heats were evaluated from a fitted line curve (Lilley) at the chamber temper-

ature. The constant pressure specific heat is from theory,

Cp =
ΣCpi

ni

nt ·MW
=

(55.63)(.7672) + (41.55)(.1164) + (39.32)(.2328)
(1.116)(16.129)

= 3.1483
KJ

KgK

The specific gas constant, R, is equal to R̄
MW = 8.314

16.129 = 0.5155 KJ
KgK . The ratio of specific

heats is

γ =
Cp

Cp −R
=

3.1483
3.1483− 0.5155

= 1.196

Nozzle:

A logistic line-fit between zero and 30 kilometers was used to find an approximation

for the atmospheric pressure given the altitude in kilometers. The routine returned

Patmo =
326.5

1 + 2.23e0.1636h

where h is in kilometers and P is in KPa. At the design height, 9.1 km, the pressure

is 326.5
1+2.23e0.1636·9.1 = 30.09Kpa. The Chamber Pressure is 4050 Kpa. Since the chamber

pressure is also the stagnation pressure, P/Pt = 30.09
4050 = 0.00743. Thus, the exit Mach

number can be found by interpolating the Gamma = 1.196 isentropic flow table given

in Appendix D for the calculated P/Pt. The Mach number at the exit is 3.55. T/Tt at

M=3.55 is 0.4475 so that the exit temperature is (4003.5)(0.4475) = 1791.6K. A/A∗ is

15.143. The exit area is (A/A∗)(A∗) = (15.143)(141) = 2135cm2. The exit velocity is

Ve =
√

γRT ·M =
√

(1.196)(0.5155)(1791.6)(1000) · 3.55 = 3731
m

s

The mass flow rate calculated with exit values is

ṁ = ρV A =
P

RT
V A =

(30.09)
(0.5155)(1791.6)

(3731)(.2135) = 25.95
kg

s
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Performance:

The general thrust for a rocket is Th = ṁ · Ve + (Pe − Pa)A. In space with no

outside pressure, Thrust is (25.95)(3731) + (30.09− 0)(1000)(.21352) = 103.2KN . At the

design altitude, 9.1 km, the back pressure is equal to the atmospheric pressure so that

Th = (25.95)(3731) + 0 = 96.8KN . At sea level, the atmospheric pressure is 101 Kpa.

The thrust is (25.95)(3731) + (30.09− 101)(1000)(.21352) = 81.7KN .

The Prandl-Meyer angle is given by (John)

ν =
√

γ + 1
γ − 1

arctan

√
γ + 1
γ − 1

(M2 − 1)− arctan
√

M2 − 1

Space pressure is zero so that the fluid attempts an infinite increase in velocity. Thus,

ν(∞) = 211.25◦. At the exit Mach number, ν(3.55) = 78.66◦. Thus, the Prandl-Meyer

Turn Angle is 211.25-78.66=132.6 degrees.

At ground level, an oblique shock is present behind the exit plane. From theory,

θ = arcsin

√(101− 30.09
30.09

+
2 · 1.196
1.196 + 1

)( 1.196 + 1
2 · 1.196(3.55)2

)
= 30.07◦
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APPENDIX B

Calculations: Kerosene and Oxygen
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Molecular Weight

From theory, the mean mixture molecular weight is MW = ΣniMWi

nt
. The molar

species amounts are given in the computer output in Appendix C. Thus,

MW =
(6.418)(28) + (3.582)(44) + (9.028)(18) + (4.195)(32) + (1.972)(2)

(25.19)
= 25.33

kg

kmol

The specific heats were evaluated from a fitted line curve (Lilley) at the chamber temper-

ature, 3955 K. The constant pressure specific heat is from theory,

Cp =
ΣCpi

ni

nt ·MW

=
(6.418)(37.72) + (3.592)(64.29) + (9.028)(55.57) + (4.195)(41.497) + (1.972)(39.24)

(25.33)(25.19)

= 1.921
KJ

KgK

The specific gas constant, R, is equal to R̄
MW = 8.314

25.33 = 0.3282 KJ
KgK . The ratio of specific

heats is

γ =
Cp

Cp −R
=

1.921
1.921− 0.3282

= 1.206

Nozzle:

From the previous stage, A/A∗ is 15.143. Thus, the exit Mach number can be found

by interpolating the Gamma = 1.206 isentropic flow table given in Appendix D for the

known A/A∗. The Mach number at the exit is 3.58. T/Tt at M=3.58 is 0.4311 so that the

exit temperature is (3956)(0.4311) = 1705K. The exit pressure is found by multiplying the

interpolating P/Pt at M=3.58 and the chamber pressure. Pe = (4050)(0.00728) = 29.5Kpa

The exit velocity is

Ve =
√

γRT ·M =
√

(1.206)(0.3282)(1705)(1000) · 3.58 = 2941
m

s

The exit area is 0.05 m2. The mass flow rate calculated with exit values is

ṁ = ρV A =
P

RT
V A =

(29.5)
(0.3282)(1705)

(2941)(0.05) = 7.75
kg

s
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APPENDIX C

Computer Output:

Product Species and Temperature
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APPENDIX D

Isentropic Flow Tables:
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APPENDIX E

Computer Program:

2nd Order ODE Numerical Solver
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APPENDIX F

Computer Program:

Numerical Solver Output
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APPENDIX G

Figures


